

Original Article

Effect of auricular pressure bean combined with wrist-ankle needle on cognitive function and prognosis in migraine patients with anxiety and depression disorders

Weiwei Zhang^{1,2}, Qin Ge², Juan Yuan³

¹Anhui University of Traditional Chinese Medicine, Hefei 230012, Anhui, China; ²Department of General, The Third Affiliated Hospital of Anhui Medical University (Hefei First People's Hospital), Hefei 230061, Anhui, China; ³Key Laboratory of Geriatric Nursing and Health, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China

Received October 21, 2025; Accepted December 2, 2025; Epub December 15, 2025; Published December 30, 2025

Abstract: Objective: To investigate the effects of auricular pressure bean combined with wrist-ankle needle on cognitive function and prognosis in migraine patients with comorbid anxiety and depressive disorders. Methods: A retrospective study was conducted on 99 migraine patients treated at Hefei First People's Hospital between January and December 2023. Based on therapeutic protocols, participants were allocated into auricular pressure bean group ($n=22$), wrist-ankle needle group ($n=20$), and combined group (combined auricular pressure bean with wrist-ankle needle, $n=57$). Pain intensity, depression severity, anxiety severity, cognitive function, and quality of life across three groups were compared before treatment and at 4 weeks post-treatment. Patient migraine recurrence after 3 months was recorded. Pearson correlation analysis was employed to assess the correlation between improvement in anxiety and depression scores and improvement in cognitive function scores. Results: After treatment, all three groups showed a decreasing trend in Visual Analogue Scale, Hamilton Rating Scale for Depression-17 and Hamilton Anxiety Rating Scale scores (all $P<0.05$). The combined therapy group had lower scores than other groups (all $P<0.05$). Montreal Cognitive Assessment and Migraine-Specific Quality of Life Questionnaire scores were increased across all groups, with the combined therapy group scoring the highest (all $P<0.05$). Statistically significant differences existed in recurrence rates among the three groups ($P<0.05$). Improvements in anxiety and depression symptoms were positively correlated with cognitive function improvements across all treatment modalities ($P<0.05$). Conclusion: The combined therapy can significantly relieve the pain and anxiety and depression symptoms of migraine patients, improve cognitive function and quality of life, and reduce recurrence rate. It shows better efficacy than single therapy.

Keywords: Auricular pressure bean, wrist-ankle needle, anxiety and depressive disorders, migraine, cognitive function

Introduction

Migraine is a chronic neurological disease characterized by recurrent unilateral pulsatile headaches with moderate to severe pain intensity [1]. The global prevalence rate is about 14.7%, and the prevalence rate of Chinese adults is 9.3% [2]. Studies have shown that 30% to 50% of migraine patients are accompanied by anxiety and depression. Anxiety and depression can reduce the pain threshold as an incentive to increase the frequency and intensity of migraine attacks. On the contrary, chronic recurrent headache further aggravates the

patient's emotional disorders, forming a vicious circle of negative emotions and headaches that reinforce each other. This dynamic may also impair patients' cognitive function [3]. This not only hinders patients' daily work and social activities, but also weakens their treatment compliance and self-management ability, which has a negative impact on the long-term prognosis of the disease.

For migraine patients with anxiety and depression, combined drug therapy is usually used. This treatment usually includes the use of analgesics to relieve pain, while taking anti-anxiety

Auricular-wrist-ankle therapy for migraine

drugs and antidepressants. Although effective to some extent, long-term use may lead to side effects, including gastrointestinal reactions, drowsiness and dependence [4]. Therefore, a safe and effective treatment with minimal side effects is urgently needed in clinical practice. Auricular pressure bean therapy and wrist-ankle needle are both simple, easily administered, and minimally painful specialized therapies. Auricular pressure bean therapy stimulates acupoints on the auricle to unblock meridians, regulate organ functions, and calm the mind. It modulates autonomic nervous system activity to alleviate anxiety and pain [5]. Wrist-ankle needle is a subcutaneous needling technique that involves shallow insertion at specific stimulation points on the wrist and ankle. This efficiently channels meridian energy, harmonizing qi and blood while providing sedation and pain relief [6]. However, the current research mainly focuses on the immediate analgesic effect of single therapy [7], which leads to insufficient evidence to support the combined treatment plan for the complex interaction of migraine, anxiety and depression.

Based on this, the purpose of this study was to explore the effects of auricular point pressing therapy combined with wrist-ankle acupuncture on anxiety and depression symptoms, cognitive function and quality of life in such patients. Its goal is to provide a theoretical basis for the development of a more optimized and comprehensive non-drug treatment plan in clinical practice, thereby improving the prognosis of patients.

Materials and methods

Study design

A retrospective study was conducted on 99 migraine patients treated at Hefei First People's Hospital between January and December 2023. Based on therapeutic protocols, participants were allocated into auricular pressure bean group ($n=22$), wrist-ankle needle group ($n=20$), and combined group ($n=57$).

Inclusion criteria: (1) Meeting the International Classification of Headache Disorders, 3rd edition (ICHD-3) revised by the International Headache Society [8]; (2) Meeting the diagnostic criteria for anxiety disorders and depressive disorders as outlined in the International Classification of Diseases, 11th Revision [9]; (3)

Aged 18-65 years; (4) Disease duration ≥ 6 months with ≥ 2 headache episodes per month; (5) Complete clinical documentation.

Exclusion criteria: (1) Secondary migraine, such as cerebrovascular disease or intracranial tumors; (2) Concurrent severe organic diseases of the heart, liver, kidneys, etc.; (3) Acute phase of psychiatric disorders, such as manic episodes; (4) Allergy to auricular pressure seeds or Wangbuluxing seeds, or contraindications to wrist-ankle acupuncture.

Efficacy analysis was conducted based on the intergroup difference in VAS scores after 4 weeks of treatment [10]. With $\alpha=0.05$ (two-tailed) and a total sample size $N=99$, the calculated test power was $96.81\% > 80\%$. This study was approved by the Ethics Committee of Hefei First People's Hospital.

Treatment

All patients received standard treatment. For migraine management, ibuprofen (Sanofi-Aventis China Co., Ltd., National Drug Approval No. H10900089) was prioritized during acute episodes for rapid symptom relief. During the maintenance phase, flunarizine (Jiangxi Hui- ren Pharmaceutical Co., Ltd., National Drug Approval No. H20033514) was administered to reduce attack frequency. For anxiety and depression intervention, sertraline (Chengdu Aobang Pharmaceutical Co., Ltd., National Drug Approval No. H20060383) and venlafaxine (Beijing Fuyuan Pharmaceutical Co., Ltd., National Drug Approval No. H20143052) were administered.

When reviewing the medical records of all patients, we found that the treatment plan varied due to contraindications and the availability of actual resources at the time of treatment. The auricular acupuncture group comprised patients with no contraindications to auricular seed therapy, no history of allergy to the adhesive tape or Vitex seed used, and no skin lesions or infections on the auricle that would impede application. These patients showed subjective intolerance to treatment - specifically, they explicitly refused to accept wrist-ankle acupuncture treatment for fear of acupuncture. Despite the investigator fully explaining the procedure, safety profile, and analgesic mechanism of wrist-ankle acupuncture, the patient remained adamant in refusing this therapy.

Auricular-wrist-ankle therapy for migraine

Patients in the wrist-ankle acupuncture group had no skin infections or lesions at the acupuncture sites, no severe coagulation disorders, and no history of epilepsy or needle phobia. During the patient's consultation period, the hospital experienced a temporary shortage of dedicated ear acupuncture pressure bean materials (Wangbuluxing seeds or accompanying adhesive tape), preventing immediate ear acupuncture pressure bean treatment. Due to the need for rapid pain relief in patients with acute headache episodes, these individuals were only included in the wrist-ankle acupuncture group. In the combined group, patients had no allergy to ear acupuncture materials, no auricular skin issues, or no contraindications for wrist-ankle acupuncture. Both treatment resources were available at the time of consultation, and patients received the combined treatment protocol.

Auricular pressure bean group: The Shenmen, Subcortical, Occipital, Temporal, Liver, and Kidney points were selected. The auricular skin was disinfected with 75% alcohol. Once the alcohol completely evaporated, adhesive tape (0.6 cm × 0.6 cm) bearing Wangbuluxing seeds were applied to each selected auricular point. Continuous gentle pressure was applied with the thumb and forefinger until the patient developed a sensation of soreness and distension. The patient was instructed to self-administer pressure three times daily, 30 minutes after breakfast, lunch, and dinner respectively. Each application lasted 1-2 minutes per point, alternating between both ears. The patches were replaced twice weekly for a continuous treatment period of four weeks [11].

Wrist-ankle needle group: Insertion points were selected according to headache location. For frontal pain, Zone 1 was chosen; for temporal pain, Zone 2; for vertex pain, Zone 1; for occipital pain, Zone 5 or Zone 6. For unilateral headaches, the affected side was treated and for bilateral or non-localized headaches, both sides were treated. The skin was disinfected with 75% alcohol. A 30-gauge, 1.5-inch sterile disposable acupuncture needle was rapidly inserted to the head at an angle of 15-30°, parallel to the subcutaneous tissue, with a depth of about 1.2 inches. It was ensured that no resistance, soreness, numbness, swelling or pain was present under the needle. The needle

was retained for 30 minutes. The treatment plan was administered three times a week for four consecutive weeks [12].

Combined group: The treatment program combined wrist and ankle acupuncture with auricular seed therapy. Each session involved the performance of wrist-ankle acupuncture, with simultaneous administration of auricular seed pressing. The same treatment protocol was applied to the auricular acupuncture and wrist-ankle acupuncture groups. The ear seed replacement cycle was staggered with the wrist and ankle acupuncture treatment interval to ensure continuous treatment stimulation.

Observation indicators

Basic information: The general characteristics of all patients were reviewed, including gender, age, course of disease, type of migraine, frequency of attack and duration of headache. All patients were evaluated before treatment and 4 weeks after treatment.

Pain intensity: Visual Analogue Scale (VAS) was developed by Huskisson et al. [13]. The scale uses a 10-point sliding ruler with a length of 10 centimeters, and the ends are marked as '0' and '10', representing the lowest and highest pain levels, respectively. The higher the score, the more severe the pain. The Cronbach's alpha coefficient of the Chinese version of the scale is 0.807 [14, 15].

Depression severity: The Hamilton Depression Scale (HAMD-17) [16] contains 17 items. It uses a five-level scoring system of 0 to 4 points, with a total score range of 0 to 52 points. The higher the score, the higher the severity of depression. The Cronbach's alpha coefficient of the Chinese version of the scale is 0.832 [17, 18].

Anxiety level: The Hamilton Anxiety Scale (HAMA), included 14 items, using a five-level scoring system of 0 to 4 points [19]. The total score ranges from 0 to 56 points and the higher the score, the more serious the anxiety. The Cronbach's alpha coefficient of the Chinese version of the scale is 0.810 [20, 21].

Cognitive function: The Montreal Cognitive Assessment (MoCA) [22] contains 11 items, with a full score of 30 points. A score of ≥26

points indicates normal cognitive function. The Cronbach's alpha coefficient of the Chinese version of the scale is 0.730 [23, 24].

Quality of life: Migraine-specific quality of life questionnaire (MSQ) [25] contains 14 items, using a 6-point Likert scale of 1 to 6 points, with a total score range of 0 to 100 points. The higher the score, the better the quality of life. The Cronbach's alpha coefficient of the Chinese version of the questionnaire is 0.730 [26, 27].

Adverse reactions: During the treatment, it is necessary to closely observe and record the adverse reactions of all groups of patients. These reactions include auricular local skin swelling, itching and injury caused by auricular point sticking, subcutaneous hemorrhage, hematoma and acupuncture site pain caused by wrist-ankle acupuncture. The number of cases, specific manifestations and severity of adverse reactions were recorded in detail. The incidence rate of adverse reaction was calculated using the formula: Number of adverse reaction cases/Total number of cases × 100%.

Headache recurrence: All patients received a three-month follow-up after treatment, and the recurrence of migraine was recorded through outpatient visits, telephone follow-up or online questionnaires. Recurrence was defined as the number of migraine attacks ≥2 times per month, or a single headache attack lasting ≥4 hours and VAS pain score ≥4 points.

Statistical analysis

Data analyses were conducted using Statistical Product and Service Solutions 27.0 (IBM, Armonk, NY, USA). The normality of measurement data was assessed using the Kolmogorov-Smirnov test. Normally distributed variables were expressed as mean ± standard deviation (SD). Non-normally distributed data were represented as [M (Q₁, Q₃)] and analyzed using the Mann-Whitney U test. Differences between groups were compared using one-way analysis of variance (ANOVA), while within-group comparisons before and after treatment employed paired *t*-tests. The count data were presented in the form of frequency and percentage [*n* (%)] and analyzed by chi-square test. The ordinal data were analyzed by Wilcoxon test. Pearson correlation analysis was used to evaluate the linear relationship between the improvement of

anxiety and depression scores and the improvement of cognitive function scores. Correlation strength was defined as follows: |*r*| ≥0.7 indicated strong correlation, 0.4≤ |*r*| <0.7 indicated moderate correlation, and 0.2≤ |*r*| <0.4 indicated weak correlation. Efficacy analysis employed G*Power 3.1 software (Heinrich Heine University Düsseldorf, Düsseldorf, North Rhine-Westphalia, Germany), with a power level >80% indicating a clinically meaningful difference. Figures and tables were generated using GraphPad Prism 10 (GraphPad Software, La Jolla, California, USA) software. *P*<0.05 was considered statistically significant.

Results

Comparison of baseline data

The three groups were comparable in terms of gender, age, disease duration, migraine type, occurrence frequency, headache duration, pain intensity, depression severity, anxiety level, cognitive function, and quality of life, with no statistically significant differences observed (all *P*>0.05) (**Table 1**).

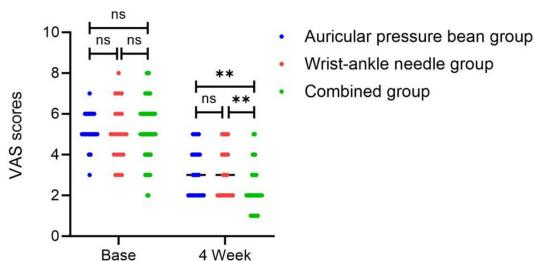
Comparison of pain intensity improvement

There was no statistically significant difference in VAS scores among the three groups prior to treatment (*P*>0.05). Following four weeks of treatment, all groups exhibited a decreasing trend in VAS scores. The combined group's mean score (2.28±1.09) was significantly lower than that of the auricular pressure bean group (3.18±1.15) and the wrist-ankle needle group (3.15±1.19) (*P*<0.05) (**Figure 1**).

Comparison of depression severity

There was no statistically significant difference in HAMD-17 scores among the three groups prior to treatment (*P*>0.05). Following four weeks of treatment, all groups exhibited a downward trend in HAMD-17 scores. The combined therapy group's mean score (12.70±2.64) was significantly lower than that of the auricular pressure bean group (14.68±4.35) and the wrist-ankle needle group (15.30±4.27) (*P*<0.05) (**Figure 2**).

Comparison of anxiety level


There was no statistically significant difference in HAMA scores among the three groups prior

Auricular-wrist-ankle therapy for migraine

Table 1. Comparison of baseline data

Project	Auricular pressure bean group (n=22)	Wrist-ankle needle group (n=20)	Combined group (n=57)	F/X ²	P
Sex, n (%)				0.330	0.848
Male	10 (45.45)	10 (50.00)	30 (52.63)		
Female	12 (54.55)	10 (50.00)	27 (47.37)		
Age, mean \pm SD	36.10 \pm 8.41	37.35 \pm 9.70	35.84 \pm 8.20	0.232	0.793
Disease duration, year, mean \pm SD	3.97 \pm 1.24	4.13 \pm 1.87	4.18 \pm 1.67	0.132	0.877
Migraine type, n (%)				0.710	0.950
Migraine without aura	10 (45.45)	11 (55.00)	26 (45.61)		
Migraine with aura	7 (31.82)	6 (30.00)	19 (33.34)		
Chronic migraine	5 (22.73)	3 (15.00)	12 (21.05)		
Occurrence frequency, n (%)				2.721	0.256
\leq 4 episodes per month	15 (68.18)	14 (70.00)	30 (52.63)		
$>$ 4 episodes per month	7 (31.82)	6 (30.00)	27 (47.37)		
Headache duration, hour, mean \pm SD	6.57 \pm 1.07	6.99 \pm 1.12	7.14 \pm 1.04	2.283	0.108
VAS, mean \pm SD	5.23 \pm 0.85	5.10 \pm 1.41	5.21 \pm 1.41	0.064	0.938
HAMD-17, mean \pm SD	17.77 \pm 7.86	19.10 \pm 7.06	19.98 \pm 7.52	0.698	0.500
HAMA, mean \pm SD	22.32 \pm 7.30	21.55 \pm 7.69	23.14 \pm 7.59	0.353	0.703
MoCA, mean \pm SD	26.32 \pm 1.84	26.10 \pm 2.51	26.18 \pm 2.14	0.058	0.944
MSQ, mean \pm SD	43.59 \pm 8.29	44.85 \pm 7.16	43.98 \pm 8.59	0.130	0.879

Note: VAS, Visual Analogue Scale; HAMD-17, Hamilton Rating Scale for Depression-17; HAMA, Hamilton Anxiety Rating Scale; MoCA, Montreal Cognitive Assessment; MSQ, Migraine-Specific Quality of Life Questionnaire.

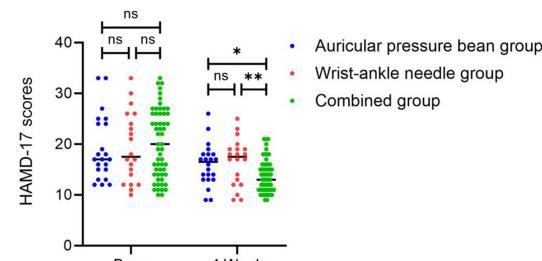
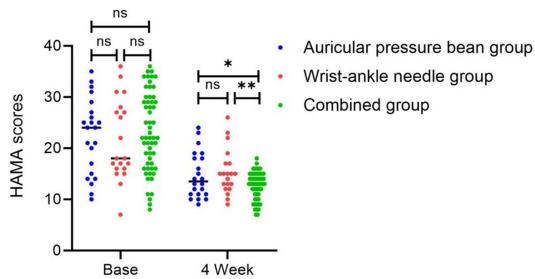


Figure 1. VAS scores for the three groups of patients. Note: VAS, Visual Analogue Scale. ns: not significant; **P<0.01.

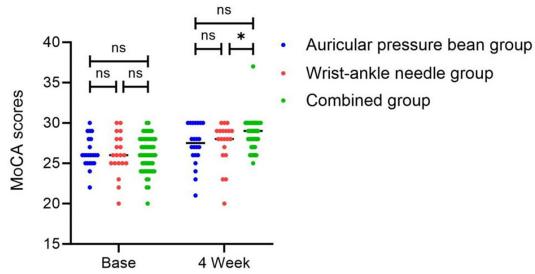
to treatment ($P>0.05$). Following four weeks of treatment, all groups exhibited a downward trend in HAMA scores. The combined therapy group's mean score (7.70 ± 2.64) was significantly lower than that of the auricular pressure bean group (9.68 ± 4.35) and the wrist-ankle needle group (10.30 ± 4.27) ($P<0.05$) (Figure 3).

Comparison of cognitive function

There was no statistically significant difference in MoCA scores among the three groups prior to treatment ($P>0.05$). Following four weeks of treatment, all groups exhibited an upward trend


Figure 2. HAMD-17 scores for the three patient groups. Note: HAMD-17, Hamilton Rating Scale for Depression-17. ns: not significant; *P<0.05; **P<0.01.

in MoCA scores. The combined therapy group demonstrated a significantly higher mean score (28.57 ± 1.83) compared to both the auricular pressure bean group (27.31 ± 2.46) and the wrist-ankle needle group (27.45 ± 2.60) ($P<0.05$) (Figure 4).


Comparison of quality of life

There was no statistically significant difference in MSQ scores among the three groups prior to treatment ($P>0.05$). Following four weeks of treatment, all groups exhibited an upward trend

Auricular-wrist-ankle therapy for migraine

Figure 3. HAMA scores for the three patient groups. Note: HAMA, Hamilton Anxiety Rating Scale. ns: not significant; $*P<0.05$; $**P<0.01$.

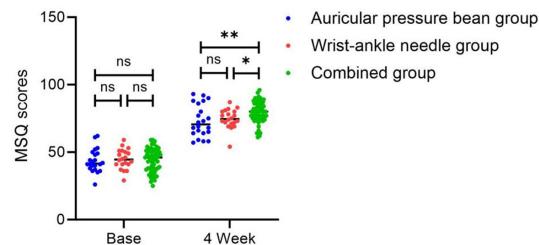


Figure 4. MoCA scores for the three patient groups. Note: MoCA, Montreal Cognitive Assessment. ns: not significant; $*P<0.05$.

in MSQ scores. The combined therapy group's score (79.54 ± 7.73) was significantly higher than that of the auricular pressure bean group (73.18 ± 11.64) and the wrist-ankle needle group (74.75 ± 6.94) ($P<0.05$) (Figure 5).

Comparison of adverse reaction incidence

During treatment, three patients (13.64%) in the auricular pressure bean group experienced adverse reactions, all presenting as mild localized redness, swelling, or itching of the auricle skin. Three patients (15.00%) in the wrist-ankle needle group experienced adverse reactions: two cases involved minor subcutaneous bleeding at the insertion points, and one case involved transient mild pain at the insertion points. A total of 10 patients (17.54%) in the combined group had adverse reactions, including 5 cases of mild ear local discomfort, 2 cases of mild subcutaneous hemorrhage at the acupuncture site, and 3 cases of transient mild pain at the wrist-ankle acupuncture point. All adverse reactions were quickly relieved after symptomatic treatment, and no patients withdrew from the study due to adverse events. There was no significant difference in the incidence of adverse reactions among the three groups ($P>0.05$) (Table 2).

Figure 5. MSQ scores for the three patient groups. Note: MSQ, Migraine-Specific Quality of Life Questionnaire. ns: not significant; $*P<0.05$; $**P<0.01$.

Comparison of headache recurrence patterns

In this study, the recurrence rate of headache in the combined group was the lowest, and only 5 of 57 patients relapsed, with a recurrence rate of 8.77%. There were 6 cases of recurrence among the 22 patients in the auricular pressure bean group, with the recurrence rate of 27.27%. The wrist-ankle needle group had 6 recurrences among 20 patients, yielding a recurrence rate of 30.00%. Statistically significant differences existed in recurrence rates among the three groups ($\chi^2=6.720$, $P<0.05$) (Table 3).

Correlation between improvement in anxiety and depression and improvement in cognitive function

In this study, improvements in anxiety and depression symptoms were positively correlated with cognitive function improvements across all treatment modalities ($P<0.05$). Among these, the combined therapy group demonstrated the strongest correlation between depression improvement and cognitive enhancement ($r=0.480$, $P<0.001$), followed by the wrist-ankle needle group ($r=0.470$, $P=0.037$), while the auricular pressure bean group showed a relatively weaker correlation ($r=0.429$, $P=0.047$). The combined therapy group demonstrated the strongest correlation between anxiety improvement and cognitive enhancement ($r=0.556$, $P<0.001$), followed by the wrist-ankle needle group ($r=0.555$, $P=0.011$), while the auricular pressure bean group showed a relatively weaker correlation ($r=0.475$, $P=0.025$) (Table 4).

Discussion

Migraine, a highly prevalent chronic neurovascular disorder, is increasingly associated with anxiety and depressive disorders, which have

Auricular-wrist-ankle therapy for migraine

Table 2. Comparison of adverse reaction incidence

Group	Earlobe Skin Reaction	Subcutaneous hemorrhage/Hematoma	Pain at the Acupuncture Site	Total Adverse Reactions
Auricular pressure bean group (n=22)	3 (13.63)	0 (0.00)	0 (0.00)	3 (13.63)
Wrist-ankle needle group (n=20)	0 (0.00)	2 (10.00)	1 (10.00)	3 (15.00)
Combined group (n=57)	5 (8.77)	2 (3.51)	3 (5.26)	10 (17.54)
χ^2				0.204
<i>P</i>				0.903

Table 3. Comparison of headache recurrence patterns

Group	Number of Recurrence Cases
Auricular pressure bean group (n=22)	6 (27.27)
Wrist-ankle needle group (n=20)	6 (30.00)
Combined group (n=57)	5 (8.77)
χ^2	6.720
<i>P</i>	0.035

become critical factors affecting patient prognosis. This retrospective study analyzed clinical data from migraine patients with anxiety and depression disorders, comparing the efficacy of auricular pressure bean therapy, wrist-ankle needle, and their combined treatment. The results showed that combined therapy was significantly better than single therapy in relieving pain, improving emotional disorders, enhancing cognitive function and reducing recurrence rate. This study confirmed that auricular acupressure combined with wrist-ankle acupuncture as a non-drug treatment strategy has a significant effect.

All three patient groups achieved a significant reduction in VAS scores after four weeks. However, the combined therapy group demonstrated markedly superior analgesic efficacy compared to the monotherapy group, indicating a synergistic analgesic effect between the two techniques. Feng et al. [28] found that auricular pressure bean therapy, by stimulating points such as Shenmen and Subcortical, can regulate autonomic nervous function, unblock qi and blood flow in the head and facial meridians, thereby calming the mind, soothing the spirit, and alleviating pain through meridian regulation. Chen et al. [29] observed that wrist-ankle acupuncture can directly dredge qi stagnation in the cranial meridian by shallow acu-

puncture on specific wrist and ankle areas, so as to achieve the effect of harmonizing qi and blood, sedation and analgesia. It is hypothesized that when combined, the neuro-regulatory effects of auricular points complement the local meridian-unblocking effects of wrist-ankle needle. This synergy improves overall qi and blood circulation while precisely targeting headache sites, thereby enhancing analgesic efficacy. From a modern medical perspective, migraine pain episodes are associated with activation of the trigeminal vascular system. Excessive activity in the system can lead to excessive release of pain mediators, which can lead to vasodilation and neurogenic inflammation. At the same time, pain signals are transmitted to the cerebral cortex to achieve conscious perception [30]. In addition, auricular therapy plays a role by stimulating specific acupoints (such as Shenmen point, lower cortical point). This stimulation can activate the auricular branches of the vagus nerve and the trigeminal nerve, thereby initiating the central regulation process. This inhibits pain sensitization via the vagus nerve-nucleus of the solitary tract pathway, thereby reducing amplification of pain signals by dorsal horn neurons in the spinal cord. Concurrently, Shenmen stimulation promotes β -endorphin release via the hypothalamic-pituitary-adrenal axis. This substance binds to central and peripheral opioid receptors, directly blocking pain signal transmission [31]. Wrist-ankle acupuncture, through shallow insertion into specific regions of the wrist and ankle, acts upon coarse fibers of somatosensory nerves to inhibit pain signals transmitted by fine fibers. At the same time, stimulating local acupoints can promote the release of serotonin in local tissues. This substance can inhibit the excessive discharge of trigeminal ganglion neurons, thereby reducing the release of pain mediators. This enhanced analgesic effect stems from complementary mechanisms. Wrist-ankle acu-

Auricular-wrist-ankle therapy for migraine

Table 4. Correlation between improvement in anxiety and depression and improvement in cognitive function

	Auricular pressure bean group (n=22)		Wrist-ankle needle group (n=20)		Combined group (n=57)	
	r	P	r	P	r	P
ΔHAMD-17-ΔMoCA	0.429	0.047	0.470	0.037	0.480	<0.001
ΔHAMA-ΔMoCA	0.475	0.025	0.555	0.011	0.556	<0.001

Note: HAMD-17, Hamilton Rating Scale for Depression-17; HAMA, Hamilton Anxiety Rating Scale; MoCA, Montreal Cognitive Assessment; Δ, change in score (post-treatment minus pre-treatment).

puncture alleviates acute central nervous system stimulation by rapidly blocking peripheral pain transmission, whilst auricular acupuncture reduces pain sensitivity by modulating central neuroendocrine pathways. The synergistic interaction of these distinct mechanisms underpins its exceptional therapeutic efficacy.

In terms of improving emotional disorders, auricular acupressure at the heel of the bean is the key point for tranquilizing the mind, while subcortical acupoints can regulate the function of the cerebral cortex. Stimulation of both pathways may regulate mood through the following mechanisms. Firstly, by modulating autonomic nervous function via the vagus nerve, reducing sympathetic nervous system excitability, decreasing the release of stress hormones such as noradrenaline, and alleviating anxiety-related somatic symptoms. Secondly, by regulating the hypothalamic-pituitary-gonadal axis, promoting the release of gamma-aminobutyric acid, thereby directly inhibiting excessive amygdala activation and alleviating states of anxiety and depression [32]. Meanwhile, Ren et al. [33] demonstrated that wrist-ankle needle, through shallow subcutaneous tissue puncture, stimulates somatosensory nerve endings, inhibits excessive activation of the limbic system, and reduces the release of anxiety-related neurotransmitters. In combined therapy, wrist-ankle acupuncture rapidly alleviates somatised symptoms of anxiety and depression during the initial treatment phase, thereby establishing therapeutic confidence in patients. At the same time, auricular seed therapy continues to provide stimulation through daily self-pressing to consolidate the effect of emotional improvement and prevent emotional recurrence after discontinuation of single therapy. This study found that the decrease of HAMD-17 and HAMA scores in the combined treatment group was significantly better than that in the single treat-

ment group. This confirms the synergistic effect of the integrated therapy in emotion regulation and provides a new idea for the development of non-drug treatment strategies.

After the 4-week treatment period, the combined therapy group was associated with significantly higher MoCA scores than both auricular acupressure and wrist-ankle needle groups. In addition, there was a significant positive correlation between depression, anxiety, improvement scores and cognitive improvement scores. Among them, the correlation between depression and anxiety improvement scores and cognitive enhancement scores in the combined group was the most significant. Studies have shown that chronic pain caused by long-term migraine can lead to neuronal damage in cognitive-related brain regions such as the prefrontal cortex and hippocampus [34, 35]. Anxiety and depression further aggravate dysfunction in these regions by increasing cortisol levels [36]. This comprehensive therapy enhances cognitive function through a dual approach: both reducing pain-mediated cognitive interference and improving the vulnerability of the emotion-driven hippocampus to cortisol toxicity. Although the correlation between the improvement of depressive symptoms and the improvement of cognitive function in the combined treatment group was moderate, its stability was the best. These findings indicate that combined therapy yields more enduring cognitive benefits, with the potential mechanism being the long-term regulatory effects exerted by both treatments on the neuroendocrine system.

The recurrence rate of headache in the combined group was significantly lower than that in the auricular pressure bean and the wrist-ankle needle groups within three months, highlighting the superiority of the combined treatment in preventing recurrence. The recurrence of

migraine involves multifactorial etiology, which is mainly driven by central sensitization, autonomic nervous system disorders, and emotional states [37]. Auricular pressure bean therapy emphasizes holistic regulation but has limited efficacy in resolving local meridian stagnation. Wrist-ankle needle excels in rapid pain relief but lacks sustained effects on visceral function regulation. Wu et al. [38] demonstrated that wrist-ankle needle rapidly inhibits pain signal transmission and alleviates acute symptoms. Tan et al. [39] have shown that ear bean pressing therapy can continuously regulate autonomic nerve function and qi and blood circulation of zang-fu organs, improve central sensitization and reduce recurrence incentives through continuous stimulation of auricular points. At the same time, it can improve the quality of life, enhance patients' treatment compliance and self-management ability, and further reduce the risk of recurrence. These findings suggest that optimizing non-pharmacological treatment needs to strike a balance between symptom relief and etiological regulation, and achieve long-term prognosis improvement through multi-target treatment. Furthermore, observations regarding treatment safety in this study revealed that while there was no statistically significant difference in the overall incidence of adverse reactions across the three groups. The combined group exhibited numerically higher rates than both the auricular pressure bean and wrist-ankle needle groups, demonstrating a certain upward trend. This phenomenon is in line with the clinical logic that combination therapy involves two different physical stimulation modes, exposing patients to more intervention points, which may theoretically increase the cumulative probability of mild adverse reactions. Although combination therapy has excellent efficacy, transparent communication with patients on potential mild adverse reactions is essential for informed consent. Its clinical application must be based on a sound safety guarantee system, which should cover standardized operating procedures, enhanced monitoring mechanisms, and immediate intervention programs for complications.

This study also has some limitations. First, its retrospective design may introduce inherent selection bias. In addition, although the baseline characteristics are comparable, the imbalance of sample size between groups may weaken the robustness of the research results.

Second, the follow-up period was only 3 months, and the long-term efficacy and recurrence pattern need to be further observed. The core efficacy evaluation was only based on the patient's self-reported or researcher-assessed questionnaire scores, and lacked objective indicators reflecting the pathophysiological mechanism of migraine. Finally, factors such as operator differences and patient treatment compliance were not strictly controlled, which may affect the stability of the results. To further consolidate these research findings, subsequent studies must employ large-scale, multi-center, and randomized double-blind designs. Integrating specific objective biomarkers targeting migraine pathophysiology is crucial for ultimately validating the therapeutic benefits and elucidating its mechanism of action.

In summary, the combination of auricular pressure bean therapy and wrist-ankle needle for migraine patients with anxiety and depressive disorders demonstrates synergistic effects in alleviating pain, improving emotional disturbances, enhancing cognitive function, and reducing recurrence rates. The combination therapy has better curative effect than single therapy, and provides clinicians with safe, effective and minimally invasive non-drug treatment options. In order to firmly incorporate this combination therapy into the comprehensive migraine treatment system, the current work needs to be supplemented by rigorous mechanism research. In-depth understanding of its mechanism of action will in turn guide the effective promotion and implementation of the therapy.

Conclusion

Combined auricular pressure bean therapy and wrist-ankle needle significantly alleviates headache severity in migraine patients with comorbid anxiety and depression disorders. This therapy can effectively improve anxiety and depression symptoms, significantly reduce the recurrence rate, promote the recovery of cognitive function and improve the quality of life. Its multi-dimensional treatment effect is better than that of single therapy, indicating that there is a synergistic effect between the two treatment methods. This strategy provides a safe and effective new non-drug treatment for patients with chronic migraine and emotional disorders.

Acknowledgements

This work was supported by Key laboratory project of geriatric nursing and health (RZ2300000592).

Disclosure of conflict of interest

None.

Address correspondence to: Juan Yuan, Key Laboratory of Geriatric Nursing and Health, Anhui University of Chinese Medicine, No. 530 Longzihu Road, Modian Street, Yaohai District, Hefei 230012, Anhui, China. Tel: +86-0551-68129269; E-mail: doc_juany@163.com

References

- [1] Cargnini S, Giaccone M, Del Corona E, Zanaboni AM, Facchetti S, De Icco R, Vaghi G, Sances G, Ghiotto N, Guaschino E, Martinelli D, Greco R, Tassorelli C, Terrazzino S and Allena M. Exploring the association of migraine susceptibility SNPs with the risk of chronic migraine. *Eur J Pain* 2025; 29: e70120.
- [2] Nayak SK, Pradhan P, Sahu PK, Parua P, Ghosh S, Jana K, Debnath B, Rath G, Ghosh G and Kar B. Current trends in management of migraine: a review of current practice and recent advances. *CNS Neurol Disord Drug Targets* 2025; [Epub ahead of print].
- [3] Falla K, Kuziek J, Mahnaz SR, Noel M, Ronksley PE and Orr SL. Anxiety and depressive symptoms and disorders in children and adolescents with migraine: a systematic review and meta-analysis. *JAMA Pediatr* 2022; 176: 1176-1187.
- [4] Abumilha AKY, Abukaftah ASA, Al-Mudhi MM, Al Fareh NA and Muflih Abudasser A. Association between migraine and depression, anxiety, and stress in the Aseer region: a cross-sectional study. *Front Neurol* 2025; 16: 1650891.
- [5] Han L, Dong L, Liu H, Wang H, Shi R and Hao Y. Transcranial magnetic stimulation combined with auricular point pressure bean on emotional disorders in elderly patients after intracerebral hemorrhage surgery: a retrospective cohort study. *Alpha Psychiatry* 2024; 25: 541-547.
- [6] Han XR, Yue W, Chen HC, He W, Luo JH, Chen SX, Liu N and Yang M. Treatment duration of wrist-ankle acupuncture for relieving post-thyroidectomy pain: a randomized controlled trial. *J Integr Med* 2023; 21: 168-175.
- [7] Zhang XJ, Dai LQ, Chen JH and Dai J. Pressing acupuncture therapy combined with auricular pressure beans for the treatment of chronic prostatitis/chronic pelvic pain syndrome. *Zhonghua Nan Ke Xue* 2021; 27: 347-350.
- [8] Headache Classification Committee of the International Headache Society (IHS) The international classification of headache disorders, 3rd edition. *Cephalalgia* 2018; 38: 1-211.
- [9] Gaebel W, Stricker J, Riesbeck M, Zielasek J, Kerst A, Meisenzahl-Lechner E, Köllner V, Rose M, Hofmann T, Schäfer I, Lotzin A, Briken P, Klein V, Brunner F, Keeley JW, Brechbiel J, Rebello TJ, Andrews HF, Reed GM, Vogel U, Hasan A and Falkai P. Accuracy of diagnostic classification and clinical utility assessment of ICD-11 compared to ICD-10 in 10 mental disorders: findings from a web-based field study. *Eur Arch Psychiatry Clin Neurosci* 2020; 270: 281-289.
- [10] Banapura A, Mamatha KR and Prabha P. Tramadol and its combination with piroxicam in post-cesarean pain management: a comparative study. *Int J Basic Clin Pharm* 2017; 6: 404-409.
- [11] Alimoradi Z, Asgari S, Barghamadi S, Hajnasiri H, Oleson T and Griffiths MD. Effect of auricular acupressure on postpartum blues: a randomized sham controlled trial. *Complement Ther Clin Pract* 2023; 52: 101762.
- [12] Zhou Q, Sheng S, Zhang J, Zhai D, Li N, Xie X and Yu J. Effects of wrist-ankle acupuncture combined with electroacupuncture on neurological function and limb movement in patients with ischemic stroke. *Journal of Acupuncture and Tuina Science* 2023; 21: 368-374.
- [13] Scott J and Huskisson EC. Graphic representation of pain. *Pain* 1976; 2: 175-84.
- [14] Yanal N, Al Massri AM and Hammad EA. Validity, reliability, and feasibility of EQ-5D-3L, VAS, and time trade-off among Jordanians. *J Healthc Qual Res* 2025; 40: 29-38.
- [15] Alexakis C, Zacharis K, Anagnostaki I, Tsapadikou VK, Chondros S, Kalantzi S, Karakike E, Kravvaritis S and Charitos T. Anxiety assessment using the visual analogue scale among women undergoing elective cesarean section. *Cureus* 2025; 17: e79919.
- [16] Hamilton M. A rating scale for depression. *J Neurol Neurosurg Psychiatry* 1960; 23: 56-62.
- [17] Xiao S, Ge Q, Wang T, Zhang M, Hu A and Zhang X. Psychometric characteristics of the Chinese version of the Columbia-Suicide Severity Rating Scale among people with mental health diagnosis. *BMC Psychiatry* 2025; 25: 803.
- [18] Zhao H and Chen J. The prevalence and clinical correlation factors of cognitive impairment in patients with major depressive disorder hospitalized during the acute phase. *Front Psychiatry* 2024; 15: 1497658.

Auricular-wrist-ankle therapy for migraine

[19] HAMILTON M. The assessment of anxiety states by rating. *Br J Med Psychol* 1959; 32: 50-55.

[20] Yu H. Impact of nursing interventions based on self-efficacy theory on HAMA and HAMD scores in patients with hepatitis B cirrhosis. *Journal of Clinical and Nursing Research* 2024; 8: 129-134.

[21] Wang B, Shi D, Sun YD and Dong B. Correlation between anxiety, depression, and social stress in young patients with thoracolumbar spine fractures. *World J Psychiatry* 2025; 15: 101373.

[22] Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, Cummings JL and Chertkow H. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. *J Am Geriatr Soc* 2005; 53: 695-699.

[23] Lord AR, Amitrano NR and González DA. Reliability and validity of the Montreal Cognitive Assessment's auditory items (MoCA-22). *Clin Neuropsychol* 2024; 38: 783-798.

[24] Rose AF, Gilbertson AF, Cottrell C and Tampi RR. Cognitive screening for adult psychiatric outpatients: comparison of the Cognivue® to the montreal cognitive assessment. *World J Psychiatry* 2021; 11: 265-270.

[25] Cole JC, Lin P and Rupnow MF. Validation of the migraine-specific quality of life questionnaire version 2.1 (MSQ v. 2.1) for patients undergoing prophylactic migraine treatment. *Qual Life Res* 2007; 16: 1231-1237.

[26] Giannouli E, Giannouli E, Alexoudi A, Arvaniti C, Fakas N, Constantinidis TS, Kouremenos E and Mitsikostas DD; Hellenic Headache Society. Validity and reliability of the Greek migraine-specific quality of life questionnaire (MSQ Version 2.1-GR). *J Patient Rep Outcomes* 2024; 8: 72.

[27] Mu F, Driessen MT, Cohen JM, Wang Y and Ayyagari R. PND3 improvements in migraine-specific quality of life questionnaire (MSQ) domain scores with Fremanezumab and Galcanezumab in patients with multiple prior migraine preventive treatment failures: a network meta-analysis. *Value in Health* 2021; 24: S158.

[28] Feng H, Pan A, Zheng G and Yu W. Clinical study of auricular point seed burying combined with fire dragon pot moxibustion in perimenopausal women with insomnia. *J Obstet Gynaecol Res* 2022; 48: 1938-1944.

[29] Chen XM, Pang LN, Ke YC, Huang QL, Lan YY, Yu XM, Ye XQ and Wang ZF. Exploring the mechanism of wrist-ankle acupuncture in treating chemotherapy-induced neuropathic pain in mice by regulating neuroinflammatory responses through α 7 nicotinic acetylcholine receptor in the spinal dorsal horn. *Zhen Ci Yan Jiu* 2025; 50: 735-742.

[30] Qin Z, Qu H, Liang HB, Zhou Q, Wang W, Wang M, Liu JR and Du X. Altered resting-state effective connectivity of trigeminal vascular system in migraine without aura: a spectral dynamic causal modeling study. *Headache* 2023; 63: 1119-1127.

[31] Król W, Machałak W and Zielińska M. Positive allosteric modulation of μ -opioid receptor - a new possible approach in the pain management? *Biochem Pharmacol* 2025; 232: 116686.

[32] Wan Q, Luo S, Wang X, Tian Q, Xi H, Zheng S, Fang Q, Chen H, Wu W and Pan R. Association of acupuncture and auricular acupressure with the improvement of sleep disturbances in cancer survivors: a systematic review and meta-analysis. *Front Oncol* 2022; 12: 856093.

[33] Ren Z, Cui W and Li YP. Application of traditional Chinese medicine acupoint needle embedding combined with emotional nursing in patients with gynecological malignant tumors. *World J Psychiatry* 2023; 13: 645-653.

[34] Cao Z, Yu W, Zhang Z, Xu M, Lin J, Zhang L and Song W. Decreased gray matter volume in the frontal cortex of migraine patients with associated functional connectivity alterations: a VBM and rs-FC study. *Pain Res Manag* 2022; 2022: 2115956.

[35] Zhu Y, Dai L, Zhao H, Ji B, Yu Y, Dai H, Hu C, Wang X and Ke J. Alterations in effective connectivity of the hippocampus in migraine without aura. *J Pain Res* 2021; 14: 3333-3343.

[36] Fischer S, Hässler T, Juster RP, Marty D and Eisner L. Does hair cortisol mediate the effects of sexual and gender minority stress on depression and anxiety? a structural equation modelling approach. *J Affect Disord* 2026; 392: 120157.

[37] Tepper SJ, Ailani J, Ray S, Hirman J, Shrewsbury SB and Aurora SK. Variability in recurrence rates with acute treatments for migraine: why recurrence is not an appropriate outcome measure. *J Headache Pain* 2022; 23: 148.

[38] Wu LM, Liu Q, Yin XH, Yang LP, Yuan J, Zhang XQ and Wang YL. Wrist-ankle acupuncture combined with pain nursing for the treatment of urinary calculi with acute pain. *World J Clin Cases* 2023; 11: 4287-4294.

[39] Tan JY, Molassiotis A, Suen LKP, Liu J, Wang T and Huang HR. Effects of auricular acupressure on chemotherapy-induced nausea and vomiting in breast cancer patients: a preliminary randomized controlled trial. *BMC Complement Med Ther* 2022; 22: 87.