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Abstract: The glymphatic pathway plays a crucial role in the clearance of metabolic byproducts and solutes from 
cerebral tissue. Dysfunction of the glymphatic pathway has been associated with various neurological disorders, 
including ischemic stroke. Diffusion tensor imaging (DTI) and the derived Analysis aLong the Perivascular Space 
(ALPS) have emerged as promising tools for evaluating glymphatic pathway function. This review aims to summarize 
the current evidence on the use of DTI-derived ALPS measures in assessing glymphatic dysfunction in ischemic 
stroke patients, and to explore their potential implications for diagnosis, prognostication, and treatment monitoring 
in this patient population.
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Introduction

Cerebral infarction, a leading cause of mortality 
and morbidity worldwide, presents a significant 
public health challenge. According to the Global 
Burden of Disease study, stroke, including isch-
emic stroke, accounts for approximately 6.55 
million deaths annually, ranking as the second 
leading cause of death globally [1]. Furthermore, 
the prevalence of stroke survivors is estimated 
at over 101 million, many of whom experience 
long-term neurological deficits and reduced 
quality of life [2]. Despite advancements in 
acute stroke management, many patients con-
tinue to suffer from persistent neurological 
deficits and cognitive impairment. The mecha-
nisms underlying these enduring deficits are 
not fully understood, but recent evidence sug-
gests that the glymphatic pathway, a brain-
spanning network of perivascular conduits 
facilitating the removal of metabolic byprod-
ucts and solutes, may play a critical role in the 
pathophysiology of cerebral infarction and its 
associated complications [3].

The glymphatic system, first described by 
Nedergaard et al. in 2012, has been increas-
ingly recognized as a crucial component in the 
clearance of metabolic waste and interstitial 
fluid in the central nervous system [4]. Its dys-
function has been linked to various neurologi-
cal disorders, including Alzheimer’s disease 
and traumatic brain injury. However, its role in 
cerebral infarction has only recently begun to 
receive attention. Early experimental studies in 
rodent models demonstrated impaired glym-
phatic transport following ischemic stroke, pro-
viding foundational evidence for its involvement 
in post-stroke pathology [5]. These findings sug-
gested that ischemia-induced disruptions to 
perivascular pathways could exacerbate cere-
bral edema and hinder recovery. Subsequent 
studies further investigated this connection 
using advanced imaging techniques, such as 
diffusion tensor imaging (DTI), which revealed 
altered perivascular function in stroke patients. 
The glymphatic pathway has been shown to 
facilitate the clearance of various substances 
from the brain, including amyloid-beta (Aβ), tau, 
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and other neurotoxic molecules [6]. Impair- 
ment of the glymphatic pathway has been impli-
cated in several neurological disorders, includ-
ing Alzheimer’s disease, traumatic brain injury, 
and stroke [7].

DTI is an advanced magnetic resonance imag-
ing (MRI) technique that enables the assess-
ment of white matter microstructure and brain 
connectivity [8]. DTI measures the diffusion of 
water molecules in biological tissues, providing 
information about the direction and magnitude 
of diffusion anisotropy [9]. DTI-derived mea-
sures, such as fractional anisotropy (FA), mean 
diffusivity (MD), and radial diffusivity (RD), are 
widely used to investigate white matter integri-
ty in various neurological disorders [10].

Recently, Along-tract statistics Profiles (ALPS), 
derived from DTI data, have emerged as a novel 
approach to assessing glymphatic system func-
tion [11]. ALPS measures offer a detailed char-
acterization of water diffusion along white mat-
ter tracts, which is believed to reflect the effi-
ciency of glymphatic transport [12]. By quanti-
fying the diffusion properties of water mole-
cules along perivascular spaces, ALPS mea-
sures may provide valuable insights into the in- 
tegrity and function of the glymphatic system 
[13].

This review aims to summarize the current evi-
dence on the use of DTI-derived ALPS mea-
sures to evaluate glymphatic system dysfunc-
tion in cerebral infarction patients. The poten-
tial implications of glymphatic system dysfunc-
tion for the diagnosis, prognosis, and treatment 
monitoring of cerebral infarction will also be 
discussed.

Glymphatic system

The glymphatic system (GS) is a crucial path-
way for clearing metabolic waste and main- 
taining interstitial fluid balance in the brain. 
Cerebrospinal fluid (CSF) flows into the brain 
through the perivascular space of arterial ves-
sels, mixes with interstitial fluid (ISF), and is 
subsequently drained via the perivascular sp- 
ace of venous vessels into the meningeal lym-
phatic system. This process, mediated by aqua-
porin-4 (AQP4) channels located at the end feet 
of astrocytes, facilitates the exchange and cir-
culation of CSF and ISF [14, 15]. The glymphat-
ic system consists primarily of arteries, perivas-

cular spaces, and astrocytic end feet express-
ing AQP4, forming a highly efficient “cleaning 
system” for the brain.

The glymphatic system clears metabolic waste 
products, including neurotoxic substances like 
β-amyloid, thereby maintaining the brain’s in- 
ternal environment and supporting neuronal 
function [16]. This system plays a pivotal role in 
brain health, influencing development, aging, 
and the response to injury and disease. Dis- 
ruptions in glymphatic function have been im- 
plicated in various neurological disorders, in- 
cluding Alzheimer’s disease, traumatic brain 
injury, and ischemic stroke [17]. Recent studies 
suggest that ischemic stroke impairs glymphat-
ic transport by disrupting AQP4 polarization and 
altering perivascular flow, leading to the accu-
mulation of neurotoxic metabolites and exacer-
bating brain damage [18].

Dysfunction of the glymphatic system in cere-
bral infarction is primarily attributed to disrup-
tions in its structural and functional compo-
nents, particularly AQP4 polarization and peri-
vascular flow. Ischemic stroke induces signifi-
cant oxidative stress, inflammation, and vascu-
lar damage, all of which compromise the effi-
ciency of perivascular fluid exchange [19, 20]. 
One key mechanism is the loss of AQP4 polar-
ization on the astrocytic end feet, which impairs 
the bidirectional movement of CSF and ISF. This 
disruption leads to the accumulation of neuro-
toxic substances, such as β-amyloid and lac-
tate, exacerbating neuronal injury and brain 
edema [21, 22]. Additionally, ischemic condi-
tions alter the morphology and function of 
astrocytes and the extracellular matrix, further 
hindering the fluid dynamics within the perivas-
cular space. Pro-inflammatory cytokines relea- 
sed during ischemia, such as TNF-α and IL-1β, 
contribute to changes in vascular permeability 
and the breakdown of the blood-brain barrier, 
intensifying glymphatic dysfunction [23]. Mo- 
reover, impaired arterial pulsatility, which drives 
glymphatic circulation, reduces the convective 
flow of CSF, further compromising waste clear-
ance [24]. These mechanisms not only exacer-
bate secondary injury after stroke but also cre-
ate a pathological feedback loop, wherein the 
accumulation of toxic metabolites perpetuates 
inflammation and neuronal damage. Under- 
standing these processes is critical for identify-
ing novel therapeutic targets aimed at restoring 
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glymphatic function to improve outcomes in 
stroke patients.

Diffusion tensor imaging of the perivascular 
space technology (DTI-ALPS)

To advance the study of glymphatic function, 
researchers have developed innovative imag-
ing methods such as DTI-ALPS, which enable  
in vivo measurement of glymphatic activity. 
Diffusion tensor imaging (DTI) is an advanced 
imaging technique that quantifies the diffusion 
of water molecules in living tissues. This meth-
od allows for the analysis of the diffusion direc-
tion and speed of water molecules in various 
tissues without the use of contrast agents 
[25-28]. 

The DTI-ALPS index is used to assess glymphat-
ic system (GS) activity. The calculation of this 
index involves the use of traditional MRI se- 
quences, susceptibility-weighted imaging (SWI), 
and DTI to generate phase maps, color-coded 
fractional anisotropy (FA) maps, and diffusion 
maps along the x, y, and z axes. The calculation 
process includes several key steps: (1) select-
ing the level of the lateral ventricle body, (2) 
defining regions of interest (ROIs) in projection 
fibers and association fibers, and (3) measur- 
ing diffusivity along the x, y, and z directions. 

Projection fibers (e.g., corona radiata) extend 
along the cranio-caudal direction (z-axis), asso-
ciation fibers (e.g., superior longitudinal fascic-
ulus) project in the anterior-posterior direction 
(y-axis), and subcortical fibers are arranged 
along the x-axis. Since the perivascular space 
(PVS) is perpendicular to the projection and 
association fibers, diffusivity along the PVS is 
influenced by differences in diffusivity along 
the x-axis (Dxproj, Dxasso) and diffusivity per-
pendicular to the x-axis (Dyproj, Dzasso). The 
formula for the DTI-ALPS index is:

DTI-ALPS index = average value (Dxproj, 
Dxasso)/average value (Dyproj, Dzasso).

This index is positively correlated with GS activ-
ity [29, 30]. While the standard calculation pro-
cess provides valuable insights, several impro- 
vements have been developed to address spe-
cific limitations and enhance the utility of the 
DTI-ALPS index. Below, we describe and ana-
lyze these improvements. The DTI-ALPS index 
calculation process flowchart is shown in Figure 
1.

Several advancements have been proposed  
to enhance the calculation of the DTI-ALPS 
index, addressing its limitations and improv- 
ing its applicability in diverse scenarios. One 
major improvement involves the incorporation 
of advanced imaging sequences, such as high-
resolution diffusion-weighted imaging (DWI) 
and multi-shell DTI techniques. These methods 
significantly enhance spatial and angular reso-
lution, allowing for a more detailed capture of 
microstructural features within the perivascu-
lar space (PVS). This improvement is particu-
larly advantageous for detecting smaller PVS 
structures and subtle variations in GS activity. 
However, these techniques come with the 
drawback of requiring extended scan times and 
specialized imaging equipment, which may not 
be accessible in routine clinical settings. As 
such, they are primarily suitable for research 
applications or specialized clinical settings.

Another approach is the use of dynamic diffu-
sion imaging, which involves acquiring diffusion 
data over multiple time points. This method 
enables real-time assessment of GS functional-
ity by capturing dynamic changes in water diffu-
sion. It is particularly useful for studying physi-
ological processes such as sleep-wake cycles 
or responses to interventions. Despite its ben-

Figure 1. DTI-ALPS index calculation process. Diffu-
sion tensor imaging of the perivascular space tech-
nology (DTI-ALPS).
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efits, this method increases patient burden due 
to prolonged scanning sessions and introduces 
challenges in motion correction and data analy-
sis. Consequently, dynamic imaging is better 
suited for research focused on physiological 
changes or treatment effects, rather than for 
routine clinical use. Improved region of interest 
(ROI) placement strategies represent another 
important advancement. These methods utili- 
ze automated or semi-automated algorithms, 
often supported by machine learning, to reduce 
operator-dependent variability. Automated ROI 
placement enhances reproducibility and con-
sistency across studies, particularly in large-
scale clinical trials or longitudinal research. 
However, these algorithms may struggle with 
individual anatomical variability, requiring man-
ual adjustments in some cases. Nevertheless, 
these strategies are invaluable for ensuring 
standardization in data acquisition and ana- 
lysis. 

Finally, the adoption of advanced computation-
al models, particularly machine learning, has 
shown promise in analyzing complex diffusion 
data. These models can identify subtle, non-
linear patterns in diffusion anisotropy, improv-
ing the sensitivity and specificity of the DTI-
ALPS index. Moreover, they can predict clinical 
outcomes based on imaging features. Despite 
their potential, these models require large 
training datasets and significant computational 
resources, limiting their use in routine clinical 
practice. They are best suited for advanced 
research settings or facilities equipped with 
high-performance computing infrastructure. 

While each improvement addresses specific 
limitations of the standard DTI-ALPS calcula-
tion, their applicability depends on the clinical 
or research context. High-resolution imaging is 
optimal for precise anatomical studies, while 
dynamic diffusion imaging excels at assess- 
ing functional changes. Automated ROI place-
ment and machine learning offer scalability 
and reproducibility but require significant com-
putational infrastructure. A balanced approach 
that combines these techniques may provide a 
comprehensive solution for future studies.

Progress of the DTI-ALPS

The calculation of the ALPS index requires the 
manual placement of ROI, a process that is 
both time-consuming and resource-intensive. 

To address this issue, researchers have devel-
oped automated techniques for calculating the 
ALPS index. By registering the color-coded FA 
map to a template space and using the “vecreg” 
function in FSL software to reorient tensors and 
vectors, a reoriented diffusivity map is gener-
ated. This approach eliminates the influence of 
head position and imaging plane variations 
[33-36]. Combined with semi-automatic or fully 
automatic ROI placement methods, this tech-
nique enhances the accuracy and repeatability 
of the ALPS index.

Some studies have further refined the DTI-ALPS 
method. For example, the traditional process 
involving the placement of two ROIs for projec-
tion and association fibers in the unilateral 
hemisphere has been expanded to include four 
ROIs for corresponding fibers in both cerebral 
hemispheres. The average value of the bilate- 
ral ALPS index is then calculated [37-40]. This 
modification requires only DTI scanning and the 
pre-placement of ROIs according to a standard 
brain template. Studies have demonstrated a 
strong correlation between this improved ALPS 
index and the glymphatic system clearance 
rate, which is typically measured using intrathe-
cal gadolinium contrast injection. This method 
offers a more convenient and stable approach 
for further research into the glymphatic system 
[41]. 

Taoka et al. [42] simplified the DTI-ALPS meth-
od, using DWI to retrospectively generate app- 
arent diffusion coefficient (ADC) maps along 
the x, y, and z axes. These ADC maps are then 
used to create a composite color image for ROI 
placement, and the ADC values within the ROI 
replace the diffusivity values in the original cal-
culation formula, resulting in the DWI-ALPS 
index. Earlier studies [43-47] have identified a 
significant correlation between the ALPS index 
derived from a gradient field applied in three 
directions (DWI) and the DTI-ALPS index, which 
uses a gradient field in twelve directions. 
Compared to DTI, DWI has a shorter imaging 
time and is more practical for routine clinical 
use. If the DWI-ALPS method is validated, it 
could allow for regular evaluation of glymphatic 
system function alongside daily clinical imaging 
[48, 49]. However, the application of the DWI-
ALPS method remains limited, and further 
research is needed to verify its accuracy and 
clinical applicability.
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DTI-ALPS has emerged as a cutting-edge tech-
nique that has attracted significant attention  
in the scientific community. Over recent years, 
extensive studies have been conducted to 
explore and enhance this method [50]. Re- 
searchers have been focusing not only on 
understanding its theoretical foundations but 
also on improving its accuracy and reliability 
[51]. These efforts have led to a deeper insight 
into how DTI-ALPS functions and its potential 
applications across a range of disciplines. 
Through continuous experimentation and inno-
vation, new techniques and algorithms have 
been developed to optimize the DTI-ALPS pro-
cess [52], resulting in improved performance 
and better outcomes. Collaborative efforts 
among different research groups have further 
accelerated progress, with teams exchanging 
insights and experiences to refine the method-
ology. The research is not limited to technical 
improvements but also includes validating the 
method’s effectiveness in real-world applica-
tions. As a result, the DTI-ALPS method is evolv-
ing rapidly, opening up new possibilities in fields 
like medical imaging, neuroscience, and mate-
rials science, while offering exciting opportuni-
ties for both scientific exploration and practical 
application.

Application of DTI-ALPS technology in evaluat-
ing GS function in cerebral infarction

DTI-derived ALPS measures are increasingly 
used to assess GS dysfunction in cerebral 
infarction patients. A clinical study by Zhang et 
al. [53] investigated GS dysfunction in patients 
with acute ischemic stroke. By analyzing DTI 
scans from 50 stroke patients and 50 age-
matched controls, the study found that the 
mean DTI-ALPS index in stroke patients was 
significantly lower (0.78 ± 0.12) compared to 
that in controls (1.02 ± 0.09, P < 0.001). This 
reduction was attributed to impaired clearance 
of interstitial fluid and metabolic waste, and 
core functions of the glymphatic system, estab-
lishing a clear link between GS dysfunction and 
cerebral infarction. 

A detailed case study by Xie et al. [54] exam-
ined a 65-year-old male with a left middle cere-
bral artery infarction. DTI-ALPS analysis show- 
ed regional alterations in the ALPS index, with  
a significantly lower value (0.68) in the infarct-
ed hemisphere compared to the contralateral 
hemisphere (1.05). This case highlighted the 

ability of DTI-ALPS to detect regional glymphat-
ic dysfunction caused by localized tissue dam-
age in stroke patients. 

Further supporting these findings, a longitudi-
nal study by Liu et al. [55] explored changes in 
the ALPS index after reperfusion therapy in 40 
acute ischemic stroke patients. The study mea-
sured the ALPS index at baseline (pre-therapy) 
and three months after thrombectomy. Patients 
with favorable clinical outcomes showed signifi-
cant improvements in their ALPS index, from 
0.74 ± 0.10 at baseline to 0.89 ± 0.08 (P < 
0.01). In contrast, patients with poor clinical 
outcomes showed no significant changes, dem-
onstrating its potential to monitor glympha- 
tic recovery and predict therapeutic effecti- 
veness. 

Moreover, the ALPS index has been linked to 
clinical outcomes in cerebral infarction pa- 
tients. Wang et al. conducted a cohort study 
involving 100 patients and found that those 
with lower ALPS values were more likely to 
experience severe disability, as measured by 
the modified Rankin Scale (mRS). Specifically, 
patients with an ALPS index below 0.80 had a 
significantly higher risk of severe disability 
(mRS ≥ 3) compared to those with an ALPS 
index above 0.90 (odds ratio: 2.8, P = 0.002). 
This underscores the prognostic value of the 
DTI-ALPS index in assessing functional out-
comes in stroke patients [56]. 

Together, these studies demonstrate that DTI-
derived ALPS measures effective detect glym-
phatic system dysfunction in cerebral infarction 
patients. The DTI-ALPS index is sensitive to 
regional and global glymphatic alterations, pro-
vides insights into recovery following reperfu-
sion therapy, and serves as a predictor of clini-
cal outcomes. As such, it is a valuable biomark-
er for evaluating glymphatic system function in 
both research and clinical settings.

In cerebral infarction patients, the increased 
free water (FW) values and decreased fraction-
al anisotropy (FA) values in the white matter 
regions indicate impaired glymphatic clearance 
and associated white matter degeneration. 
These areas are crucial for CSF-ISF exchange 
and solute clearance, and their dysfunction 
may contribute to the progression of stroke-
related pathology. A study [57] also reported 
associations between ALPS measures (FW, FA), 
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arterial stiffness, blood pressure, and white 
matter hyperintensity burden, suggesting po- 
tential mediation effects among these factors. 
The correlation between glymphatic pathway 
impairment, as indicated by altered ALPS mea-
sures (ALPS-index), and the extent of neuro- 
cognitive decline, evaluated by the Mini-Mental 
State Examination (MMSE) or the Montreal 
Cognitive Assessment (MoCA), underscores 
the clinical significance of assessing glym- 
phatic function in cerebral infarction patients. 
Impaired glymphatic clearance may contribute 
to the accumulation of neurotoxic substances, 
such as amyloid-beta (Aβ) and tau, leading  
to neuronal damage and cognitive decline. 
Therefore, DTI-derived ALPS measures may 
serve as valuable biomarkers for predicting 
cognitive impairment and monitoring disease 
progression in cerebral infarction patients 
[58-60].

The precise mechanisms underlying glympha- 
tic dysfunction in cerebral infarction remain 
unclear but are likely multifactorial. One pro-
posed mechanism involves the deposition of 
Aβ and tau proteins in the perivascular spaces, 
which may obstruct glymphatic flow and im- 
pair CSF-ISF exchange [61-63]. Additionally, the 
depletion of AQP4 water channels on astrocytic 
endfeet, which are vital for glymphatic trans-
port, has been observed in Alzheimer’s disease 
and may contribute to dysfunction in glymphat-
ic clearance pathways [20]. Additionally, vascu-
lar abnormalities, including arterial stiffness 
and blood-brain barrier (BBB) disruption, may 
also alter the driving forces for glymphatic flow, 
further impeding the clearance of metabolic 
waste products [64, 65].

The findings from this evaluation offer several 
important clinical implications for the manage-
ment of cerebral infarction patients. First, DTI-
derived ALPS measures may serve as a valu-
able diagnostic aid for the early detection of 
glymphatic pathway impairment, helping to 
identify patients at higher risk of neurocogni-
tive decline and long-term functional deficits 
[66-68]. Second, monitoring changes in ALPS 
measures over time may provide insights into 
the recovery of glymphatic function, potentially 
guiding the development of targeted interven-
tions to promote glymphatic clearance [69-72]. 
Finally, therapeutic strategies aimed at enhanc-
ing glymphatic function, such as promoting 

sleep [73], reducing inflammation [27-30], and 
modulating AQP4 expression [74-77], may rep-
resent novel therapeutic approaches for im- 
proving outcomes in cerebral infarction pa- 
tients.

To address these limitations and fully realize 
the potential of glymphatic-targeted interven-
tions, future research should focus on the fol-
lowing key areas. First, the validation of findings 
from this review in larger, more diverse cohorts 
of cerebral infarction patients is essential. 
Studies should aim to improve study designs 
and expand inclusion criteria to encompass 
various stroke subtypes, severities, and demo-
graphic characteristics, ensuring the generaliz-
ability of results [78-80]. Longitudinal studies 
with extended follow-up durations are critical  
to investigating the temporal progression of 
glymphatic pathway impairment. These studies 
should correlate changes in the DTI-ALPS index 
over time with long-term neurocognitive out-
comes (e.g., memory and executive function) 
and functional recovery (e.g., modified Rankin 
Scale scores). A clear timeline for follow-ups, 
such as evaluations at 3, 6, and 12 months 
post-stroke, would provide robust data on the 
evolution of glymphatic dysfunction [81, 82]. 

The DTI-ALPS method also requires specific 
improvements. One key area is enhancing the 
resolution and accuracy of DTI imaging proto-
cols to better capture the perivascular space 
(PVS) and associated diffusion dynamics [83]. 
This could include the use of high-resolution 
diffusion-weighted imaging (DWI) and advanc- 
ed motion-correction algorithms to minimize 
artifacts. Additionally, incorporating machine 
learning-based approaches for automated re- 
gion of interest (ROI) placement and ALPS index 
calculation would help reduce variability and 
improve reproducibility [84]. These advance-
ments should be tested in controlled environ-
ments before being implemented in multicenter 
trials. Furthermore, the establishment of stan-
dardized DTI acquisition protocols and ALPS 
analysis methods is pivotal for ensuring the 
reproducibility and comparability of findings 
across studies. Researchers should referen- 
ce existing guidelines, such as those from  
the Quantitative Imaging Biomarkers Alliance 
(QIBA) and the European Society of Radiology 
(ESR), to define key parameters, including di- 
ffusion gradient directions, voxel size, b-values, 
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and scanning duration [85]. Standardizing ROI 
placement criteria, particularly in projection 
and association fibers, is necessary to reduce 
inter-observer variability. A consensus docu-
ment or guideline outlining these parameters 
would promote broader adoption and consis-
tency across research groups. 

Another critical direction is the identification of 
optimal ALPS index cut-off values for detecting 
glymphatic system dysfunction. This requires 
establishing normative data based on healthy 
controls stratified by age, sex, and other rele-
vant factors. Comparative studies involving 
cerebral infarction patients and matched con-
trols can help define thresholds that distinguish 
between normal and impaired glymphatic func-
tion. Receiver operating characteristic (ROC) 
curve analyses should be used to determine 
the sensitivity and specificity of these cut-off 
values for clinical application [86]. 

Finally, the exploration of novel therapeutic 
strategies targeting the glymphatic system co- 
uld improve outcomes for cerebral infarction 
patients. Specific interventions, such as en- 
hancing sleep quality through behavioral thera-
pies or pharmacological agents, should be sys-
tematically evaluated for their effects on glym-
phatic function and neurocognitive recovery. 
Anti-inflammatory treatments aimed at reduc-
ing glymphatic pathway impairment and AQP4 
modulators designed to regulate water trans-
port in the PVS represent promising avenues 
for future investigation. Preclinical studies fol-
lowed by randomized controlled trials would be 
the ideal approach for evaluating these thera-
peutic options, with the DTI-ALPS index serving 
as both a biomarker and a measure of thera-
peutic efficacy.

This review provides evidence supporting the 
use of DTI-derived ALPS measures in assess- 
ing glymphatic pathway impairment in cerebral 
infarction individuals [87, 88]. The insights indi-
cate that glymphatic pathway impairment is 
widespread in cerebral infarction and is corre-
lated with the degree of neurological deficits 
and neurocognitive decline. DTI-derived ALPS 
measures could serve as valuable biomarkers 
for predicting the risk of cognitive decline and 
long-term functional outcomes in these pa- 
tients [89, 90]. However, further research is 
needed to validate these findings in larger 
cohorts, establish standardized ALPS mea-

sures and cut-off values, and explore the thera-
peutic potential of targeting the glymphatic sys-
tem in cerebral infarction.

The glymphatic system represents a promising 
frontier in understanding and managing cere-
bral infarction and its associated complica-
tions. By facilitating the clearance of neurotoxic 
substances and maintaining cerebral homeo-
stasis, the glymphatic pathway plays a critical 
role in preserving neuronal health and cogni-
tive function [91-93]. The development of imag-
ing techniques, such as DTI-derived ALPS mea-
sures, that allow for the non-invasive assess-
ment of glymphatic function opens new oppor-
tunities for the early detection, monitoring, and 
treatment of glymphatic system dysfunction in 
cerebral infarction patients [94-96].

As the field of glymphatic inquiry progresses, it 
is imperative to integrate insights from basic 
science with clinical observations to cultivate a 
comprehensive understanding of the glymphat-
ic pathway’s role in cerebral infarction. While 
this knowledge holds significant promise for 
creating novel diagnostic tools, prognostic mar- 
kers, and therapeutic strategies, several chal-
lenges must be addressed to successfully 
implement glymphatic-targeted treatments. 

One key challenge is the complexity of the glym-
phatic system, which is influenced by numer-
ous factors, including sleep, vascular health, 
and inflammation. Our current understanding 
of this pathway, particularly in the context of 
cerebral infarction, remains incomplete. This 
knowledge gap complicates the identification 
of precise therapeutic targets. For example, 
while AQP4 channels play a vital role in water 
transport within the glymphatic system, vari-
ability in AQP4 expression across individuals 
and disease states presents a significant ob- 
stacle in designing effective treatments. To 
address this, preclinical studies should focus 
on characterizing AQP4 expression patterns in 
stroke models and exploring the dose-depen-
dent effects of AQP4 modulators on glymphatic 
function and neuroprotection. 

Another challenge lies in the development of 
pharmacological therapies aimed at modulat-
ing the glymphatic system. The blood-brain bar-
rier presents a major obstacle for delivering 
drugs that can effectively target glymphatic 
dysfunction. Drug candidates must exhibit high 
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BBB permeability while minimizing systemic 
side effects. Innovative drug delivery systems, 
such as nanoparticle-based carriers or intrana-
sal delivery routes, may offer potential solu-
tions by enhancing brain-specific targeting of 
therapeutic agents. However, these approach-
es require rigorous testing in preclinical mo- 
dels to confirm their safety and efficacy before 
progressing to clinical trials. 

Designing clinical trials for glymphatic-targeted 
therapies also presents unique challenges. 
One significant issue is the lack of standardized 
biomarkers to assess glymphatic function and 
treatment response. While the DTI-ALPS index 
shows promise as a non-invasive biomarker, its 
reliability and sensitivity need validation in larg-
er, multicenter cohorts. Additionally, identifying 
clinically meaningful cut-off values for the ALPS 
index would facilitate patient stratification 
based on the severity of glymphatic dysfunc-
tion. Furthermore, selecting appropriate clini- 
cal endpoints is crucial. Traditional stroke out-
comes, such as the mRS or National Institutes 
of Health Stroke Scale (NIHSS), may not fully 
capture the effects of glymphatic-targeted in- 
terventions. Instead, trials should incorporate 
endpoints related to neurocognitive recovery, 
sleep quality, and long-term functional indepen-
dence, all of which are closely linked to glym-
phatic function. Longitudinal imaging studies 
using advanced DTI protocols should also be 
included as secondary endpoints to track glym-
phatic recovery over time. 

Lastly, the interplay between sleep and glym-
phatic function calls for a multidisciplinary 
approach in clinical trials. Given the role of 
sleep in promoting glymphatic clearance, it is 
essential to explore combined pharmacological 
and behavioral strategies, such as cognitive 
behavioral therapy for insomnia (CBT-I), to 
improve sleep quality. Integrating these app- 
roaches may maximize the therapeutic poten-
tial of glymphatic-targeted treatments.

Conclusion

This review highlights the potential of DTI-
derived ALPS measures in evaluating glym- 
phatic system dysfunction in cerebral infarction 
patients. It also underscores the need for fur-
ther research to advance our understanding of 
the glymphatic system in cerebrovascular dis-
orders. Incorporating glymphatic imaging into 

the clinical management of cerebral infarc- 
tion may represent a significant advancement, 
offering new opportunities for personalized and 
targeted therapeutic approaches for this chal-
lenging condition.
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