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Abstract: Neurodegenerative diseases (NDs) pose a formidable challenge in modern healthcare and are character-
ized by progressive neuronal dysfunction and loss. Emerging research underscores the intricate interplay between 
neuroinflammation and mechanisms underlying ND pathogenesis. This review delves into the complex role of Krüp-
pel-like factors (KLFs) in the context of neuroinflammation and major NDs. KLFs exert diverse effects in the brain 
on cellular processes such as blood-brain barrier integrity, neuronal cell cycle progression, and glial cell activation. 
Modulation of KLF expression and signaling emerges as a promising strategy to mitigate ND progression. By eluci-
dating KLFs’ multifaceted implications across diverse pathways and cellular processes implicated in ND progres-
sion, this review offers valuable insights into their therapeutic potential as targets for NDs.
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Introduction

Krüppel-like Factors (KLFs) are a family of tran-
scriptional factors that act as activators or/and 
repressors of gene transcription. They are zinc 
finger proteins that bind to CACCC, or a GT  
box, in target gene promoters. The C-terminal 
domain of KLFs contains the DNA-binding re- 
gion and nuclear localization signals, and the 
N-terminal domain is the protein-interacting 
region. There are 18 members in the KLF family 
with various gene expression patterns [1]. KLFs 
are involved in the regulation of many cellular 
processes such as cell cycle progression, prolif-
eration, migration, transformation and invasion 
[1]. Altered expression of KLFs is associated 
with a wide range of diseases, including meta-
bolic abnormalities, heart failure, and cancer. 
Here we present KLFs’ involvement in the 
development of neurodegenerative diseases 
and the implications in the pathology behind 
the diseases.

Neurodegenerative Diseases (NDs) share com-
mon characteristics such as the propagation of 
aberrant protein aggregates, neuroinflamma-
tion, increased oxidative stress, impaired prote-

olysis, mitochondrial dysfunction, and ultimate-
ly neuronal cell death [2, 3]. Currently, the focus 
on developing treatments for NDs has shifted 
from targeting cytoplasmic and extracellular 
proteins towards targeting the associated ge- 
nes in the nucleus that encode for or regulate 
the proteins relevant to NDs [4, 5].

Alzheimer’s Disease (AD), the most prevalent 
ND, is a progressive condition that causes the 
affected patients to present symptoms such as 
declining memory, aphasia, deteriorating co- 
gnitive impairment, and ultimately the develop-
ment of dementia [6]. AD displays pathological 
changes in patients’ brains, such as neuronal 
loss in the hippocampal region, leading to 
defects in learning and memory [7]. Key cha- 
racteristics of AD include the accumulation of 
extracellular amyloid-β (Aβ) protein plaques, 
intracellular neurofibrillary tangles of hyper-
phosphorylated tau protein, chronic neuroin-
flammation, and complex neuroimmune inter-
actions that involve reactive microglia and 
astrocyte [8, 9].

Parkinson’s Disease (PD), the second most 
common ND, presents protein aggregates the 
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[15]. An NVU is a collection of cells composed 
of neurons, astrocytes, and endothelial cells of 
the BBB. These NVU cells work together to reg-
ulate neuroimmune response, brain blood flow, 
and waste clearance [16]. In NDs, aberrant Aβ 
and p-Tau protein aggregates present around 
cerebral blood vessels in the brain parenchyma 
can cause NVU dysfunction and loss of blood 
vessel integrity or BBB breakdown. BBB dys-
function is associated with increased vascular 
permeability, facilitated immune cell invasion, 
enhanced neuroinflammation, and ultimately 
degeneration of the NVU [17]. 

Several KLFs play a role in regulating BBB integ-
rity (Figure 1). KLF2 may ameliorate BBB dys-
function by upregulating autophagic flux in 
endothelial cells. A study showed that KLF2 
expression improves the blood-spinal cord bar-
rier integrity and functional recovery from spi-
nal cord injury by inducing tight junction (TJ) 
protein expression [18]. KLF2’s implication in 
cerebrovascular integrity is further emphasized 
by another study reporting that KLF2 expres-
sion reduces infarction size by improving BBB 
function in the focal cerebral ischemia mouse 
model [19]. In this study, KLF2 was found to 
induce the expression of several tight junction 
proteins, including occludin, claudin-12, and 
junction adhesion molecule-1 (JAM-1). These 
proteins play an important role in preserving 
endothelial barrier and vascular integrity [20, 
21]. KLF2 rescues TJ protein expression and 
stabilizes vasculature through mediating anti-
inflammatory p53/KLF2 signaling and activat-
ing the angiopoietin-1/PI3K/Akt-myocyte en- 
hancer factor-2 (MEF2)-KLF2 signaling in glia 
[22]. This signaling pathway counteracts the 
vascular endothelial growth factor (VEGF) in- 
flammatory response [23, 24]. Moreover, a 
study on mouse brain microvascular endotheli-
al cells conveys the potential of KLF2 activation 
as a therapeutic strategy for cerebral vascular 
dysfunction in AD. In this study, KLF2 promo-
tion leads to attenuated Aβ-induced oxidative 
stress, improved mitochondrial function, and 
reduced apoptosis, ultimately ameliorating  
AD progression [25]. Similarly, overexpressing 
KLF2 can rescue occludin expression that was 
priorly disrupted by Aβ [26]. Thus, KLF2 shows 
neuroprotective effects in the cerebrovascular 
system through various signaling pathways that 
seem to favor BBB integrity by ameliorating 
inflammation present in several NDs.

form of Lewy bodies. Lewy bodies are for- 
med by accumulation of misfolded α-synuc- 
lein (α-syn) protein [10]. Tau pathology is also 
observed in PD and several other NDs. There is 
an overlap between the formation of Aβ 
plaques, tau tangles, and α-syn aggregates, 
suggesting that Aβ plaques contribute to α-syn 
spreading [11]. Furthermore, PD presents as 
the death of dopamine-producing neurons in 
the substantia nigra, resulting in the develop-
ment of symptoms affecting the motor system 
such as bradykinesia, loss of balance, tremors, 
and stiffness [12, 13].

Huntington’s disease (HD) is an autosomal 
dominant inherited condition. A CAG trinucleo-
tide repeat in the huntingtin gene causes an 
aberrant protein phenotype. This aberrant pro-
tein disrupts a wide array of molecular and cel-
lular processes including cellular homeostasis, 
neuronal transportation, gene expression, and 
function of mitochondria and synapsis. Con- 
sequently, the loss of corpus striatum GABA- 
ergic medium spiny neurons and cholinergic 
neurons occurs. Patients present a variety of 
symptoms disturbing motor and cognitive skills 
[3, 14].

Roles of KLFs in the progression of NDs

ND progression begins with dysregulation of 
molecular signaling within the cellular network 
inside the brain. To understand the roles of 
KLFs in ND progression, we first looked at the 
peer-reviewed literature for the expression of 
KLFs in the brain. We found that all the 17 KLF 
family members are expressed in one or more 
CNS cell types and are relevant to NDs (Table 
1). Notably, most of the data outlined in this 
table were obtained from experimental mice 
and more studies were done on some KLFs 
such as KLF4, KLF7, KLF9 and KLF11 than oth-
ers considering the number of publications 
contributing to the studies. Nevertheless, anal-
ysis of data reported from the European Bio- 
informatics Institute’s database confirms that 
the KLF family members are indeed expressed 
in the human brain, in general and in NDs-
associated regions such as the cerebral cortex 
and hippocampus, in particular (Table 2). 

KLFs and blood-brain barrier integrity 

Dysregulated neurovascular units (NVUs) and 
the blood-brain barrier (BBB) are linked to NDs 
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Table 1. KLF family expression in the central nervous system
Expression Time/Disease model Model organism Expression Location Brain Cell Type Reference

KLF1 During development Mice Cerebral cortex Retinal ganglion cells [125]
Cerebral ischemia Mice Cerebral cortex - [126]

KLF2 During development Mice Cerebral cortex Retinal ganglion cells [125]
Neural differentiation - In-vitro Dental pulp-derived stem cells [119]
Alzheimer disease C57/BL6 mice Cerebral cortex Endothelial [25]

Human Temporal cortex -
Nerve growth factor - In-vitro PC12 cells [127]
Cerebral ischemia Mice Cerebral cortex Endothelial [19]
Alzheimer disease Tg2576 Mice Brain tissue - [26]

Human brain endothelial cells In-vitro Endothelial 
Cerebral ischemia Mice Cerebral cortex - [126]
Alzheimer disease Kunming mice Hippocampus Neuronal [128]
Sciatic nerve injury Sprague-Dawley rats Dorsal root ganglia Neuronal [129]
Hypoxic-ischemic brain damage Sprague-Dawley rats Hippocampus Neuronal [130]

Cortex
Spinal cord injury Sprague-Dawley rats Spinal cord Neuronal [131]

KLF3 During development Mice Cerebral cortex Retinal ganglion cells [125]
- Mice Forebrain Neural stem cells [132]
Nerve growth factor - In-vitro PC12 cells [127]

KLF4 During development Mice Cerebral cortex Retinal ganglion cells [125]
Glutamatergic stimulation CD1 mice Cerebral cortex Neurons [133]
Developmental Rats Cerebral cortex Neurons [134]
Neuroinflammation BALB/c mice Whole brain tissue - [87]

- In-vitro BV-2 cells
Developmental (Ontogeny?) C57BL/6 mice Hypothalamus Neurons [135]
Developmental Mice E13.5 forebrain Neuronal stem cells [132]

E15.5 cortices Neurons
P0 cortices Astrocytes

Neuroinflammation Mice Brain tissue Microglial [136]
- In-vitro BV-2
Mice Brain tissue Astrocytes

Neuroinflammation Mice Brain tissue Microglial [137]
- In-vitro BV-2

Nerve growth factor - In-vitro PC12 cells [127]
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Developmental Mice White matter Neuronal stem cells [138]
Cerebral cortex Glial

Astrocytes
Parkinson’s disease - In-vitro M17 neuroblastoma cell line [139]
Neuroinflammation BALB/c mice Whole brain Microglia [140]

- In vitro BV-2 cells
Neuronal regeneration - In-vitro COS7 cells [58]

Mice Retina -
Optic nerve Retinal ganglion cells

Neuronal degeneration C57BL/6NHSd mice Hippocampus Neurons [141]
- In-vitro PC12 cells

Traumatic brain injury Sprague Dawley rats Optic nerve Retinal ganglion cells [142]
- In-vitro RGC-5 cells

Subarachnoid hemorrhage Human subjects Cerebrospinal fluid - [143]
Psychological stress Sprague Dawley rats Cortex In vivo: Tissue homogenate

In vitro: HT-22 cells
[51]

Hippocampus
Alzheimer disease AD transgenic J20 mice Brain tissue Microglial cells [86]

- In-vitro BV-2 cells
Parkinson’s disease - In-vitro SH-SY5Y cells [144]
Cerebral ischemia Mice Cerebral cortex - [126]
Cerebral edema Sprague-Dawley rats Cerebral cortex Microglial cells [145]
Cerebral ischemia Mice Cerebral cortex Brain microvascular endothelial cells [146]

- In-vitro bEnd.3 cells
Cerebral ischemia C57BL/6 mice Ischemic penumbra Astrocytes [40]

KLF5 Chronic Schizophrenia Human Prefrontal cortex - [147]
Hippocampus

During development Mice Cortex Retinal ganglion cells [125]
Nerve growth factor - In-vitro PC12 cells [127]
Cerebral ischemia Mice Cerebral cortex - [126]
Alzheimer disease - In-vitro SH-SY5Y, and HT22 cells [148]

APP/PS1 mice Hippocampus Neurons
Cerebral cortex

Human Cerebrospinal fluid -
KLF6 Developmental Mice Cortical plate - [149]

Hypothalamus
Forebrain
midbrain

Developmental Zebrafish Optic nerve Retinal ganglion cells [150]
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- Mice Olfactory bulb - [151]
Cerebral cortex
Septum
Hippocampus
Basal ganglia
Amygdala
Thalamus
Hypothalamus

Developmental Mice Cortex Retinal ganglion cells [125]
Developmental Rats Cerebral cortex Neurons [134]
Status epilepticus C57BL/6 mice Hippocampus Reactive astrocytes [152]

Active microglia
Neurons
Endothelial cells

Neuronal regeneration - In-vitro COS7 cells [58]
Mice Retina -

Cerebral ischemia Mice Cerebral cortex - [126]
KLF7 Developmental differences - Ventral horn of the spinal cord - [77]

Dorsal root ganglia
Sympathetic ganglia
Cerebral cortex
Cerebellum
Dorsal root ganglia

Developmental Mice Olfactory bulb Neurons [78]
Optic nerve Retinal ganglion cells
Cerebral cortex Neurons

Developmental Mice Olfactory bulb Neurons [153]
Nerve physical injury Zebrafish Optic nerve Retinal ganglion cells [150]
Developmental Mice Cortex Retinal ganglion cells [125]
Neural differentiation - In-vitro PC12 cells [154]

Embryonic stem cells
Neural stem cells

Developmental Mice Olfactory bulb - [155]
Pons
Ventral midbrain

Developmental Mice Cerebral cortex Neurons [156]
Corticospinal tract

Cerebral ischemia Mice Cerebral cortex - [126]
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KLF8 During development Mice Cortex Retinal ganglion cells [125]
Brain tumors Human Astrocytoma - [157]

Glioblastoma
Bain tissue

Alzheimer’s disease Wistar rats Cerebral cortex - [46]
Hippocampus

Mice Cerebral cortex Glial cells
Neuronal cellsHippocampus

- C57BL/6 mice Cerebral cortex Neurons [45]
Olfactory bulb
Hypothalamus
Pallidum
Striatum

Cerebral ischemia Mice Cerebral cortex - [126]
KLF9 - - In vitro N2a cells [158]

Rats Brain tissue -
Stressor Tadpoles Brain tissue - [159]
Developmental C57BL/6 Hippocampus - [160]

cerebellum
- In-vitro N2a cells

Developmental Mice Cortex Retinal ganglion cells [125]
Neuronal maturation Mice Forebrain - [161]

Hippocampus
Cerebral cortex

Developmental Mice cerebellum Purkinje cells [162]
Developmental - In vitro HT-22 cells [163]

C57/BL6J mice Hippocampus -
Differentiation and myelination - In-vitro Oligodendrocyte precursor cells [164]

C57/Bl6 mice cerebellum -
Optic nerve
Corpus callosum

Nerve growth factor - In-vitro PC12 cells [127]
Developmental Tadpoles Middle brain region - [165]

preoptic area 
diencephalon

Induced oxidative stress - In vitro Mes23.5, SH-SY5Y and N27 cell lines [166]
Cerebral ischemia Mice Cerebral cortex - [126]
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Developmental - In-vitro HT22 cells [167]
Parkinson’s disease BL/6J mice Substantia nigra - [168]

- In-vitro SH-SY5Y cells
KLF10 During development Mice Cortex Retinal ganglion cells [125]

Nerve growth factor - In-vitro PC12 cells [127]
Alzheimer’s disease C57BL/6J E16 mice Cerebral cortex Neurons [169]

Sprague Dawley E18 rat
Human Hippocampus -

Cerebral ischemia Mice Cerebral cortex - [126]
KLF11 During development Mice Cortex Retinal ganglion cells [125]

Focal cerebral ischemia Mice Cerebral microvessels Cerebral vascular endothelial cells [37]
Nerve growth factor Mice Dorsal root ganglia Neurons [127]

- In-vitro PC12 cells
Chronic Stress and Depressive Disorders Human Prefrontal cortex - [170]
Chronic stress Mice Frontal cortex -
Cerebral ischemia Mice Cerebral cortex - [126]

KLF12 During development Mice Cortex Retinal ganglion cells [125]
Cerebral ischemia Mice Cerebral cortex - [126]

KLF13 Developmental Mice Cortex Retinal ganglion cells [125]
Nerve growth factor - In-vitro PC12 cells [127]
Cerebral ischemia Mice Cerebral cortex - [126]
Developmental - In-vitro HT22 cells [167]

KLF14 Developmental Mice Cortex Retinal ganglion cells [125]
Nerve growth factor - In-vitro PC12 cells [127]
Cerebral ischemia Mice Cerebral cortex - [126]

KLF15 Developmental Mice Cortex Retinal ganglion cells [125]
Developmental Mice neocortical regions Neural stem cells [171]
Nerve growth factor - In-vitro PC12 cells [127]
Developmental Mice Cerebral cortex and Spinal cord white matter Astrocyte [172]

Oligodendrocytes
Cerebral ischemia Mice Cerebral cortex - [126]

KLF16 Developmental Mice Cortex Retinal ganglion cells [125]
Cerebral ischemia Mice Cerebral cortex - [126]

KLF17 Developmental Mice Cortex Retinal ganglion cells [125]
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Table 2. KLF family expression in the human brain as reported by the EMBL’s European bioinformatics institute
KLF1 KLF2 KLF3 KLF4 KLF5 KLF6 KLF7 KLF8 KLF9 KLF10 KLF11 KLF12 KLF13 KLF14 KLF15 KLF16 KLF17

Amygdala VL √ √ √ √ √ √ √ √√ √ √ √ √√ VL √√ √√√ VL
Basal ganglia √ √√ √√ √ √ √√ √√ √√ √ √√ √√ √√ √√ VL √ √√ VL
Brain tissue √ √√ √√√ √√√ √√ √√ √√ √√ √√ √√ √√ √√ √√ √ √√ √√√ VL
Caudate nucleus VL √ √ √ √ √ √ √ √√ √ √ √ √√ VL √√ √√√ VL
Cerebellum √ √√ √√ √ √ √√ √√ √√ √√ √√ √√ √√ √√ VL √√ √√√ VL
cerebral cortex √ √√ √√ √ √ √√ √√ √√ √√ √√ √√ √√ √√ VL √√ √√ VL
choroid plexus √ √√ √√ √√ √√ √√ √√ √√ √√ √√ √√ √√ √√ √ √√ √√ √
Diencephalon √ √√ √√ √√ √ √√ √√ √√ √ √√ √√ √√ √√ √ √ √√ √
Forebrain √ √√ √√ √√ √√ √√ √√ √√ √ √√ √√ √√ √√ √ √ √√ VL
Globus pallidus VL √ √ VL VL VL √ VL √ VL VL VL √ VL VL √ VL
Hindbrain √ √ √√ √√ √ √√ √ √√ √ √√ √√ √√ √√ VL √ √√ VL
Hippocampus √ √√ √√ √ √ √√ √√ √√ √ √√ √√ √ √√ VL √√ √√ VL
Hypothalamus VL √√ √ √ √ √√ √ √ √√ √ √ √ √√ VL √√ √√ VL
Medulla oblongata √ √√ √√ √ √ √√ √√ √√ √ √√ √√ √√ √√ VL √√ √√ VL
Midbrain √√ √√ √√ √√ √√ √√ √√ √√ √ √√ √√ √√ √√ VL √ √√ √
Pituitary gland VL √√ √√√ √√√ √√√ √√ √ √ √√ √√ √ √ √√ VL √√ √√√ VL
Pons √ √√ √√ √√ √√ √√ √√ √√ √√ √√ √√ √√ √√ VL √√ √√ VL
Putamen VL √√ √ √ VL √ √ √ √√ √ √ √ √√ VL √√ √√ VL
Substantia nigra VL √√ √√ √ √ √√ √ √ √√ √ √ √ √√ VL √√ √ VL
Telencephalon √ √√ √√ √ √ √√ √√ √√ √ √√ √√ √√ √√ VL √ √√ VL
Thalamus nda nda nda nda nda nda nda nda nda nda nda nda nda nda nda √√√ nda
VL, very low expression; ü, √ü and √√ü, low, medium and high expression, respectively; nda, no data available.



KLFs and neurodegenerative disorders

3017 Am J Transl Res 2025;17(4):3009-3030

Figure 1. KLFs play a role in blood-brain barrier integrity by modulating the expression of several tight junction pro-
teins, enhancing mitochondrial function, and reducing apoptosis and oxidative stress (The arrow indicates activa-
tion, while the straight line with a “T-shape” end indicates inhibition. KLFs boxed in green indicate a neuroprotective 
effect. These labels apply to all the Figures that follow).

KLF4 is also suggested to have neuroprotective 
effects in the cerebral vascular system. KLF4 
expression was found to increase with time in 
astrocytes after cerebral ischemia-reperfusion, 
and its activation modulates the nuclear-ery-
throid factor 2-related factor 2 (Nrf2)/thiore-
doxin 1 (Trx1) signaling and ameliorates BBB 
disruption [27]. Both KLF2 and KLF4 induce 
anti-inflammatory and vasoprotective pheno-
types in endothelial cells by inhibiting the 
nuclear factor kappa-light-chain-enhancer of 
activated B cell (NF-κB) activation and induces 
endothelial nitric oxide synthase (eNOS) expres-
sion [28, 29]. Upregulated NF-κB expression is 
also involved in BBB breakdown. NF-κB causes 
pericyte activation and matrix metalloprotein-
ases (MMP) secretion, leading to basement 
membrane degradation and opening of the 
BBB. NF-κB activation may also induce TJ dis-
ruption, increasing the permeability of the 
endothelial cell layer [30]. Like KLF2 and KLF4, 
other KLFs such as KLF8 and KLF11 have been 
shown to regulate NF-κB activity associated 
with BBB integrity [31, 32].

KLF11 presents neuroprotective properties  
by protecting the nuclear receptor peroxisome 
proliferator-activated receptor gamma (PPAR-γ) 
to repress the transcription of the pro-apoptot-
ic miR-15a, resulting in cerebrovascular endo-
thelial cell protection after ischemic insults 

[33, 34]. PPAR-γ inhibits the inflammatory acti-
vation of the MAP kinases p38 and extracellu-
lar signal-regulated kinases (ERK)1/2 as well 
as NF-κB downstream of Toll-like receptors 2 
and 4 (TLR2, TLR4) [33, 34]. Genetic deletion  
of KLF11 resulted in increased infiltration of 
peripheral neutrophils and macrophages in 
mice with traumatic brain injury (TBI) and post-
traumatic BBB disruption. Additionally, KLF11 
seems to have a role in the prevention of as- 
trocyte activation at the BBB [34]. Moreover, 
KLF11 increases the expression of TJ proteins 
including occludin and Zonula occludens-1 (ZO-
1) [35]. These results suggest that KLF11 
expression is important for the protection of 
the BBB integrity [36, 37]. 

The effects of KLF10 on cerebral ischemia 
reperfusion were investigated in vitro [38]. 
Results revealed that the downregulation of 
KLF10 resulted in the suppression of apopto-
sis, and oxidative stress and ameliorated BBB 
dysfunction through activation of NRF-2/heme 
oxygenase (HO-1) signaling. This study sug-
gests that KLF10 downregulation may reduce 
BBB permeability by modulating TJ proteins 
expression, including ZO-1, occludin and clau-
din-5 expression in endothelial cells under oxy-
gen-glucose deprivation/reperfusion (OGD/R) 
conditions [38]. 
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Figure 2. KLFs modulate neuroinflammation through glial polarization and ferroptosis by regulating various signaling 
pathways such as NF-κB, iron and JAK-STAT pathway.

Clearly, several KLFs play a role in BBB stability 
and with more research, their related signaling 
pathways may be targeted to promote BBB 
reconstruction in NDs to help ameliorate neuro-
inflammation and reinstate homeostasis in the 
brain. 

KLF signaling in neuroinflammation

Several KLF signaling pathways including NF- 
κB, iron and JAK-STAT pathways have been 
implicated to play a role for neuroinflammation 
by regulating various cellular events such as 
glial polarization and ferroptosis in the brain 
(Figure 2). 

Activation of NF-κB in microglia promotes neu-
ronal degeneration while its expression in neu-
rons is neuroprotective. NF-κB is found to be 
upregulated in the spinal cords of amyotrophic 
lateral sclerosis (ALS) patients, and inhibition of 
NF-κB signaling in microglia rescues motor neu-
rons and extends survival in a mouse model 
[39]. Multiple KLFs have been found to play a 
role in neuroinflammation via NF-κB signaling. 
It was shown that after OGD/R, astrocytic KLF4 
inhibited the activation of the A1 pro-inflamma-
tory subtype of astrocytes and promoted the 

polarization of A2 anti-inflammatory subtype of 
astrocytes via modulation of NF-κB [40]. Like 
M1 microglia, A1 astrocytes are a source of 
neuroinflammation that is present with most 
NDs [41]. Additionally, M1 microglia play a role 
in astrocyte activation and NF-κB plays a criti-
cal role in the switch of microglia from M2 to 
M1 subtype. Likewise, KLF6 regulates NF-κB 
expression in coactivation of the NF-κB medi-
ated inflammatory response, which is respon-
sible for making ischemic-reperfusion injury 
more severe in the kidney [42]. KLF6 was also 
reported to promote inflammatory bowel dis-
ease by co-activating NF-κB and suppressing 
the STAT3 pathway in macrophages, which con-
fers anti-inflammatory signaling [43, 44]. There 
is not much research on KLF6 and its role in 
microglial polarization in the central nervous 
system (CNS), although there is much research 
linking KLF6 to macrophage polarization to- 
wards M1 phenotype [44]. More research is 
needed to evaluate whether KLF6 behaves sim-
ilarly with microglial cells via NF-κB modula- 
tion. KLF11 was shown to play a BBB protective 
role through PPAR-γ-mediated inhibition of the 
inflammatory NF-κB pathway in microglial polar-
ization [36, 37]. KLF8 is highly expressed and 
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active in the cerebral neurons in various regions 
such as the cerebral cortex, hippocampus, and 
hypothalamus [45]. Decreased expression of 
KLF8 was found in the brain of AD patients with 
disrupted Wnt/β-catenin signaling [46]. Indeed, 
KLF8 is a known regulator of the Wnt/β-catenin 
signaling [47], and β-catenin interaction with 
NF-κB is highly expressed in brains of patients 
with NDs such as PD and AD [48]. These results 
suggest that KLF8 in the brain may play a criti-
cal role in neuronal protection.

Iron plays a part in multiple cellular processes, 
such as oxygen transportation, mitochondrial 
respiration, DNA synthesis, neurotransmitter 
synthesis, and more. Dysregulated iron homeo-
stasis can lead to oxidative damage and cause 
neurotoxicity [49]. Increased iron load in the 
brain is found to accelerate the formation of Aβ 
plaques and p-tau tangles and enhance oxida-
tive stress production, which of course is as- 
sociated with pathology in NDs [50]. A study 
showed that the activation of KLF4-heme ca- 
rrier protein 1 (HCP1) signaling induced an 
increase in heme uptake under psychological 
stress. This leads to iron accumulation and pro-
motes the release of reactive oxygen species 
(ROS) and subsequent neuronal damage due to 
ferroptosis [51]. KLF4 represses the transcrip-
tion of ELK-3. ELK-3 is a transcription repressor 
of heme oxygenase 1 (HO-1) that degrades 
heme into bilirubin and frees iron. Thus, the 
KLF4-HO-1 signaling promotes iron deposition, 
resulting in exacerbated oxidative stress and 
cell damage [52, 53]. Given that this KLF4 
enhanced iron accumulation takes place in hip-
pocampal neurons [51], it is plausible that 
aberrant KLF4 signaling like this can be harm-
ful to these neurons critical for cognition and 
memory leading to NDs like AD.

The Janus kinase/signal transducer and activa-
tor of transcription (JAK/STAT) signaling medi-
ates many processes such as tissue repair, 
hemopoiesis, inflammation, and apoptosis. Dis- 
ruption of the JAK/STAT signaling has been 
linked to neuroinflammation in AD [54]. Mo- 
dulation of the JAK/STAT signaling has been 
demonstrated in mice to improve post-ischemic 
recovery from AD-like pathology such as aber-
rant protein accumulation, neuroinflammation, 
BBB damage and neuronal apoptosis [54-56]. 
Both KLF13 and KLF4 have been reported to 

inhibit JAK/STAT signaling essential for axon 
regeneration. In a study using the mouse hippo-
campus-derived cell line HT22 [57], KLF13 was 
shown to inhibit neurotrophic growth hormone 
induced JAK/STAT signaling by directly repress-
ing the transcription of several genes in the 
pathway. Another report demonstrated that 
KLF4 physically binds phosphorylated STAT3 
and prevents the STAT3 from DNA binding, 
resulting in the blockage of the JAK/STAT sig-
naling downstream of axon regenerative cyto-
kine [53, 58]. Axon regeneration can be signifi-
cantly enhanced by the cytokine treatment in 
KLF4 knockout mice [53, 58]. These studies 
suggest that targeting KLF family members like 
KLF4 and KLF13 could help block neurodegen-
erative progression through JAK/STAT mediat-
ed axon regeneration.

KLFs and cell cycle regulation in the brain

Neuronal loss is linked to aberrant neuronal 
cell cycle progression with increased expres-
sion of cell-cycle related proteins found in 
pathologic areas in AD, HD and PD brains [59, 
60]. Half of the KLF family members are posi-
tive or negative regulators of cell cycle in brain 
cells including both neurons and non-neuronal 
cells [61, 62] (Figure 3). KLF8 was originally 
identified as an activator of cyclin D1 transcrip-
tion for cell cycle progression downstream of 
focal adhesion kinase (FAK) [63]. Research on 
KLF8 has been focused primarily on cancer 
[64-74]. However, recent studies have reveal- 
ed that in the brain, KLF8 is predominantly 
expressed in the neurons [45] and its expres-
sion is significantly decreased in AD patient 
brains [46], suggesting a potential role for  
KLF8 in neuronal cell cycle progression. Other 
KLF members such as KLF2, KLF4, KLF6, KLF7, 
KLF12, KLF13, and KLF14 have also been 
shown to regulate cell cycle progression by reg-
ulating the expression of cyclins, cyclin-depen-
dent kinase inhibitors [74-78], the PI3K/Akt/
mTOR signaling activity [22, 79]. Genetic dele-
tion of KLF4 does not disrupt microglial cell pro-
liferation during post-natal brain development 
in mouse models [80, 81]. However, diminished 
expression of KLF4 seems to be responsible for 
the loss of expression of the rhythmic genes 
that are critical for aged microglial differentia-
tion and reprogramming during protective im- 
mune responses [82]. 
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Figure 3. KLFs regulate cell cycle progression in neuronal and glial cells.

KLFs and cellular mechanisms of neuroinflam-
mation 

Neuroinflammation plays a critical role in NDs. 
Normally, it is carried out in a tight knit way with 
innate immune cells in the brain to protect neu-
rons. However, an excessive neuroinflammato-
ry response is a major contribution to NDs 
pathology [83]. KLFs play a role in neuroin- 
flammatory progression through activation of 
inflammatory shifts of glial state, inflamma-
some formation and mitochondrial metabolism 
in microglia and autophagy or mitophagy in 
neurons (Figure 4).

Microglia are innate immune cells in the CNS 
that present different phenotypes. Microglia in 
a classical activation state, known as M1, 
secrete proinflammatory cytokines, whereas 
microglia in alternative activation or acquired 
deactivation state, known as M2, secrete anti-
inflammatory factors. M1 microglia are closely 
associated with the aggregation of misfolded 
proteins seen in PD, AD, HD and ALS [84]. 
Astrocytes play a big role in supporting neuro-
nal function as they help regulate homeostasis 
and synaptic plasticity and may provide neuro-
protection upon brain injury. However, the dys-
function of M2 astrocytes and their switch to 
A1 astrocytes are linked to NDs pathology [85]. 
KLF4 plays an essential role in the microglial 
M1/M2 switch. The switch of microglia from  
M1 to M2 can be achieved by inhibiting KLF4 

interaction with histone deacetylase 1 and sup-
pressing deacetylation. Moreover, oligomeric 
Aβ42 increases KLF4 expression in microglial 
BV2 cells. Conversely, overexpression of KLF4 
exacerbates Aβ42-induced neuroinflammation 
[86]. KLF4 expression can be highly induced  
in activated microglia by lipopolysaccharides 
(LPS) stimulation, while KLF4 knockdown leads 
to significantly reduced production of the pro-
inflammatory cytokines such as TNF-α and IL-6 
as well as iNOS and Cox-2 [87]. A study using 
the BV2 microglial cell line investigating how 
the anti-neuroinflammatory agent, Agmatine, 
exerts its neuroprotective effect revealed that 
agmatine strongly binds to interferon regulato-
ry factor 2 binding protein (IRF2BP2) in the 
cytoplasm. This interaction frees the IRF2 that 
enters the nucleus where it activates the tran-
scription of KLF4 [88], suggesting an important 
role in activation of M2 microglia. Consistently, 
KLF4/STAT6 signaling was found to induce M2 
macrophages as well [89]. A recent study sh- 
owed that inhibition of KLF4 translation using 
miR-25802 resulted in activation of M1 microg-
lia via NF-κB inflammatory signaling and AD 
pathology, which was reversed by overexpres-
sion of KLF4 [90]. KLF11 promotes TGF-β sig-
naling [91] that is known to ameliorate AD 
pathology by targeting Aβ and Tau through 
decreasing the expression of pro-inflammatory 
cytokines and increasing neuronal survival fac-
tors [92]. Genetic deletion of KLF11 in mice 
enhances post-traumatic astrocyte activation, 
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Figure 4. KLFs modulate inflammasome and mitochondrial oxidation in glial cells, and mitophagy/autophagy in 
neurons.

microglial polarization [37] and expression of 
various pro-inflammatory factors in a traumatic 
brain injury model of mice [34].

The nucleotide-binding oligomerization domain-
like receptor pyrin domain-containing 3 (NLRP3) 
inflammasome is activated by the aggregation 
of misfolded proteins of Aβ, p-tau or α-syn, 
which causes initiation and promotion of the 
neuroinflammatory response in NDs such as 
AD [93]. Research on KLF4 and KLF2 suggests 
their potential role for the activation of NLRP3 
inflammasome [94, 95]. Overexpression of 
KLF4 increases the liver X receptor α (LXRα) 
and cholesterol 25-hydroxylase (CH25H) ex- 
pression, resulting in the inhibition of NLRP3 
inflammasome components and the promotion 
of microglia polarization from the M1 to M2 
phenotype [96]. KLF2 was also shown to up- 
regulate CH25H mRNA expression [96, 97]. 
Treatment with simvastatin, a cholesterol low-
ering drug, causes an increase in the expres-
sion of KLF2 and inactivation of the NLRP3 
inflammasome [98]. These results indicate the 
KLF family members such as KLF2 and KLF4 
may play a part in neuroinflammation by regu-
lating the NLRP3 inflammasome.

Microglial metabolism is dysregulated in AD 
with disrupted oxidative phosphorylation and 
lipid metabolism and a shift into glycolysis that 
is thought to decrease their ability to phagocy-
tose Aβ and mediate AD pathology [99]. In vitro 
studies showed that microglia are affected by 
fluctuation in glucose concentration. A low-to-
high glucose shift in BV-2 cells leads to an 
increase in the expression of the pro-inflamma-
tory factors including the tumor necrosis factor 
alpha (TNF-α), inducible nitric oxide synthase 
(iNOS) and cyclooxygenase-2 (COX2), while a 
high-to-low glucose shift promotes autophagy 
and apoptosis [99, 100]. A KLF10 knockdown 
study suggested that KLF10 is a key regulator 
of energy metabolism in mitochondria in the 
cerebellum [101]. Consistently, KLF10 knock-
out, albeit in the liver, results in disrupted glu-
cose metabolism [102]. Emerging research has 
shed light on the relationship between mito-
chondrial metabolic dysfunction and NDs. For 
example, aggregates of aberrant proteins like 
Aβ42 and p-tau may be the consequence of 
insulin resistance in the brain, and drug treat-
ment against diabetes and insulin resistance 
has been shown to help preserve cognitive 
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functions in AD patients [103, 104]. These 
results suggest a neuroprotective role for 
KLF10 through regulation of glucose metabo-
lism [105]. KLF9 induction in the neurons by 
the anti-oxidative stress factor NRF2 has been 
shown to promote cell survival against high lev-
els of oxidative stress in animal models of brain 
damage [106]. This could serve as a neuropro-
tective mechanism of regulation of glutathione 
and cytochrome P450 against NDs such as PD 
[106-113].

Autophagy, including the mitophahy form, is 
important for the maintenance of homeostasis 
in the brain as it eliminates damaging protein 
aggregates, but aberrant autophagy can drive 
ND progression [106, 114, 115]. Although it is 
unclear how autophagic dysfunction acceler-
ates ND pathology, some research suggests 
that the accumulation of Aβ protein is found in 
autophagic vacuoles, which eventually con- 
tributes to the formation of Aβ plaques [116]. 
Other research suggests that downregulation 
of autophagic activity leads to impaired clear-
ance of aberrant protein aggregation by autoph-
agy [117]. Consistent with positive regulation of 
autophagy by KLF2 during osteoblast differen-
tiation and osteoclastogenesis [118], KLF2 
deficiency is shown to negatively impact au- 
tophagy and mitophagy during neural differen-
tiation of dental pulp-derived stem cell (DPSC), 
with downregulated expression markers for 
both autophagy (i.e., LC3B, ATG5, and LAMP1) 
and mitophagy (i.e., PINK1, Parkin, DRP1, FIS1) 
[119]. Interestingly, loss-of-function mutations 
in PINK1 and Parkin are associated with PD 
[120]. Aberrant activation of Wnt signaling was 
also observed in development of DPSC [119], 
suggesting the Wnt signaling regulator KLF8  
in the brain [46] perhaps also plays a role in 
autophagy/mitophagy associated with the dis-
ease. A study on neurokinin-1 receptor (NK1R) 
signaling indicates that activation of this path-
way can cause autophagy through the ERK5/
KLF4/p62/Nrf2 signaling axis, resulting in the 
restoration of balanced redox signaling and  
the subsequent reduction of α-Syn aggregates 
[121]. Further investigation into how autophagy 
is regulated by KLFs in the brain is important 
for understanding mechanisms of progression 
of NDs.

Considering the critical role of KLF signaling for 
neuroinflammatory progression and aberrant 

protein aggregation in NDs [84, 99, 122-124], 
manipulating KLF expression could help bal-
ance the pro- vs. anti-inflammatory states of 
glia to ameliorate neuronal inflammation.

Conclusion 

The exploration of cerebral expression and 
roles of KLFs within the intricate landscape of 
neuroinflammation and neurodegenerative dis-
eases reveals a promising avenue for therapeu-
tic intervention. The multifaceted roles of KLFs 
in modulating cellular processes such as BBB 
integrity and glial activation via critical signal-
ing through JAK/STAT, NF-κB, and Wnt/β-catenin 
axis underscore their potential as key regula-
tors of neuroprotection and neurodegenera-
tion. The elucidation of these KLFs’ implica-
tions offer valuable insights into the path- 
ophysiology of NDs, making KLFs potential 
therapeutic targets. By harnessing the regula-
tory power of KLFs in the brain, particularly 
using brain-specific gain/loss-of-function cellu-
lar and mouse models, we may unlock novel 
therapeutic strategies aimed at blocking or 
even reversing the progression of NDs, offering 
new hope for improved patient outcomes and 
quality of life.
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