
Am J Transl Res 2025;17(4):2916-2926
www.ajtr.org /ISSN:1943-8141/AJTR0161623

https://doi.org/10.62347/YUOT5902

Original Article
Machine learning algorithms for the clinical  
diagnosis of acute atypical asthma exacerbation

Feng Ma, Weihua Zhu, Piping Jiang, Xuelian Bai, Wenya Li

Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Beijing 100049, China

Received October 31, 2024; Accepted April 8, 2025; Epub April 15, 2025; Published April 30, 2025

Abstract: Objective: To develop a predictive model for the clinical diagnosis of acute atypical asthma attacks using 
machine learning algorithms and investigate the risk factors related to the diagnosis of atypical asthma. Methods: 
This study retrospectively collected data on characteristics, symptoms, general examinations, pulmonary functional 
tests, and FeNO results of patients in the Aerospace Center Hospital. Five machine learning algorithms (logistic re-
gression, decision tree, random forest, support vector machine, extreme gradient boosting) were employed to select 
variables for predicting outpatient cases of atypical asthma exacerbation in routine practice. A predictive model for 
diagnosing atypical asthma exacerbation was then developed, optimized, and subjected to explanatory analysis. 
Results: After screening, 214 cases were included, with 98 diagnosed with acute exacerbation of atypical asthma 
and 116 undiagnosed. All patients were randomly assigned into a training set (n=149) or a validation set (n=65) 
at a ratio of 7:3. The predictive capabilities of five models were evaluated in the validation set. This demonstrated 
that all models could effectively identify patients with acute exacerbation of atypical asthma; among them, Logistic 
regression, random forest, and extreme gradient boosting achieved accuracies of 93.1%, and extreme gradient 
boosting reached 95.4%. The logistic regression model showed the best predictive performance. Model interpreta-
tion analysis revealed that FeNO, EOS, FEV1 variability, history of allergic rhinitis, and wheezing during acute attacks 
were significant risk factors for predicting acute exacerbations of atypical asthma. Conclusions: The application of 
machine learning methods for variable selection in predicting acute exacerbations of atypical asthma has shown 
promising results. FeNO, EOS, FEV1 variability, history of allergic rhinitis, and wheezing during acute episodes were 
crucial predictors of exacerbations.
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Introduction

Atypical asthma (VA) is a variant of bronchial 
asthma characterized by symptoms such as 
coughing, chest tightness, and chest pain, 
without prominent wheezing and shortness of 
breath. Symptoms worsen notably upon expo-
sure to cold air, allergens (such as pollen, dust 
mites), or irritants (such as perfume, cooking 
fumes), demonstrating significant airway hyper-
responsiveness [1].

The global prevalence of bronchial asthma is  
as high as 358 million [2], with a prevalence of 
4.2% among individuals aged over 20 years in 
China, and affecting a total of 45.7 million  
people [3]. Underdiagnosis of asthma is wide-
spread globally, with misdiagnosis rates rang-
ing from 19.2% to 73.3% across countries [4]. 

In urban areas of China, the overall asthma  
control rate is only 28.5%, with 71.2% of asth-
ma patients remaining undiagnosed, a phe-
nomenon particularly common with atypical 
asthma [3]. Therefore, early and accurate diag-
nosis of atypical asthma variants, such as 
cough variant asthma (CVA), chest tightness 
variant asthma (CTVA), and hidden asthma (HA), 
are crucial for improving asthma diagnosis and 
management [4].

Machine learning (ML), a type of artificial intel-
ligence, has been widely used for disease diag-
nosis, treatment recommendations, and pa- 
tient management [5, 6], providing a more pre-
cise approach for diagnosing bronchial asthma 
[7-9]. While the potential value of ML in diag-
nosing and treating other diseases is recog-
nized, its application in diagnosing atypical 
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asthma remained poorly understood. There- 
fore, in the present study, we retrospectively 
collected clinical data, aiming to develop a pre-
dictive model for diagnosing acute exacerba-
tions of atypical asthma using five machine 
learning algorithms. The optimal model was 
selected for interpretation to explore the risk 
factors related to acute exacerbation of atypi-
cal asthma, aiming to facilitate the rapid early 
diagnosis of patients experiencing acute ex- 
acerbations.

Materials and methods

Data sources

This study enrolled patients who visited the 
Aerospace Center Hospital and underwent rel-
evant examinations from June 2023 to Fe- 
bruary 2024. Inclusion criteria: ① age over 14 
years; ② first-time visitors; ③ presenting with 
symptoms such as cough, chest tightness, 
chest pain, wheezing, and dyspnea. Exclusion 
criteria: ① non-first-time visitors or follow-up 
patients; ② acute exacerbation of acute or 
chronic respiratory tract infections; ③ acute 
episodes of cardiovascular diseases, hepatic 
or renal dysfunction, and/or other significant 
organ impairments; ④ history of mental illness; 
⑤ significant missing clinical data. This study 
was approved by the Ethics Committee of the 
Aerospace Center Hospital (2023-004).

Data collection

The hospital’s electronic medical record sys-
tem was retrieved to collect patient clinical 
data, including: ① gender, age, body mass 
index (BMI), smoking history; ② history of aller-
gic diseases; ③ pet ownership status; ④ his-
tory of chronic pharyngitis, hypertension, coro-
nary atherosclerotic heart disease, diabetes, 
etc.; ⑤ disease course, cough symptoms and 
scoring, throat pain/dryness/itchiness, chest 
tightness/wheezing/dyspnea, chest pain, self-
reported wheezing, nasal congestion, rhinor-
rhea/sneezing, itchy eyes, acid reflux/heart-
burn, and other clinical manifestations; ⑥ 
complete blood cell analysis (white blood cells, 
lymphocytes, neutrophils, monocytes, eosino-
phils, hemoglobin, platelets), routine C-reactive 
protein measurement; ⑦ exhaled nitric oxide 
(FeNO) examination; ⑧ pulmonary function 
test (tidal volume (VT), inspiratory capacity (IC), 
vital capacity (VC), forced vital capacity (FVC), 

forced expiratory volume in one second (FEV1), 
FEV1/FVC, peak expiratory flow (PEF), maximal 
expiratory flow at 75% of FVC (MEF75), MEF50, 
MEF25, maximal mid-expiratory flow between 
75% and 25% of FVC (MMEF75/25), total lung 
capacity (TLC), residual volume (RV), ratio of 
residual volume to total lung capacity (RV/TLC), 
diffusing capacity of the lung for carbon monox-
ide (single-breath method) (DLCO/SB), diffus-
ing capacity of the lung for carbon monoxide 
per unit of alveolar volume (DLCO/VA)) and 
bronchodilation test (FVC variability, FEV1 vari-
ability). Atypical asthma was diagnosed accord-
ing to the “Guidelines for the Prevention and 
Treatment of Bronchial Asthma (2020 Edition)” 
[10].

Data processing and model construction

The clinical data collected were organized 
based on the inclusion and exclusion criteria. 
Patients with incomplete information, typical 
bronchial asthma, acute respiratory infections, 
and a history of mental illness were excluded. A 
simple random sampling method was used to 
divide the organized dataset into a training set 
(70%) and a validation set (30%). Univariate 
and multivariate logistic regression (LR) analy-
ses were conducted on the training set to iden-
tify independent prognostic factors (P<0.05), 
which were used to build an LR clinical diagnos-
tic prediction model. Additionally, four machine 
learning methods, decision tree (DT), random 
forest (RF), support vector machine (SVM), and 
extreme gradient boosting (XGBoost), were em- 
ployed to develop clinical diagnostic models for 
atypical asthma. Ten-fold cross-validation was 
used to determine the optimal parameters for 
the five models, which were then validated on 
the validation set. Receiver operating charac-
teristic (ROC) curves and decision curve analy-
sis (DCA) curves were plotted to assess the dis-
crimination and clinical utility of each model. 
Finally, the SHAP algorithm was used to explain 
and analyze the best-performing model, en- 
hancing its interpretability and transparency.

Statistical analysis

Statistical analysis was conducted using SPSS 
24.0 software. Categorical data were present-
ed as frequencies (percentages) and compared 
between groups using the chi-square test or 
Fisher’s exact test. Normally distributed con-
tinuous data were expressed as mean ± stan-
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dard deviation and compared using the inde-
pendent samples t-test. Non-normally distri- 
buted continuous data were presented as 
median (Q1, Q3) and compared using the 
Mann-Whitney U test. Univariate logistic re- 
gression analysis was employed to screen rel-
evant risk factors, and variables with a p-value 
<0.05 were considered significant factors for 
the disease diagnosis. Subsequently, signifi-
cant variables identified by the univariate anal-
ysis were further assessed using multivariate 
logistic regression to identify independent 
prognostic factors, which were later incorpo-
rated to construct a clinical predictive model. 
Model construction was performed using R 
3.4.1 software, and evaluation metrics such as 
the area under the ROC curve (AUC), sensitivity, 
and specificity were calculated. Decision curve 
analysis (DCA) was conducted to assess clini-
cal utility.

Results

Baseline data

After screening, 214 cases were included in  
the study, comprising 98 cases diagnosed with 
acute exacerbation of non-typical asthma and 
116 cases with undiagnosed asthma. Analysis 
of the baseline data (Table 1) revealed signifi-
cant associations between non-typical asthma 
with various variables, including age, cough 
score, wheezing, nasal congestion, rhinorrhea/
sneezing, pet ownership, FEV1, MEF75 (%), 
MEF50 (%), MEF25 (%), MMEF75/25 (%), FEV1 
variability, FeNO, and eosinophils, monocyte 
percentage (MO), acid reflux, allergic rhinitis, 
DLCO/VA (%), and WBC (P<0.05, P<0.01, or 
P<0.001).

After randomly assigning patients in a 7:3 ratio, 
149 individuals were allocated to the training 
set and 65 to the validation set. In the training 
set, 69 cases (46%) were diagnosed with aty- 
pical asthma, while in the validation set, 29 
cases (45%) were diagnosed with atypical asth-
ma. The balance between the training and vali-
dation sets was comparable (P=0.937).

Logistic regression analysis and validation

By univariate logistic regression analysis, the 
training data (Table 2) were examined to iden-
tify relevant risk factors. The analysis revealed 
a significant correlation between disease diag-

nosis and variables such as age, cough symp-
tom score, wheezing, nasal congestion, rhinor-
rhea/sneezing, history of allergic rhinitis, pet 
ownership, FEV1, FEV1 rate, MEF75, MEF50, 
MEF25, MMEF75/25, FEV1 variability, FeNO, 
EOS, and other factors.

Following multivariable logistic regression an- 
alysis, four variables were found to be signifi-
cantly associated with acute exacerbations  
of atypical asthma: history of allergic rhinitis 
(OR=14.69, 95% CI=2.12-197.01, P<0.05), va- 
riability in FEV1 (OR=1.51, 95% CI=1.17-2.1, 
P<0.01), FeNO levels (OR=1.25, 95% CI=1.16-
1.40, P<0.001), and EOS (OR=0, 95% CI=0-
0.19, P<0.05) (Figure 1). These four variables 
were identified as independent predictive fac-
tors for acute exacerbations of atypical as- 
thma.

The predictive model demonstrated excellent 
discriminative ability, as evidenced by an AUC 
of 0.984 (95% CI: 0.970-0.998) in the training 
set (Figure 2A) and 0.983 (95% CI: 0.960-1) in 
the validation set (Figure 2B). Results from the 
Hosmer-Lemeshow test indicated that the cali-
bration curves of the training set (R2=0.868, 
P=0.922>0.05) (Figure 2C) and validation set 
(R2=0.847, P=0.323>0.05) (Figure 2D) were 
well-aligned with the ideal curve, showing no 
significant differences and indicating a strong 
calibration capability of the model.

Evaluation of machine learning model perfor-
mance

The predictive capabilities of the five models 
were evaluated on a validation set based on a 
disease prediction model were constructed 
using logistic regression. The discriminative 
ability, as shown by the ROC curve (Figure 3A), 
indicated that when the model A, based on 
logistic regression principles (AUC=0.984), was 
used as a reference, the decision tree model 
(model B) (AUC=0.957), random forest (model 
C) (AUC=0.970), support vector machine model 
(model D) (AUC=0.968), and extreme gradient 
boosting model (model E) (AUC=0.982) all dem-
onstrated good predictive discrimination. 

In the detailed performance metrics for each 
model (Table 3), the XGBoost model had the 
highest accuracy (95.4%), outperforming both 
the LR model (92.3%) and RF model (93.8%)  
in correctly predicting samples. Sensitivity was 
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Table 1. Comparison of baseline clinical data between the two groups [M (Q1, Q3), 
_
x±s, n (%)]

Variable Total (n=214) 0 (n=116) 1 (n=98) p Statistic
Gender 0.687 0.163
    Female 118 (55) 62 (53) 56 (57)
    Male 96 (45) 54 (47) 42 (43)
Age, year 43 (34.3, 53.8) 47 (37, 58) 40 (31, 47) <0.001 7381.5
BMI, kg/m2 24 (22, 27) 24 (21.75, 27) 24 (22, 26) 0.442 6029.5
Course of illness 0.545 1.215
    Acute 85 (40) 49 (42) 36 (37)
    Subacute 50 (23) 28 (24) 22 (22)
    Chronic 79 (37) 39 (34) 40 (41)
Cough <0.001 38.324
    0 33 (15) 18 (16) 15 (15)
    1 101 (47) 75 (65) 26 (27)
    2 59 (28) 19 (16) 40 (41)
    3 21 (10) 4 (3) 17 (17)
Sore throat 0.916 0.011
    No 146 (68) 80 (69) 66 (67)
    Yes 68 (32) 36 (31) 32 (33)
Dyspnea 0.435 0.609
    No 88 (41) 51 (44) 37 (38)
    Yes 126 (59) 65 (56) 61 (62)
Chest pain 0.757 Fisher
    No 204 (95) 110 (95) 94 (96)
    Yes 10 (5) 6 (5) 4 (4)
Wheeze <0.001 38.74
    No 165 (77) 109 (94) 56 (57)
    Yes 49 (23) 7 (6) 42 (43)
Stuffy nose <0.001 13.025
    No 188 (88) 111 (96) 77 (79)
    Yes 26 (12) 5 (4) 21 (21)
Sneezing & runny nose <0.001 13.409
    No 130 (61) 84 (72) 46 (47)
    Yes 84 (39) 32 (28) 52 (53)
Itchy eyes 0.083 Fisher
    No 205 (96) 114 (98) 91 (93)
    Yes 9 (4) 2 (2) 7 (7)
Acid reflux & heartburn 0.016 Fisher
    No 207 (97) 109 (94) 98 (100)
    Yes 7 (3) 7 (6) 0 (0)
Allergic rhinitis 0.012 6.261
    No 70 (33) 47 (41) 23 (23)
    Yes 144 (67) 69 (59) 75 (77)
Chronic pharyngitis 0.546 0.365
    No 200 (93) 110 (95) 90 (92)
    Yes 14 (7) 6 (5) 8 (8)
Hypertension & CHD 0.522 0.409
    No 174 (81) 92 (79) 82 (84)
    Yes 40 (19) 24 (21) 16 (16)
Diabetes 0.294 Fisher
    No 206 (96) 110 (95) 96 (98)
    Yes 8 (4) 6 (5) 2 (2)
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Pet ownership <0.001 33.996
    No 173 (81) 111 (96) 62 (63)
    Yes 41 (19) 5 (4) 36 (37)
Smoking history 0.763 0.091
    No 184 (86) 101 (87) 83 (85)
    Yes 30 (14) 15 (13) 15 (15)
VT 214.3 (165.7, 267.5) 211.9 (157.2, 258.0) 217.7 (174.2, 273.7) 0.233 5145
IC 93.2 (81.5, 103.7) 91.8 (79.8, 103.7) 94.3 (85.7, 103.5) 0.290 5205.5
VC 89.0 (84.8, 96.8) 88.8 (84.7, 95.6) 89.3 (85.1, 99.5) 0.225 5136
FVC 90.8 (86.2, 98.2) 90.9 (85.5, 97.2) 90.8 (87.2, 101.0) 0.332 5245.5
FEV1 90.3 (80.9, 98.1) 91.0 (83.2, 97.7) 87.1 (77.5, 98.1) 0.099 6428
FEV1/FVC 81.3 (76.7, 85.4) 82.7 (79.7, 86.3) 79.6 (75.3, 83.2) <0.001 7431
PEF 88.5 (82.0, 96.7) 88.85 (81.6, 100.53) 87.95 (82.43, 95.57) 0.414 6053
MEF75 90.0 (77.5, 99.9) 93.2 (80.45, 102.5) 86 (75.75, 94.52) <0.001 7192
MEF50 74.53±22.54 79.25±22.87 68.93±20.9 <0.001 3.444
MEF25 59.1 (47.0, 80.6) 64.3 (49.65, 85.4) 54.35 (43.5, 63.95) <0.001 7247.5
MMEF75/25 69.1±21.2 74.1±21.78 63.1±19.04 <0.001 3.942
TLC 91.51±10.53 90.79±10.49 92.37±10.57 0.275 -1.093
RV 115.1 (101.7, 127.5) 115.05 (101.35, 129.83) 115.05 (103.67, 127.07) 0.919 5730.5
RV/TLC 122.1 (111.3, 133.3) 123.2 (110.67, 134.58) 118.9 (111.72, 128.75) 0.314 6139
DLCO/SB 82.5 (74.0, 92.9) 83.9 (74.97, 94.03) 82.2 (73.45, 92.33) 0.259 6194
DLCO/VA 95.0 (83.5, 104.8) 95.65 (88.88, 105.58) 91.15 (79.45, 104) 0.028 6677.5
FVC rate of variability 2.0 (-1.3, 4.8) 2.3 (-1.45, 5.28) 1.75 (-0.65, 4.55) 0.664 5880.5
FEV1 rate of variability 3.7 (2.1, 5.7) 3.15 (1.6, 4.9) 4.95 (2.73, 7.07) <0.001 3842.5
FeNO 25 (15, 57) 16 (11, 19) 59.5 (41.25, 88.25) <0.001 528.5
CRP 2 (0.97, 3.94) 1.94 (0.98, 3.88) 2.08 (0.95, 3.94) 0.781 5558
WBC 7 (5.7, 7.83) 6.84 (5.23, 7.77) 7.04 (6.53, 7.91) 0.021 4645
LY 29.4 (21.9, 33.3) 29.15 (22.92, 32.65) 29.45 (20.9, 33.75) 0.789 5805
MO 6.3 (5.4, 7.5) 6.6 (5.6, 7.8) 5.8 (5.1, 7.2) 0.002 7103
GR 59.96±9.97 61.13±9.49 58.56±10.38 0.062 1.874
EOS 4.6 (2.2, 7.38) 2.55 (1.5, 4.75) 7.1 (4.82, 9.97) <0.001 2042
HgB 142 (133, 150.75) 141.5 (133, 147.25) 144 (133.25, 153.75) 0.060 4834
PLT 247 (215.25, 277.5) 244.5 (208.75, 275.25) 250.5 (223, 284) 0.149 5031.5
Notes: total: full dataset; 0 group: undiagnosed asthma group; 1 group: atypical asthma group; BMI: body mass index; VT: tidal volume; IC: inspi-
ratory capacity; VC: vital capacity; FVC: forced vital capacity; FEV1: forced expiratory volume in one second; FEV1/FVC: forced expiratory volume 
in one second/forced vital capacity; PEF: peak expiratory flow; FEF25: forced expiratory flow at 25% of FVC; FEF50: forced expiratory flow at 50% 
of FVC; FEF75: forced expiratory flow at 75% of FVC; MMEF75/25: maximal mid-expiratory flow; TLC: total lung capacity; RV: residual volume; RV/
TLC: residual volume/total lung capacity; DLCO/SB: diffusing capacity of the lung for carbon monoxide per square meter of body surface area; 
DLCO/VA: diffusing capacity of the lung for carbon monoxide/alveolar ventilation; FeNO: fractional exhaled nitric oxide; CRP: C-reactive protein; 
WBC: white blood cell count; LY: lymphocytes; MO: monocytes; GR: neutrophils; EOS: eosinophils; HgB: hemoglobin; PLT: platelets.

Table 2. Single-factor logistic regression analysis
Characteristic B SE OR CI Z P
PLT 0.003 0.00325 1.003 0.997-1.010 0.941 0.347
HgB 0.017 0.01200 1.017 0.994-1.042 1.420 0.156
EOS 0.419 0.07491 1.520 1.327-1.782 5.587 0.000
GR -0.022 0.01632 0.978 0.946-1.009 -1.378 0.168
MO -0.264 0.10112 0.768 0.623-0.927 -2.612 0.009
LY -0.016 0.01968 0.984 0.946-1.023 -0.808 0.419
WBC 0.171 0.10673 1.187 0.966-1.472 1.606 0.108
CRP -0.040 0.03504 0.960 0.874-1.006 -1.154 0.249
FeNO 0.156 0.02631 1.168 1.116-1.239 5.915 0.000
FEV1 rate of variability 0.182 0.05661 1.199 1.079-1.349 3.213 0.001
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FVC rate of variability 0.006 0.03093 1.006 0.946-1.069 0.185 0.853
DLCO/VA -0.015 0.01209 0.985 0.961-1.008 -1.272 0.203
DLCO/SB -0.005 0.01318 0.995 0.970-1.021 -0.359 0.720
RV/TLC 0.003 0.00776 1.003 0.988-1.019 0.430 0.667
RV 0.006 0.00704 1.006 0.992-1.020 0.782 0.434
TLC 0.016 0.01558 1.016 0.986-1.048 1.012 0.312
MMEF75/25 -0.022 0.00827 0.979 0.962-0.994 -2.616 0.009
MEF25 -0.015 0.00723 0.985 0.971-0.999 -2.033 0.042
MEF50 -0.019 0.00781 0.981 0.966-0.996 -2.420 0.015
MEF75 -0.021 0.00822 0.979 0.963-0.994 -2.578 0.010
PEF -0.012 0.01042 0.988 0.968-1.008 -1.135 0.256
FEV1/FVC -0.065 0.02451 0.937 0.891-0.981 -2.662 0.008
FEV1 -0.019 0.01117 0.981 0.959-1.003 -1.694 0.090
FVC -0.001 0.01231 0.999 0.975-1.024 -0.048 0.962
VC 0.000 0.01283 1.000 0.975-1.026 0.017 0.987
IC -0.009 0.00821 0.991 0.974-1.007 -1.137 0.255
VT 0.001 0.00197 1.001 0.997-1.005 0.388 0.698
Smoking 0.388 0.46385 1.474 0.594-3.730 0.836 0.403
Pet ownership 2.379 0.57086 10.795 3.886-38.46 4.168 0.000
Diabetes -0.266 0.92797 0.766 0.099-4.755 -0.287 0.774
Hypertension & CHD -0.511 0.45377 0.600 0.238-1.435 -1.126 0.260
Chronic pharyngitis 0.395 0.69194 1.484 0.378-6.216 0.571 0.568
Allergic rhinitis 1.158 0.38201 3.184 1.535-6.919 3.032 0.002
Acid reflux & heartburn -15.456 840.27417 0.000 NA-7.627 -0.018 0.985
Itchy eyes 1.312 0.83388 3.714 0.823-25.95 1.574 0.116
Sneezing & runny nose 1.120 0.35021 3.065 1.557-6.170 3.198 0.001
Stuffy nose 1.427 0.54637 4.167 1.513-13.44 2.612 0.009
Wheeze 2.864 0.63745 17.528 5.772-76.42 4.493 0.000
Chest pain 0.154 0.83355 1.167 0.210-6.488 0.185 0.853
Dyspnea 0.442 0.34060 1.556 0.801-3.057 1.297 0.195
Throat 0.046 0.34611 1.047 0.529-2.065 0.132 0.895
Cough 0.762 0.20783 2.142 1.446-3.281 3.664 0.000
Time -0.083 0.18405 0.921 0.640-1.320 -0.449 0.653
BMI -0.083 0.05570 0.920 0.823-1.025 -1.498 0.134
Age -0.033 0.01232 0.967 0.943-0.990 -2.698 0.007
Gender -0.053 0.32993 0.948 0.495-1.811 -0.162 0.872
Notes: CRP: C-reactive protein; WBC: white blood cell count; LY: lymphocytes; MO: monocytes; GR: neutrophils; EOS: eosino-
phils; HgB: hemoglobin; PLT: platelets; IC: Inspiratory Capacity; VC: Vital Capacity; FVC: Forced Vital Capacity; FEV1: Forced 
Expiratory Volume in One Second; FEV1/FVC: Forced Expiratory Volume in One Second/Forced Vital Capacity; PEF: Peak 
Expiratory Flow; FEF25: Forced Expiratory Flow at 25% of FVC; FEF50: Forced Expiratory Flow at 50% of FVC; FEF75: Forced 
Expiratory Flow at 75% of FVC; MMEF75/25: Maximal Mid - Expiratory Flow; TLC: Total Lung Capacity; RV: Residual Volume; RV/
TLC: Residual Volume/Total Lung Capacity; DLCO/SB: Diffusing Capacity of the Lung for Carbon Monoxide per Square Meter of 
Body Surface Area; DLCO/VA: Diffusing Capacity of the Lung for Carbon Monoxide/Alveolar Ventilation; Va: Alveolar Ventilation; 
FeNO: Fractional Exhaled Nitric Oxide; VT: tidal volume; BMI: body mass index.

similar between the LR and RF (93.1%) models, 
indicating comparable identification abilities 
for positive cases among these three models.

In the decision curve analysis (DCA), “None” 
and “All” represented the extent of benefit 

when patients received no clinical decision 
intervention and when all patients received it, 
respectively. Figure 3B showed that all five  
clinical prediction models significantly benefit 
clinical decision-making, with the logistic re- 
gression model (ModA) yielding higher net ben-
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Figure 1. Multifactorial logistic regression forest diagram. FeNO: Fractional Exhaled Nitric Oxide; EOS: eosinophils; 
HgB: hemoglobin; FEV1: Forced Expiratory Volume in One Second.

efits across most threshold ranges compar- 
ed to other models, suggesting that ModelA 
leads to best net clinical benefits (Figure 3). 
Considering the above indicators collectively, 
the logistic regression model (LR model) exhib-
ited the best predictive performance.

Model explanation and analysis

The logistic regression model uses traditional 
univariate logistic regression to screen vari-
ables, followed by multivariate logistic regres-
sion optimization to classify the target variable 
and construct a predictive model. The final pre-
dictive factors in the model were history of 
allergic rhinitis, FEV1 variability, FeNO, and 
EOS.

In the decision tree model (Figure 4A), the vari-
able importance ranking was as follows: FeNO, 
EOS, wheezing during acute attacks, pet owner-
ship, cough, and rhinorrhea/sneezing. In the 
random forest model (Figure 4B), the variable 

importance ranking was as follows: FeNO, EOS, 
wheezing, FEV1 variability, pet ownership, and 
cough. In the support vector machine model 
(Figure 4C), the variable importance ranking 
was: FeNO, FEV1 variability, FEV1, cough, 
wheezing, and pet ownership. In the extreme 
gradient boosting model (Figure 4D), the vari-
able importance ranking was: FeNO, FEV1 vari-
ability, FEV1, neutrophil percentage, monocyte 
percentage, wheezing, and eosinophils.

Discussion

The Pediatric Branch of the Chinese Medical 
Association has invited experts from both 
domestic and international fields to develop a 
diagnostic model for predicting childhood asth-
ma using evidence-based medicine. By inte-
grating clinical experience, five key parameters 
have been identified: 1) the frequency of wheez-
ing episodes ≥4 times; 2) presence of re- 
versible airflow limitation; 3) personal history of 
allergies; 4) first-degree family history of aller-
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Figure 2. The discrimination and calibration curves of the logistic regression model. A. Discriminative curve of logis-
tic regression model in the training set; B. Discriminative curve of logistic regression model in the validation set; C. 
Calibration curve of logistic regression model in the training set; D. Calibration curve of logistic regression model in 
the validation set.
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Table 3. Comparison of performances among five predictive models
Prediction model AUC Accuracy rate Sensitivity Specificity F1 score
LR model 0.984 92.3% 93.1% 91.7% 0.924
DT model 0.957 92.3% 89.7% 94.4% 0.920
RF model 0.970 93.8% 93.1% 94.4% 0.938
SVM model 0.968 81.5% 65.5% 94.4% 0.773
XGBoost model 0.982 95.4% 93.1% 97.2% 0.951
Notes: LR: logistic regression; DT: decision tree; FR: forest plot; SVM: support vector machine; XGboost: extreme gradient boost-
ing.

Figure 3. Performance evaluation of five machine learning models. A. Discriminative curves of 5 prediction models; 
B. Decision analysis curves for 5 predictive models.

Figure 4. Important variables in each model. A. Variable importance in the Decision Tree model; B. Variable im-
portance in the Random Forest model; C. Variable importance in the Support Vector Machine model; D. Variable 
importance in the Extreme Gradient Boosting model.

gies; and 5) positive allergen test results [11]. 
However, the dynamic characteristics of chil-
dren’s physiologic functions and immune sta-
tus limit the applicability of adult asthma diag-
nostic models. An ideal diagnostic prediction 
model should comprehensively reflect the clini-
cal features of asthma, relevant examination 

indicators, and biomarkers, while also being 
operationally feasible.

A prospective study [12] has shown that a  
four-variable model, including wheezing, FEV1, 
FEV1/FVC ratio, and FeNO, can effectively diag-
nose bronchial asthma with an AUC of 0.76. 
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Another prospective study [13] found that a 
model incorporating cough, wheezing, dyspnea, 
hay fever, eczema, food allergies, social class, 
maternal asthma, childhood passive smoking 
exposure, and lung function/reversibility test-
ing achieved an internally validated AUC of 
0.86. Furthermore, a retrospective study [14] 
identified age, gender, FEV1, eosinophil count, 
and FeNO as risk factors for predicting severe 
asthma exacerbations. This study utilized real 
data from public hospitals and employed struc-
tured assessments and expert diagnosis to 
analyze the characteristics, symptoms, gene- 
ral examinations, pulmonary function tests, 
and FeNO results of outpatient asthma pa- 
tients. Five machine learning methods, includ-
ing logistic regression, decision tree, random 
forest, support vector machine, and extreme 
gradient boosting, were applied to identify key 
variables for predicting acute exacerbations of 
atypical asthma. The results demonstrated 
that all models effectively identified acute exac-
erbations of atypical asthma, with the extreme 
gradient boosting model achieving an accuracy 
of 95.4%. Key variables such as FeNO, EOS, 
forced expiratory volume variability, history of 
allergic rhinitis, wheezing during exacerbations, 
pet ownership, and cough symptom score, were 
identified, consistent with previous research 
findings and confirming the reliability of the 
model. These easily accessible and interpreta-
ble feature variables can assist primary care 
physicians in optimizing diagnostic processes 
under time constraints, enhancing diagnostic 
efficiency for atypical asthma, and reducing 
misdiagnosis.

This study still has several limitations. 1) The 
retrospective single-center study design may 
have introduced selection bias. 2) The lack of 
external validation necessitates further pro-
spective research to confirm the clinical appli-
cability and utility of the model. 3) Limited clini-
cal data and sample size may have affected  
the predictive performance and stability of the 
model.

Conclusion

Accurately identifying atypical asthma in out- 
patient settings remains a significant challenge 
in the diagnosis and treatment of respiratory 
diseases. This study used five machine learning 
methods (logistic regression, decision tree, ran-

dom forest, support vector machine, extreme 
gradient boosting) to develop a clinical diag-
nostic prediction model. The results indicated 
that each model could reliably predict the acute 
episodes of atypical asthma with high accura-
cy. The selected feature variables, which are 
easily obtainable in clinical practice, demon-
strated strong applicability and provide a basis 
for the timely diagnosis of acute episodes in 
patients with atypical asthma.
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