
Am J Transl Res 2025;17(4):2614-2628
www.ajtr.org /ISSN:1943-8141/AJTR0161818

https://doi.org/10.62347/CZYA6232

Original Article
Regression analysis and validation of risk factors for  
upper limb dysfunction following modified radical  
mastectomy for breast cancer patients

Yonggang Li, Shuan Hui

Department of Surgery of Glandular Vascular Abdominal Wall, The First People’s Hospital of Xianyang, Xianyang 
712000, Shaanxi, China

Received November 7, 2024; Accepted January 22, 2025; Epub April 15, 2025; Published April 30, 2025

Abstract: Objective: To develop and validate a predictive tool using machine learning models for identifying risk fac-
tors for upper limb dysfunction following modified radical mastectomy (MRM) in breast cancer patients. Methods: A 
total of 768 breast cancer patients who underwent Modified radical mastectomy (MRM) between January 2022 and 
December 2023 were included in this study. The dataset was divided into a training set (506 cases) and a valida-
tion set (262 cases). The collected data encompassed demographic characteristics, clinicopathological features, 
medical history, and postoperative rehabilitation plans. Predictive analyses were conducted using machine learning 
models, including support vector machine (SVM), extreme gradient boosting (XGBOOST), Gaussian naïve Bayes 
(GNB), adaptive boosting (ADABOOST), and random forest. Model evaluation was performed using ten-fold cross-
validation, with performance metrics including receiver operating characteristic (ROC) curves, area under the curve 
(AUC) values, specificity, sensitivity, accuracy, and F1-score. DeLong’s test was used to compare AUC values and 
identify the optimal predictive model. Results: Baseline characteristics showed no significant differences between 
the training and validation sets (P>0.05). Analysis of factors associated with upper limb dysfunction in the train-
ing set revealed significant differences in variables such as age, BMI, cancer type, axillary lymph node dissection, 
ipsilateral radiotherapy, postoperative rehabilitation plans, and monthly per capita household income (P<0.05). 
Low correlations were observed among these variables (R values close to 0), indicating minimal multicollinearity. 
Model performance evaluation showed that the XGBOOST and random forest models demonstrated high AUC val-
ues (0.817-0.884) across both the training and validation sets. These models also exhibited superior specificity and 
sensitivity, indicating strong predictive performance and robustness in identifying patients at risk of postoperative 
upper limb dysfunction. Conclusion: The XGBOOST and random forest models exhibited excellent predictive accu-
racy, offering valuable tools for the early identification and personalized management of high-risk patients. These 
models provide critical data support for postoperative rehabilitation planning and contribute to improving the quality 
of life for breast cancer patients.
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Introduction

According to the World Health Organization, 
approximately 2.3 million women worldwide 
were diagnosed with breast cancer in 2022, 
with around 670,000 deaths attributed to the 
disease [1]. Breast cancer is the most preva-
lent malignancy among women globally and 
remains a leading cause of cancer-related mor-
tality in this population [2]. Recent advance-
ments in breast cancer screening and treat-
ment, particularly early detection and per- 

sonalized therapies, have significantly improv- 
ed survival rates, enabling many patients to 
achieve long-term survival [3]. Despite the 
decline in mortality, the persistently high inci-
dence of breast cancer continues to impose a 
substantial health burden, with increasing at- 
tention being directed toward the quality of life 
after treatment [4]. For breast cancer survivors, 
overcoming the disease is only the first step; 
managing the long-term impact on postopera-
tive quality of life represents an ongoing cha- 
llenge.

http://www.ajtr.org
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Modified radical mastectomy (MRM) is a widely 
employed treatment for breast cancer, offering 
high cure rates but often resulting in postoper-
ative complications, particularly upper limb 
dysfunction [5]. Procedures such as axillary 
lymph node dissection can damage the ner-
vous and lymphatic systems, leading to pain, 
swelling, and restricted movement in the affect-
ed limb [6]. This dysfunction not only interferes 
with daily activities and self-care but can also 
result in chronic lymphedema, increased infec-
tion risk, prolonged recovery periods, and ele-
vated healthcare costs [7]. Additionally, long-
term physical dysfunction and the associated 
need for ongoing care can negatively affect 
patients’ psychological well-being, increasing 
the risk of anxiety and depression [8]. There- 
fore, identifying and addressing risk factors for 
upper limb dysfunction is critical for improving 
postoperative rehabilitation outcomes and the 
overall quality of life for breast cancer patients.

In recent years, machine learning models have 
gained increasing attention for their ability to 
predict disease complications and recurrence, 
particularly in identifying high-risk patients and 
optimizing personalized treatment plans [9]. 
These models have been successfully applied 
to predict outcomes in cardiovascular disease, 
cancer metastasis, and common postoperative 
complications, demonstrating promising re- 
sults [10, 11]. In the context of breast cancer 
postoperative management, machine learning 
has been utilized to assess recurrence risks 
and address various health concerns, providing 
valuable data for individualized follow-up plans 
[12]. However, no systematic studies have spe-
cifically focused on predicting upper limb dys-
function following MRM for breast cancer. Ex- 
isting research has primarily addressed gener-
al postoperative complications, neglecting the 
unique challenges posed by upper limb dys-
function - a complex issue influenced by preop-
erative, intraoperative, and postoperative fac-
tors [13].

This study aims to bridge this gap by introduc-
ing machine learning models to predict upper 
limb dysfunction after MRM, thereby support-
ing early intervention and risk management. By 
applying and comparing various machine learn-
ing algorithms, this study aims to address the 
current gap in predicting postoperative func-
tional impairments. Early identification of high-
risk patients will facilitate personalized man-

agement strategies to mitigate these com- 
plications. The novelty of this study lies in the 
first systematic application of machine learning 
models to predict upper limb dysfunction, offer-
ing precise risk assessments that can improve 
postoperative rehabilitation and enhance qual-
ity of life for breast cancer survivors.

Methods and materials

Participants

This study included patients who underwent 
MRM for breast cancer at The First People’s 
Hospital of Xianyang between January 2022 
and December 2023. All patients were preop-
eratively diagnosed with breast cancer and had 
at least six months of postoperative follow-up.

Inclusion criteria: female breast cancer patients 
aged 18 years or older, diagnosed with breast 
cancer through pathological examination [14], 
and having confirmed indications for MRM. 
Patients were required to have a minimum of 
six months of follow-up, the ability to comple- 
te upper limb dysfunction assessments, and 
comprehensive clinical and follow-up data, 
including baseline information and treatment 
details.

Exclusion criteria: patients with severe cardio-
vascular or cerebrovascular disease, hepatic  
or renal insufficiency, or other comorbidities 
affecting quality of life; those diagnosed with 
other malignancies or with uncontrolled major 
diseases; patients with neurological or muscu-
loskeletal diseases (e.g., stroke, Parkinson’s 
disease, rheumatoid arthritis) that could impair 
upper limb function; pregnant or breastfeeding 
women, due to potential physiological impact 
on functional recovery; and patients with a his-
tory of breast surgery or axillary lymph node 
dissection.

A total of 768 patients were included in this 
study, divided into a training set (506 cases) 
and a validation set (262 cases). Details of the 
data distribution are provided in Table 1. This 
study was conducted with the approval of the 
First People’s Hospital of Xianyang Medical 
Ethics Committee.

Criteria for upper limb dysfunction assessment

Upper limb function was assessed using the 
Rowe Shoulder Score [15], a widely used tool 
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for evaluating different types and stages of 
upper limb function. The score ranges from 0  
to 100 and is divided into four grading levels: 
≤50 as poor, 51-74 as fair, 75-89 as good, and 
90-100 as excellent. Higher scores indicate 
better shoulder function. In this study, a score 
below 75 was defined as upper limb dysfunc- 
tion.

Data collection

Data collected included baseline and treat-
ment-related information for each patient. De- 
mographic characteristics included age (18-40, 
41-65, >65), BMI (kg/m2) categories (18-22.9, 
23-25, >25), marital status (married, unmar-
ried, others such as divorced or widowed), edu-
cation level (≤ junior high school, high school, ≥ 
college), and monthly per capita household 
income (<3000, 3000-4500, >4500). Clinical 
and pathological characteristics included can-
cer type (ductal carcinoma in situ, invasive duc-
tal carcinoma, others), axillary lymph node dis-
section (yes/no), ipsilateral radiotherapy (yes/
no), and neoadjuvant chemotherapy (yes/no). 
Medical history included diabetes (yes/no), 
hypertension (yes/no), smoking (yes/no), and 
alcohol use (yes/no). Rehabilitation informa- 
tion included whether a postoperative rehabili-
tation plan was implemented (yes/no). Upper 
limb function was assessed six months post- 
operatively, with patients scoring below 75 
classified as having dysfunction. This system-
atic data collection provided a comprehensive 
basis for constructing machine learning models 
and analyzing key risk factors.

Data preprocessing

Categorical variables were converted into du- 
mmy variables to accommodate the require-
ments of machine learning models. Baseline 
characteristics of the training and validation 
sets were statistically tested to ensure bal-
anced characteristics between the two sets.

Model construction

Five machine learning models were employed 
to predict the risk of upper limb dysfunction: 
support vector machine (SVM), extreme gradi-
ent boosting (XGBOOST), Gaussian naïve Bayes 
(GNB), adaptive boosting (ADABOOST), and ran-
dom forest. All models employed ten-fold cross-
validation to enhance robustness and general-

Table 1. Patient baseline characteristics
Variable Count Percentage
Age (years)
    18-40 192 0.25
    41-65 259 0.3372
    >65 317 0.4128
BMI (kg/m2)
    18-22.9 354 0.4609
    23-25 221 0.2878
    >25 193 0.2513
Disease Type
    Initial Diagnosis 701 0.9128
    Recurrence 67 0.0872
Cancer Type
    Ductal Carcinoma in Situ 154 0.2005
    Invasive Ductal Carcinoma 504 0.6563
    Other 110 0.1432
Axillary Lymph Node Dissection
    Yes 694 0.9036
    No 74 0.0964
Ipsilateral Radiotherapy
    Yes 298 0.388
    No 470 0.612
Neoadjuvant Chemotherapy
    Yes 434 0.5651
    No 334 0.4349
Diabetes History
    Yes 83 0.1081
    No 685 0.8919
Hypertension History
    Yes 130 0.1693
    No 638 0.8307
Smoking History
    Yes 202 0.263
    No 566 0.737
Alcohol Use History
    Yes 48 0.0625
    No 720 0.9375
Postoperative Rehabilitation Plan
    Yes 643 0.8372
    No 125 0.1628
Marital Status
    Married 655 0.8529
    Unmarried 71 0.0924
    Other 42 0.0547
Education Level
    ≤ Junior High School 263 0.3424
    High School 346 0.4505
    ≥ College 159 0.207
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quartile range (IQR) for non-normally distribut-
ed variables. Categorical data were presented 
as frequencies, and group comparisons were 
conducted using the chi-square test. A P-value 
<0.05 was considered statistically significant. 

Model performance evaluation was carried  
out using R software (version 4.3.3, released 
February 2024). Receiver operating character-
istic (ROC) curve plotting and area under the 
curve (AUC) calculation were performed using 
the pROC package, while visualization was con-
ducted using ggplot2. Data preprocessing and 
model building were conducted using caret  
and data.table packages. Performance metrics 
included ROC curve, AUC, specificity, sensitivi-
ty, accuracy, and F1-Score. DeLong’s test was 
used to compare AUC values across models to 
identify the optimal predictive model.

Results

Comparison of baseline characteristics be-
tween patient groups

Baseline characteristics between the training 
and validation sets showed no significant differ-
ences across all variables. Specifically, upper 
limb dysfunction (P=0.146), age (P=0.383), 
BMI (P=0.679), cancer type (P=0.428), axillary 
lymph node dissection (P=0.274), ipsilateral 
radiotherapy (P=0.834), neoadjuvant chemo-
therapy (P=0.993), history of diabetes (P= 
0.938), hypertension (P=0.377), smoking his-
tory (P=0.379), alcohol consumption history 
(P=0.665), postoperative rehabilitation plan 
(P=0.338), marital status (P=0.974), education 
level (P=0.914), household income per capita 
(P=0.971), ER status (P=0.747), PR status (P= 
0.354), and HER2 status (P=0.319) showed no 
statistical differences between the two groups 
(see Table 2).

Comparison of baseline characteristics be-
tween patients with and without upper limb 
dysfunction in the training set

In the training set, significant differences were 
observed between patients with and without 
upper limb dysfunction for several variables. 
Specifically, age (P<0.001), BMI (P<0.001), 
cancer type (P=0.001), axillary lymph node  
dissection (P=0.036), ipsilateral radiotherapy 
(P=0.011), postoperative rehabilitation plan 
(P<0.001), and household income per capita 

Monthly Household Income (CNY)
    <3000 370 0.4818
    3000-4500 220 0.2865
    >4500 178 0.2318
ER Status
    Positive 513 0.668
    Negative 255 0.332
PR Status
    Positive 419 0.5456
    Negative 349 0.4544
HER2 Status
    Positive 147 0.1914
    Negative 621 0.8086
Note: ER, Estrogen Receptor; PR, Progesterone Receptor; 
BMI, Body Mass Index; HER2, Human Epidermal Growth 
Factor Receptor 2.

izability. For SVM, a radial basis function (RBF) 
kernel was used, and the regularization param-
eter (C) and kernel parameter (γ) were opti-
mized through cross-validation to balance mo- 
del complexity and classification accuracy. For 
XGBOOST, the learning rate (eta) was set at  
0.1 to prevent overfitting, the maximum depth 
(max_depth) was set at 6 to control tree com-
plexity, the subsample ratio was set at 0.7 for 
sample proportions per iteration, the feature 
sample ratio (colsample_bytree) was set at  
0.8, and the model underwent 100 iterations 
as determined by ten-fold cross-validation. For 
GNB, a smoothing parameter (Laplace) of 0 
was used to maintain the Gaussian distribution 
assumption, which is suitable for binary predic-
tion tasks. ADABOOST utilized 50 iterations 
(n_estimators), determined through cross-vali-
dation, to balance training time and accuracy, 
with a learning rate of 1. For Random Forest, 
the number of trees (ntree) was determined via 
ten-fold cross-validation to minimize the out-of-
bag (OOB) error rate, and the number of split 
variables (mtry) was set to the square root of 
the total number of features to control over- 
fitting.

Statistical analysis

Data analysis was conducted using SPSS ver-
sion 26.0. The normality of continuous vari-
ables was assessed using the Kolmogorov-
Smirnov (K-S) test. Data were expressed as 
mean ± standard deviation (SD) for normally 
distributed variables, and as median with inter-
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Table 2. Comparison of baseline characteristics between validation and training sets
Variable Validation set (n=262) Training set (n=506) Statistic P-value
Upper Limb Dysfunction
    Yes 90 201 2.117 0.146
    No 172 305
Age (years)
    18-40 72 120 1.919 0.383
    41-65 81 178
    >65 109 208
BMI (kg/m2)
    18-22.9 120 234 0.775 0.679
    23-25 80 141
    >25 62 131
Disease Type
    Initial Diagnosis 238 463 0.095 0.758
    Recurrence 24 43
Cancer Type
    Ductal Carcinoma in Situ 58 96 1.699 0.428
    Invasive Ductal Carcinoma 171 333
    Other 33 77
Axillary Lymph Node Dissection
    Yes 241 453 1.199 0.274
    No 21 53
Ipsilateral Radiotherapy
    Yes 103 195 0.044 0.834
    No 159 311
Neoadjuvant Chemotherapy
    Yes 148 286 <0.001 0.993
    No 114 220
Diabetes History
    Yes 28 55 0.006 0.938
    No 234 451
Hypertension History
    Yes 40 90 0.779 0.377
    No 222 416
Smoking History
    Yes 74 128 0.774 0.379
    No 188 378
Alcohol Use History
    Yes 15 33 0.187 0.665
    No 247 473
Postoperative Rehabilitation Plan
    Yes 224 419 0.917 0.338
    No 38 87
Marital Status
    Married 223 432 0.052 0.974
    Unmarried 24 47
    Other 15 27
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Education Level
    ≤ Junior High School 91 172 0.180 0.914
    High School 119 227
    ≥ College 52 107
Monthly Household Income (CNY)
    <3000 125 245 0.059 0.971
    3000-4500 75 145
    >4500 62 116
ER Status
    Positive 177 336 0.104 0.747
    Negative 85 170
PR Status
    Positive 149 270 0.858 0.354
    Negative 113 236
HER2 Status
    Positive 45 102 0.992 0.319
    Negative 217 404
Note: ER, Estrogen Receptor; PR, Progesterone Receptor; BMI, Body Mass Index; HER2, Human Epidermal Growth Factor 
Receptor 2.

(P=0.008) were significantly different. Other 
variables, including disease onset type (P= 
0.532), history of diabetes (P=0.805), hyper-
tension history (P=0.677), smoking history 
(P=0.311), alcohol consumption history (P= 
0.253), marital status (P=0.103), education 
level (P=0.365), ER (P=0.928), PR (P=0.387), 
and HER2 (P=0.569), showed no significant  
differences (see Table 3).

Correlation analysis of significant variables in 
the dysfunction group in the training set

Correlation analysis of variables with significant 
differences in the training set revealed low cor-
relations among them, with correlation coeffi-
cients (R values) close to 0. The correlation 
between the postoperative rehabilitation plan 
and age was the highest (R=0.07), indicating a 
slight positive correlation, while other variables 
exhibited even lower correlations. These results 
support the independence of these variables 
and provide a robust basis for model construc-
tion (see Figure 1).

ROC curve and performance evaluation of 
machine learning models

In the training set, five machine learning mod-
els (SVM, XGBOOST, GNB, ADABOOST, and 
Random Forest) were evaluated for predictive 
performance. Based on the ROC curves and 

AUC values, the Random Forest and XGBOOST 
models demonstrated superior predictive per-
formance, with AUC ranges of 0.817-0.884  
and 0.817-0.883, respectively. Specifically, the 
Random Forest model achieved a specificity of 
76.39%, sensitivity of 77.61%, and a Youden 
index of 54.01%, making it the top performer 
among the five models. The XGBOOST model 
achieved a specificity of 75.41% and sensitivity 
of 76.62%, displaying strong performance in 
terms of accuracy and F1-score. DeLong’s test 
revealed no statistically significant differen- 
ces in AUC between the Random Forest and 
XGBOOST models (P=0.9684), both of which 
significantly outperformed the other models 
(see Tables 4, 5; Figure 2A).

Performance evaluation of models in the 
validation set

In the validation set, the predictive perfor-
mance of all five models remained consistent. 
The Random Forest model continued to ex- 
hibit strong predictive capabilities, with an AUC 
range of 0.817-0.884, specificity of 76.39%, 
and sensitivity of 77.61%, indicating excellent 
generalization ability. Similarly, the XGBOOST 
model maintained a high AUC range (0.817-
0.883) in the validation set, with specificity and 
sensitivity of 75.41% and 76.62%, respectively. 
DeLong’s test showed no significant differenc-
es in AUC between the Random Forest and 
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Table 3. Comparison of baseline characteristics between patients with and without upper limb dys-
function in the training set

Variable Non-Dysfunction Group 
(n=316)

Dysfunction Group 
(n=190) Statistic P-value

Age (years)
    18-40 80 40 28.274 <0.001
    41-65 128 50
    >65 97 111
BMI (kg/m2)
    18-22.9 152 82 13.883 <0.001
    23-25 92 49
    >25 61 70
Disease Type
    Initial Diagnosis 281 182 0.391 0.532
    Recurrence 24 19
Cancer Type
    Ductal Carcinoma in Situ 67 29 13.011 0.001
    Invasive Ductal Carcinoma 182 151
    Other 56 21
Axillary Lymph Node Dissection
    Yes 266 187 4.379 0.036
    No 39 14
Ipsilateral Radiotherapy
    Yes 104 91 6.388 0.011
    No 201 110
Neoadjuvant Chemotherapy
    Yes 180 106 1.944 0.163
    No 125 95
Diabetes History
    Yes 34 21 0.061 0.805
    No 271 180
Hypertension History
    Yes 56 34 0.173 0.677
    No 249 167
Smoking History
    Yes 82 46 1.026 0.311
    No 223 155
Alcohol Use History
    Yes 23 10 1.308 0.253
    No 282 191
Postoperative Rehabilitation Plan
    Yes 267 152 12.089 <0.001
    No 38 49
Marital Status
    Married 265 167 4.549 0.103
    Unmarried 29 18
    Other 11 16
Education Level
    ≤ Junior High School 111 61 2.015 0.365
    High School 131 96
    ≥ College 63 44
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Monthly Household Income (CNY)
    <3000 153 92 9.590 0.008
    3000-4500 96 49
    >4500 56 60
ER Status
    Positive 203 133 0.008 0.928
    Negative 102 68
PR Status
    Positive 158 112 0.747 0.387
    Negative 147 89
HER2 Status
    Positive 64 38 0.325 0.569
    Negative 241 163
Note: ER, Estrogen Receptor; PR, Progesterone Receptor; BMI, Body Mass Index; HER2, Human Epidermal Growth Factor 
Receptor 2.
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Table 4. ROC curve parameters of the 5 machine learning models in the training set
Marker 95% CI Specificity Sensitivity Youden_index Accuracy Precision F1_Score
SMV 0.725-0.810 63.28% 80.10% 43.38% 69.96% 80.10% 67.93%
XGBOOST 0.817-0.883 75.41% 76.62% 52.03% 75.89% 76.62% 71.63%
GNB 0.685-0.773 59.67% 75.62% 35.29% 66.01% 75.62% 63.87%
ADABOOST 0.751-0.830 75.08% 69.65% 44.73% 72.92% 69.65% 67.15%
Random forest 0.817-0.884 76.39% 77.61% 54.01% 76.88% 77.61% 72.73%
Note: SVM, Support Vector Machine; XGBOOST, Extreme Gradient Boosting; GNB, Gaussian Naive Bayes; ADABOOST, Adaptive 
Boosting.

Figure 1. Correlation analysis of significant variables between the dysfunction and non-dysfunction groups. Note: 
BMI, Body Mass Index.

Table 5. Comparison of AUCs of the 5 machine learning models in 
the training set
Variable 1 Variable 2 Statistic P-value Test Method Direction
SVM XGBOOST -5.931 <0.001 DeLong’s test Consistent
SVM GNB 2.361 0.018 DeLong’s test Consistent
SVM ADABOOST -1.952 0.051 DeLong’s test Consistent
SVM Random Forest -5.308 <0.001 DeLong’s test Consistent
XGBOOST GNB 7.381 <0.001 DeLong’s test Consistent
XGBOOST ADABOOST 6.205 <0.001 DeLong’s test Consistent
XGBOOST Random Forest -0.040 0.968 DeLong’s test Consistent
GNB ADABOOST -5.069 <0.001 DeLong’s test Consistent
GNB Random Forest -6.387 <0.001 DeLong’s test Consistent
ADABOOST Random Forest -4.645 <0.001 DeLong’s test Consistent
Note: SVM, Support Vector Machine; XGBOOST, Extreme Gradient Boosting; GNB, 
Gaussian Naive Bayes; ADABOOST, Adaptive Boosting.

XGBOOST models in the validation set (P= 
0.919). Both models significantly outperformed 
the other three models, demonstrating superi-
or predictive performance across both the 
training and validation sets, making them the 
optimal models for predicting upper limb dys-
function in this study (see Tables 6, 7; Figure 
2B).

Calibration curves of machine learning models

The calibration curves for the XGBOOST and 
Random Forest models showed good fit in  
both the training and validation sets (see 
Figures 3, 4). In the training set (n=506), the 
XGBOOST model’s predicted probabilities clo- 
sely matched the observed probabilities, with a 
mean absolute error (MAE) of 0.017. Stability  
in calibration performance was observed with 
1,000 bootstrap repetitions. In the validation 
set (n=262), the calibration performance of the 
XGBOOST model slightly declined, but the pre-

dicted and observed proba- 
bilities remained close, with 
an MAE of 0.034, indicating 
good calibration on new data. 
The Random Forest model 
achieved an MAE of 0.022 in 
the training set, with high con-
sistency between predicted 
and observed probabilities. In 
the validation set, the MAE 
was 0.02, further demonstrat-
ing the model’s low error rate 
and stable calibration across 
both the training and valida-
tion sets.

Discussion

This study utilized machine learning models to 
predict the risk of upper limb dysfunction fol-
lowing modified radical mastectomy (MRM) in 
breast cancer patients, identifying several vari-
ables significantly associated with functional 
impairment. These variables include age, BMI, 
cancer type, axillary lymph node dissection, 
ipsilateral radiotherapy, postoperative rehabili-
tation plans, and per capita household in- 
come. Among the five machine learning models 
evaluated, XGBOOST and Random Forest dem-
onstrated superior performance in both the 
training and validation sets, offering a novel 
and effective approach for the early identifica-
tion and management of postoperative func-
tional impairments.

In univariate analysis, several factors were sig-
nificantly associated with upper limb dysfunc-
tion. Age emerged as a critical determinant of 
postoperative recovery. Carr et al. [16] reported 
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Table 6. ROC curve parameters of the 5 machine learning models in the validation set
Marker 95% CI Specificity Sensitivity Youden_index Accuracy Precision F1_Score
SMV 0.725-0.810 63.28% 80.10% 43.38% 69.96% 80.10% 67.93%
XGBOOST 0.817-0.883 75.41% 76.62% 52.03% 75.89% 76.62% 71.63%
GNB 0.685-0.773 59.67% 75.62% 35.29% 66.01% 75.62% 63.87%
ADABOOST 0.751-0.830 75.08% 69.65% 44.73% 72.92% 69.65% 67.15%
Random forest 0.817-0.884 76.39% 77.61% 54.01% 76.88% 77.61% 72.73%
Note: SVM, Support Vector Machine; XGBOOST, Extreme Gradient Boosting; GNB, Gaussian Naive Bayes; ADABOOST, Adaptive 
Boosting.

Figure 2. ROC curves of the 5 machine learning models in training and validation sets. A. Training set ROC curves. B. 
Validation set ROC curves. Note: SVM, Support Vector Machine; XGBOOST, Extreme Gradient Boosting; GNB, Gauss-
ian Naive Bayes; ADABOOST, Adaptive Boosting.

Table 7. Comparison of AUCs of the 5 machine learning 
models in the validation set
Variable 1 Variable 2 Statistic P-value Test Method
SMV XGBOOST 2.130 0.033 DeLong’s test
SMV GNB -1.956 0.050 DeLong’s test
SMV ADABOOST -0.367 0.713 DeLong’s test
SMV Random forest 1.508 0.131 DeLong’s test
XGBOOST GNB -3.534 <0.001 DeLong’s test
XGBOOST ADABOOST -3.467 <0.001 DeLong’s test
XGBOOST Random forest -0.101 0.919 DeLong’s test
GNB ADABOOST 2.171 0.029 DeLong’s test
GNB Random forest 3.681 <0.001 DeLong’s test
ADABOOST Random forest 2.099 0.035 DeLong’s test
Note: SVM, Support Vector Machine; XGBOOST, Extreme Gradient 
Boosting; GNB, Gaussian Naive Bayes; ADABOOST, Adaptive Boost-
ing.

that breast cancer patients undergoing 
mastectomy, compared to breast-con-
serving treatment, faced a higher risk of 
upper limb dysfunction, with contributing 
factors including ipsilateral radiotherapy, 
surgical site, and specific cancer types. 
Our findings align with these results, high-
lighting that older patients are more like- 
ly to experience recovery challenges due 
to decreased muscle strength, reduced 
joint flexibility, and overall physical func-
tion decline. Similarly, BMI was identified 
as a significant risk factor, suggesting 
that a higher BMI can adversely affect 
healing and movement capabilities. 
Zheng et al. [17] found that aggressive 
axillary lymph node dissection is a major 
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Figure 3. Calibration curves for XGBOOST model in training and validation sets. A. Calibration curve for training set. 
B. Calibration curve for validation set. Note: XGBOOST, Extreme Gradient Boosting.

Figure 4. Calibration curves for Random Forest model in training and validation sets. A. Calibration curve for training 
set. B. Calibration curve for validation set.

risk factor for breast cancer-related lymphede-
ma and upper limb dysfunction, suggesting 
that alternative strategies, such as regional 
lymph node irradiation, can substantially re- 
duce lymphedema risk.

Cancer type also played a crucial role in postop-
erative function, as different cancer types can 
affect the surgical scope and complexity, there-
by influencing the risk of functional impairment. 
Our findings show that axillary lymph node dis-



Predicting postoperative upper limb dysfunction in breast cancer

2625	 Am J Transl Res 2025;17(4):2614-2628

section significantly impacts upper limb func-
tion, likely due to nerve and lymphatic system 
involvement, which can cause postoperative 
pain, swelling, and mobility issues. Cocco et al. 
[18] suggested that sentinel lymph node biopsy 
combined with radiotherapy, instead of axillary 
dissection, may reduce postoperative compli-
cations without compromising survival in pa- 
tients with limited axillary involvement. Ipsila- 
teral radiotherapy was also found to contribute 
to tissue fibrosis and restricted mobility, consis-
tent with findings by Mohite et al. [19], who 
reported that routine exercises, including sca- 
pular strengthening, significantly improved 
shoulder pain and dysfunction after MRM. 
Aboelnour et al. [20] further demonstrated the 
efficacy of scapular stabilization and graded 
elastic band exercises in enhancing shoulder 
mobility, reducing pain, and improving quality  
of life in patients with adhesive capsulitis. 
Additionally, per capita household income, as 
an indicator of socioeconomic status, was 
found to indirectly influence postoperative re- 
covery by affecting patient access to resources 
and support, underscoring the importance of 
considering social factors in clinical practice.

Studies on upper limb dysfunction in other dis-
eases, such as stroke, have identified similar 
risk factors. Holmes et al. [21] reported that 
significant predictors of post-stroke upper limb 
pain include diabetes, prior shoulder pain, and 
limited upper limb function, which parallels the 
nerve and muscle damage observed in breast 
cancer patients after surgery or radiotherapy. 
Furthermore, Snickars et al. [22] highlighted 
early predictors of upper limb dysfunction in 
post-stroke patients, including grip strength 
and finger extension, which may share similar 
physiological mechanisms with postoperative 
upper limb dysfunction in breast cancer pa- 
tients.

Among the five machine learning models test-
ed, XGBOOST and Random Forest achieved 
superior predictive performance, as evidenc- 
ed by higher AUC, specificity, and sensitivity. 
XGBOOST, which iteratively optimizes errors 
through gradient boosting, effectively captures 
complex, nonlinear relationships among fea-
tures. Chen et al. [23] demonstrated the utility 
of XGBOOST in predicting bleeding risk among 
elderly aspirin users, achieving high AUC and 
calibration, highlighting its ability to manage 

complex clinical variables. Random Forest, 
which constructs multiple decision trees using 
randomly sampled features, minimizes overfit-
ting while maintaining strong generalizability. 
Su et al. [24] showed that XGBOOST performed 
exceptionally well in predicting knee osteoar-
thritis severity, further confirming its value in 
high-risk screening and personalized interven-
tion. Similarly, Jin et al. [25] found that Random 
Forest outperformed logistic regression in sen-
sitivity and AUC when predicting poor respons-
es to neoadjuvant chemotherapy in breast can-
cer patients, supporting its advantages in 
breast cancer prognosis.

In contrast, SVM, GNB, and ADABOOST models 
exhibited slightly lower performance in both the 
training and validation sets. However, SVM has 
shown promise in other disease predictions. 
For example, Alsaykhan et al. [26] achieved 
high accuracy in detecting acute lymphoblastic 
leukemia using a hybrid model combining SVM 
and particle swarm optimization, demonstrat-
ing SVM’s strength in handling high-dimension-
al feature spaces. Similarly, Gong et al. [27] 
used SVM with evolutionary computation algo-
rithms to achieve high accuracy and specificity 
in predicting acute ST-segment elevation myo-
cardial infarction, showcasing its potential in 
processing nonlinear data.

The calibration curves for XGBOOST and 
Random Forest, both in the training and vali- 
dation sets, demonstrated a strong alignment 
between predicted and observed probabilities, 
indicating good model calibration. Storås et al. 
[28] utilized machine learning model interpreta-
tion methods to analyze proteins associated 
with meibomian gland dysfunction severity, 
illustrating the ability of machine learning to 
accurately identify clinically relevant features 
while maintaining robust calibration in biomark-
er screening. Zhou et al. [29] validated the sta-
bility of an ADABOOST-based depression pre-
diction model during COVID-19 quarantine, 
emphasizing its applicability in high-stakes 
public health scenarios.

Our findings suggest that XGBOOST and 
Random Forest models hold significant clinical 
application potential. Liang et al. [30] devel-
oped a Naive Bayes-based predictive model 
that excelled in identifying vascular calcifica-
tion risk in type 2 diabetes patients, underscor-
ing the value of machine learning in personal-
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ized risk assessment. Li et al. [31] demonstrat- 
ed the efficacy of a Random Forest-based 
androgen receptor-related survival model in 
prostate cancer risk assessment, supporting 
its role in clinical decision-making for per- 
sonalized treatment. Additionally, Ji et al. [32] 
achieved high AUC and accuracy using a GNB 
model to predict post-stroke cognitive impair-
ment, reinforcing the importance of machine 
learning in early intervention for high-risk pa- 
tients. The models developed in this study not 
only provide technical support for identifying 
high-risk populations with postoperative upper 
limb dysfunction but also lay the foundation for 
optimizing individualized intervention strate-
gies, potentially improving recovery outcomes 
and quality of life.

The strengths of this study include its large 
sample size and the use of ten-fold cross-vali-
dation to control for model bias, ensuring sta-
bility and reliability. Additionally, rigorous data 
collection and variable control enhanced the 
accuracy of the analyses. However, as a retro-
spective study, the research is susceptible to 
inherent selection bias, and the generalizability 
of the prediction models may be limited. Future 
studies should include larger, more diverse 
populations to validate these findings. More- 
over, prospective data collection and the explo-
ration of advanced algorithms, such as deep 
learning, could further improve the predictive 
accuracy and applicability of these models.

Conclusion

The machine learning models developed in this 
study demonstrated excellent performance in 
predicting the risk of upper limb dysfunction, 
with XGBOOST and Random Forest models 
emerging as top performers. These models pro-
vide significant technical support for the early 
identification and management of high-risk pa- 
tients following breast cancer surgery, high-
lighting their promising potential for clinical 
application.
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