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Abstract: Objective: To develop and evaluate an early diagnostic model for brain injury in premature infants (BIPI) us-
ing combined amplitude-integrated electroencephalography (aEEG) and cranial ultrasound (CUS) parameters, aim-
ing to enhance the accuracy of early BIPI detection. Methods: This single-center retrospective cohort study included 
350 premature infants admitted to the Neonatal Intensive Care Unit (NICU) of the First Affiliated Hospital of Xi’an 
Medical University between August 2018 and October 2023. Key aEEG parameters (upper boundary voltage, lower 
boundary voltage, narrow bandwidth, and aEEG score) and CUS parameters (systolic blood flow velocity, diastolic 
blood flow velocity, and resistance index) were collected. Feature selection was performed using Lasso regression, 
and a combined risk prediction model was developed. Model performance was assessed using receiver operating 
characteristic (ROC) curves and the area under the curve (AUC). Results: Significant differences were observed in 
both aEEG and CUS parameters between the brain injury group (n = 145) and the non-injury group (n = 205) (all P 
< 0.05). Lasso regression identified seven key parameters for model construction. The combined model achieved 
an AUC of 0.89, with a sensitivity of 86.21% and specificity of 79.51%, significantly outperforming models based on 
aEEG or CUS parameters alone (P < 0.001). Conclusion: The combined aEEG and CUS model significantly improves 
the early detection of BIPI and may facilitate timely interventions to reduce the risk of long-term neurodevelopmen-
tal impairments in premature infants.
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Introduction

Recent advancements in resuscitation and 
monitoring technologies have markedly im- 
proved the survival rates of critically ill prema-
ture infants [1]. For instance, the survival rate 
of infants born between 26 and 32 weeks of 
gestation increased from 40.9% in 2012 to 
63.6% in 2017. Similarly, the survival rate for 
infants weighing less than 1000 grams has 
reached approximately 42.3% [2]. Despite 
these gains, premature infants remain highly 
susceptible to brain injury due to the immatu-
rity of their developing brains. Hypoxia, hyper-
oxia, ischemia, and infections are major con-

tributors to brain injury, collectively referred to 
as Brain Injury in Premature Infants (BIPI) [3]. 
BIPI can result from prenatal, perinatal, or  
postnatal insults such as cerebral hypoxia-isch-
emia and intracranial hemorrhage, often mani-
festing with specific clinical signs [4]. Severe 
cases may lead to long-term neurological com-
plications including intellectual disabilities, 
cerebral palsy, and epilepsy, imposing signifi-
cant burdens on affected families [5]. Due to 
the immature vascular, neural, and endocrine 
systems, premature infants have limited toler-
ance to hypoxic events, where even brief epi-
sodes of asphyxia can cause irreversible brain 
damage.
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The two primary forms of BIPI are intracranial 
hemorrhage and white matter damage (WMD) 
[6]. Intracranial hemorrhage often presents  
as periventricular-intraventricular hemorrhage, 
whereas WMD commonly results in periventric-
ular leukomalacia, both causing severe and 
lasting neurological deficits [7]. Currently, no 
specific treatments for BIPI exist, and the early 
mortality rate and risk of sequelae remain high. 
However, the relative plasticity of the prema-
ture brain offers opportunities for early inter-
vention. Identifying risk factors and initiating 
timely management such as oxygen therapy, 
blood pressure and glucose control, and neuro-
protection can significantly mitigate long-term 
damage [8]. Therefore, early detection and 
diagnosis of BIPI are critical for improving 
outcomes.

Due to underdeveloped nervous and muscular 
systems, the clinical signs of BIPI are often  
subtle and difficult to detect [9]. This under-
scores the need for objective and practical 
diagnostic methods, particularly those involv-
ing cerebral function monitoring and neuroim-
aging. Continuous and non-invasive cerebral 
function monitoring (CFM) technologies play  
an essential role [10], including Near-Infrared 
Spectroscopy (NIRS) [11], Brainstem Auditory 
Evoked Response (BAER) [12], conventional 
Electroencephalography (EEG), and Amplitu- 
de-Integrated EEG (aEEG) [13]. Among these, 
aEEG is particularly suited for the Neonatal 
Intensive Care Unit (NICU) due to its simplicity 
and capacity for real-time monitoring.

As a simplified form of EEG, aEEG requires only 
a single-channel electrode, offering intuitive 
graphical output for continuous bedside moni-
toring [14]. It has been widely employed in neo-
natal hypoxic-ischemic encephalopathy (HIE) to 
predict injury severity and guide interventions 
[15]. Although research on aEEG application in 
BIPI is still evolving, early studies suggest its 
utility in assessing neurodevelopmental matu-
rity and detecting brain injury. For neuroimag-
ing, cranial ultrasound (CUS) remains a non-
invasive, cost-effective, and widely used tech-
nique in the NICU [16], particularly effective for 
identifying midline and periventricular abnor-
malities, including intraventricular hemorrhage. 
However, CUS is limited by its lower resolution 
for peripheral lesions, restricted diagnostic 
range, and operator dependence, which may 
affect diagnostic accuracy [17].

The diagnostic value of aEEG or CUS alone is 
limited by suboptimal sensitivity and specifi- 
city. Therefore, this study aims to integrate 
aEEG and CUS parameters using a multi-
parameter approach to enhance diagnostic 
performance. By employing a Lasso regression 
model, a predictive model is constructed to 
improve early BIPI detection. This multi-param-
eter strategy seeks to overcome the limita- 
tions of single-modality diagnostics, offering  
clinicians a more comprehensive tool for early 
identification of high-risk infants and enabling 
timely interventions to reduce long-term neuro-
developmental impairments.

Materials and methods

Study design

This single-center retrospective cohort study 
aimed to evaluate the early diagnostic value of 
aEEG and CUS parameters for BIPI. Clinical 
data were retrospectively collected from 350 
premature infants admitted to the Neonatal 
Intensive Care Unit (NICU) at the First Affiliated 
Hospital of Xi’an Medical University between 
August 2018 and October 2023. They were 
divided into a brain injury group (n = 145) and  
a non-injury group (n = 205). The study was 
approved by the Ethics Committee of The First 
Affiliated Hospital of Xi’an Medical University. 
As a retrospective study, the requirement for 
informed consent from guardians was waived.

Inclusion and exclusion criteria

Inclusion criteria: (1) Gestational age < 37 
weeks. (2) Admission within 24 hours after 
birth. (3) Meeting the diagnostic criteria for BIPI 
[18]. (4) Complete clinical data available.

Exclusion criteria: (1) Admission > 24 hours 
after birth or hospital stay < 1 week. (2) Diag- 
nosed with bilirubin encephalopathy, hypogly-
cemic encephalopathy, brain injury from inher-
ited metabolic disorders, TORCH infections, 
congenital neurological malformations, chro-
mosomal abnormalities, or central nervous  
system infections. (3) Inability to complete 
ultrasound cerebral blood flow assessment, 
cranial MRI, aEEG, or NBNA scoring. (4) 
Incomplete clinical data. (5) Death within 12 
hours of intensive care treatment after admis-
sion. (6) Presence of congenital brain malfor-
mations. (7) Severe metabolic disorders.
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Clinical data collection

Demographic data included sex, birth weight, 
gestational age, delivery method, and 1-minute 
and 5-minute Apgar scores. Imaging and phy- 
siological parameters included aEEG metrics 
(upper boundary voltage, lower boundary volt-
age, narrow bandwidth, and aEEG score) and 
CUS measurements (systolic blood flow velo- 
city [Vs], diastolic blood flow velocity [Vd], and 
resistance index [RI]).

Detection methods

aEEG monitoring: Brain electrical activity was 
assessed using the Olympic CFM 6000 brain 
function monitor. The device was calibrated 
before use, and the infant’s scalp was prepar- 
ed with fine sandpaper paste and alcohol. 
Electrodes were placed on the bilateral pa- 
rietal bones (P3-P4) according to the interna-
tional 10/20 EEG system, with a 75 mm inter-
electrode distance. The midpoint between the 
electrodes was located 50 mm posterior to  
the vertex, and the reference electrode was 
placed 25 mm anterior to the vertex along the 
forehead midline (Fp1-Fp2). Electrodes were 
secured with adhesive tape and an elastic cap, 
ensuring impedance was maintained below 5 
kΩ.

CUS examination: Bedside CUS was perform- 
ed on the second day after birth and weekly 
thereafter until a corrected gestational age of 
40 weeks was reached. Using a Mindray M9 
color Doppler ultrasound system, infants in  
the supine position were scanned via the ante-
rior fontanelle to obtain coronal views of the 
frontal lobe, anterior horns of the lateral ventri-
cles, third ventricle, and occipital lobe regions. 
The probe was rotated 90° to obtain mid- 
sagittal and bilateral sagittal images to assess 
the anterior horns, central regions, and poste-
rior horns of the lateral ventricles. Cranial injury 
findings were recorded, and bilateral cerebral 
Vs, Vd, and RI values were documented.

Functional scoring

aEEG scoring: Brain activity was evaluated 
using the Hellström-Westas five-point classifi-
cation system, categorizing patterns into con-
tinuous normal voltage, discontinuous normal 
voltage, burst-suppression, sustained low volt-
age, and electrical silence. Scores were adjust-

ed based on gestational age: (1) 27-28 weeks: 
2 points. (2) 29-30 weeks: 6 points. (3) 31-32 
weeks: 8 points. (4) 33-35 weeks: 10 points. 
(5) 36-37 weeks: 11 points. The maximum 
score was 13 points [19].

Apgar scoring: The Apgar score assessed new-
born health based on heart rate, respiration, 
muscle tone, reflex response, and skin color. 
Scores ranged from 0 to 10, with higher scores 
indicating better health status [20].

Outcome measures

Primary outcomes: Development of a predic-
tive model for BIPI using aEEG and CUS param-
eters, and evaluation of its diagnostic effective-
ness and accuracy.

Secondary outcomes: Recording of functional 
scores, including aEEG and Apgar scores, to 
assess the neurodevelopmental and immedi-
ate health status of the infants.

Data processing and statistical analysis

All statistical analyses were performed using 
SPSS version 26.0, and figures were generat- 
ed using R version 4.2.2. Data entry and verifi-
cation were conducted independently by two 
researchers before uploading to an electronic 
database.

• Categorical variables were expressed as  
frequencies and percentages and compared 
using the Chi-square test.

• Continuous variables were presented as 
mean ± standard deviation and compared 
using independent samples t-tests. Variables 
not normally distributed were expressed as 
median (P25, P75).

• Logistic regression analysis was used to 
identify risk factors for BIPI.

• Feature selection for model construction  
was conducted using the Lasso regression 
model.

• The diagnostic performance of the pre- 
dictive model was evaluated using Receiver 
Operating Characteristic (ROC) curves and the 
Area Under the Curve (AUC).

• A P-value < 0.05 was considered statis- 
tically significant.
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Results

Comparison of clinical data

As shown in Table 1, clinical characteristics 
were compared between the groups. No sig- 
nificant differences were observed in gender 
distribution (P = 0.167), delivery method (ce- 
sarean section vs. vaginal delivery, P = 0.378), 
or incidence of premature rupture of mem-
branes (P = 0.161). Gestational age (P =  
0.946) and birth weight (P = 0.088) were also 
comparable between groups.

However, a significantly higher proportion of 
infants in the brain injury group had a 1-minute 
Apgar score ≤ 3 compared to the non-injury 
group (P < 0.001), indicating a strong associa-
tion between low 1-minute Apgar scores and 
brain injury. Similarly, a higher proportion of 
infants in the brain injury group had a 5- 
minute Apgar score ≤ 7 (P = 0.010). Addition- 
ally, the average gestational age and birth 
weight were significantly lower in the brain inju-
ry group than in the non-injury group (both P < 
0.001).

Comparison of aEEG parameters and scores 

As shown in Figure 1, significant differences in 
aEEG parameters and scores were observed 
between the two groups. The brain injury group 

exhibited significantly lower upper boundary 
voltage, lower boundary voltage, and narrower 
bandwidth values (all P < 0.001) compared to 
the non-injury group. 

Comparison of CUS parameters between 

As illustrated in Figure 2, significant differenc-
es in CUS parameters were noted. Infants in 
the BIPI group had significantly lower Vs and Vd 
values and a significantly higher RI (all P < 
0.001) compared to those in the non-injury 
group. 

Correlation analysis between Apgar scores and 
aEEG and CUS parameters

As shown in Figures 3 and 4, correlation an- 
alyses were conducted between Apgar scores 
and aEEG and CUS parameters. A significant 
negative correlation was found between the 
upper boundary voltage and the 5-minute 
Apgar score (r = -0.108, P = 0.043). No other 
significant correlations were observed be- 
tween aEEG or CUS parameters and either the 
1-minute or 5-minute Apgar scores. While the 
upper boundary voltage may reflect changes in 
the 5-minute Apgar score, this does not  
imply that other parameters are unrelated to 
brain injury, as they may influence outcomes 
through mechanisms not captured by Apgar 
scoring.

Table 1. Comparison of clinical data
Factor Brain Injury Group (n = 145) Non-Injury Group (n = 205) Statistic P-value
Sex
    Male 83 102 1.901 0.167
    Female 62 103
Delivery Method
    Cesarean Section 61 96 0.778 0.378
    Vaginal Delivery 84 109
Premature Rupture of Membranes
    Yes 52 59 1.967 0.161
    No 93 146
Apgar Score (1 min)
    ≤ 3 Points 22 6 17.304 < 0.001
    > 3 Points 123 199
Apgar Score (5 min)
    ≤ 7 Points 17 9 6.643 0.01
    > 7 Points 128 196
Gestational Age (days) 244.00 [240.00, 249.00] 244.00 [240.00, 247.00] -0.068 0.946
Birth Weight (g) 2083.86 ± 347.86 2151.00 [1975.00, 2378.00] -1.708 0.088
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Predictive value of aEEG and CUS parameters 
in BIPI

As shown in Figure 5, aEEG and CUS parame-
ters demonstrated varying predictive abilities 
for BIPI. The aEEG score achieved an AUC of 
0.709, with a sensitivity of 85.52% and a  
specificity of 54.15%, indicating high sensi- 
tivity for detecting brain injury. Similarly, Vs 
(AUC = 0.724) and Vd (AUC = 0.688) de- 
monstrated high sensitivities of 84.14% and 
89.66%, respectively, supporting their utility  
in early detection. In terms of specificity, the 
lower boundary voltage (76.10%, AUC = 0.719) 

and RI (71.71%, AUC = 0.672) performed rela-
tively well, highlighting their diagnostic value in 
distinguishing non-injury cases.

Construction of the lasso regression model

As depicted in Figure 6, a Lasso regression 
model was employed to identify significant 
parameters for constructing a predictive mo- 
del for BIPI. The final model formula was as 
follows.

Model formula = 1.634267971 + (0.10717217) 
Upper Boundary Voltage (μV) + 0.339154982 

Figure 1. Comparison of aEEG Parameters and Scores. A. Comparison of upper boundary voltage between brain in-
jury and non-injury groups. B. Comparison of lower boundary voltage between brain injury and non-injury groups. C. 
Comparison of narrow bandwidth values between brain injury and non-injury groups. D. Comparison of overall aEEG 
scores between brain injury and non-injury groups. Note: aEEG: Amplitude-Integrated Electroencephalography.
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Figure 2. Comparison of CUS Parameters Between. A. Comparison of Vs (systolic blood flow velocity) between brain injury and non-injury groups. B. Comparison of 
Vd (diastolic blood flow velocity) between brain injury and non-injury groups. C. Comparison of resistance index (RI) between brain injury and non-injury groups. Note: 
CUS: Cranial Ultrasound, RI: Resistance Index, Vs: Systolic Blood Flow Velocity, and Vd: Diastolic Blood Flow Velocity, μV: microvolts.
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Figure 3. Correlation Analysis Between aEEG and CUS Parameters with 1-Minute Apgar Scores. A. Correlation between 1-minute Apgar score and upper boundary 
voltage. B. Correlation between 1-minute Apgar score and lower boundary voltage. C. Correlation between 1-minute Apgar score and narrow bandwidth. D. Correla-
tion between 1-minute Apgar score and aEEG score. E. Correlation between 1-minute Apgar score and Vs. F. Correlation between 1-minute Apgar score and Vd. G. 
Correlation between 1-minute Apgar score and resistance index (RI). Note: aEEG: Amplitude-Integrated Electroencephalography, CUS: Cranial Ultrasound, RI: Resis-
tance Index, Vs: Systolic Blood Flow Velocity, Vd: Diastolic Blood Flow Velocity, and μV: microvolts.
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Figure 4. Correlation Analysis Between aEEG and CUS Parameters with 5-Minute Apgar Scores. A. Correlation between 5-minute Apgar score and upper boundary 
voltage. B. Correlation between 5-minute Apgar score and lower boundary voltage. C. Correlation between 5-minute Apgar score and narrow bandwidth. D. Correla-
tion between 5-minute Apgar score and aEEG score. E. Correlation between 5-minute Apgar score and Vs. F. Correlation between 5-minute Apgar score and Vd. G. 
Correlation between 5-minute Apgar score and resistance index (RI). Note: aEEG: Amplitude-Integrated Electroencephalography, CUS: Cranial Ultrasound, RI: Resis-
tance Index, Vs: Systolic Blood Flow Velocity, Vd: Diastolic Blood Flow Velocity, and μV: microvolts.
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Lower Boundary Voltage (μV) + (0.051914416) 
Narrow Bandwidth (μV) + (0.372943544)  
aEEG Score + 0.23099412 Vs (cm/s) + 0. 
420342285 × Vd (cm/s) + (-5.359420584) × 
RI. The optimal regularization parameter (λ) 
was set at 0.0053963 to balance model  
complexity and prevent overfitting. Seven key 
parameters - upper boundary voltage, lower 
boundary voltage, narrow bandwidth, aEEG 
score, Vs, Vd, and RI - were selected as sig- 
nificant predictors. The model demonstrated 
strong predictive performance, substantially 
enhancing diagnostic accuracy.

specificity (43.90%). The Lasso model also 
achieved the highest Youden’s index (65.72%) 
and overall diagnostic accuracy, offering a  
better balance between sensitivity and speci-
ficity. These results highlight the superiority of 
the combined model in reducing both false 
positives and false negatives, making it a more 
effective tool for early BIPI detection.

Discussion

Recent advancements in NICU technologies 
have significantly improved the survival rates of 

Figure 5. Predictive Value of aEEG and CUS Parameters in BIPI. A. ROC curve of upper boundary voltage, illustrat-
ing its diagnostic performance in predicting BIPI. B. ROC curve of lower boundary voltage, illustrating its diagnostic 
performance in predicting BIPI. C. ROC curve of narrow bandwidth, illustrating its diagnostic performance in predict-
ing BIPI. D. ROC curve of aEEG score, illustrating its diagnostic performance in predicting BIPI. E. ROC curve of Vs, 
illustrating its diagnostic performance in predicting BIPI. F. ROC curve of Vd, illustrating its diagnostic performance 
in predicting BIPI. G. ROC curve of resistance index (RI), illustrating its diagnostic performance in predicting BIPI. 
Note: ROC: Receiver Operating Characteristic, aEEG: Amplitude-Integrated Electroencephalography, CUS: Cranial 
Ultrasound, RI: Resistance Index, Vs: Systolic Blood Flow Velocity, Vd: Diastolic Blood Flow Velocity, μV: microvolts, 
AUC: Area Under the Curve, and BIPI: Brain Injury in Premature Infants.

Figure 6. Lasso Regression Model Construction of aEEG and CUS Parame-
ters. A. Regularization path, showing the effect of different λ values on model 
complexity, thereby selecting the optimal λ value. B. Coefficient path plot, il-
lustrating the changes in feature coefficients across different λ values. Note: 
Lasso: Lasso Regression, aEEG: Amplitude-Integrated Electroencephalogra-
phy, CUS: Cranial Ultrasound, and λ: Regularization Parameter.

Comparison of diagnostic ef-
ficacy between the combined 
model and individual indica-
tors

As shown in Figure 7 and 
Table 2, the Lasso risk score 
model outperformed models 
based on individual aEEG or 
CUS parameters. The com-
bined model achieved an  
AUC of 0.89, significantly high-
er than individual indicators 
such as the upper bound- 
ary voltage (AUC = 0.653)  
and lower boundary voltage 
(AUC = 0.719). It also exhibit- 
ed high sensitivity (86.21%) 
and specificity (79.51%), re- 
flecting excellent diagnostic 
accuracy.

In contrast, individual param-
eters demonstrated imbal-
anced performance. For ex- 
ample, while the lower bound-
ary voltage showed relatively 
high specificity (76.10%), it 
had lower sensitivity (59.31%). 
Vd, conversely, exhibited high 
sensitivity (89.66%) but low 
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premature infants; however, this improvement 
has also coincided with an increased incidence 
of BIPI [21]. Brain injury in premature infants 
can result in long-term neurodevelopmental 
sequelae, including intellectual disabilities  
and cerebral palsy, imposing substantial bur-
dens on families and society. Therefore, early 
identification and intervention are critical [22]. 
Nonetheless, due to immature nervous and 
muscular systems, clinical manifestations of 
BIPI are often atypical, complicating early diag-
nosis and underscoring the need for effective 
diagnostic tools.

Given their practicality in the NICU setting, 
aEEG and CUS have been increasingly adopted 
for early brain injury assessment. However,  
the limited sensitivity and specificity of either 
method alone emphasize the need for a com-
bined diagnostic approach [23]. Variane et al. 
[24] reviewed the extensive application of  
aEEG in NICUs, highlighting its important role  
in neonatal brain injury assessment. Similarly, 
De Wel et al. [25] explored the association 
between early, continuous aEEG monitoring 
and brain development or injury, further sup-
porting its diagnostic value.

using CUS and MRI in moderate to late preterm 
infants, further validating the diagnostic utility 
of CUS. 

In addition, this study utilized a Lasso regres-
sion model to identify seven key features asso-
ciated with brain injury: upper boundary volt-
age, lower boundary voltage, narrow band-
width, aEEG score, Vs, Vd, and RI. The predic-
tive model constructed using these parame- 
ters achieved an AUC of 0.89, with a sensiti- 
vity of 86.21% and a specificity of 79.51%,  
significantly outperforming models based on 
individual aEEG or CUS parameters. This dem-
onstrates that the combined use of aEEG and 
CUS provides a more comprehensive and  
accurate diagnostic framework for BIPI. Lin et 
al. [5] similarly emphasized the predictive  
value of aEEG parameters in brain injury 
assessment, while Wang et al. [28] highlighted 
the utility of early aEEG-EEG monitoring for pre-
dicting long-term neurodevelopmental out-
comes in extremely preterm infants.

Compared to previous studies, the findings of 
this study further validate the combined appli-
cation of aEEG and CUS in the early diagnosis 
of BIPI. For example, O’Muircheartaigh et al. 

Figure 7. ROC Curve of the Combined Model. Note: ROC: Receiver Operating 
Characteristic.

In this study, both aEEG and 
CUS parameters effectively 
differentiated between infan- 
ts with and without brain inju-
ry. Specifically, infants with 
BIPI exhibited significantly 
lower upper boundary volt- 
age, lower boundary voltage, 
and narrow bandwidth values 
on aEEG, indicating substan-
tial alterations in brain func-
tion status. Regarding CUS 
findings, infants with BIPI had 
significantly lower Vs and Vd 
values and higher RI values, 
suggesting hemodynamic dis-
turbances associated with 
brain injury. These results  
are consistent with previous 
studies, including Griesmaier 
et al. [26], who reported sig-
nificant correlations between 
aEEG scores and brain injury 
severity as detected by MRI, 
and Boswinkel et al. [27], who 
evaluated BIPI characteristics 
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[29] employed Bayesian regression techniques 
to construct a model for detecting focal white 
matter injury in neonates, achieving high accu-
racy in estimating brain tissue intensity and 
morphology. Sjöbom et al. [30] explored the 
predictive role of Neurofilament Light (NfL) as  
a biomarker for adverse neurodevelopmental 
outcomes in premature infants, underscoring 
the potential of biomarkers in brain injury diag-
nostics. Xu et al. [31] identified a positive cor-
relation between PLAGL1 gene methylation lev-
els in cord blood and the occurrence of BIPI, 
suggesting its potential as a diagnostic marker. 
Similarly, Lloyd et al. [32] evaluated the predic-
tive value of multi-channel EEG for 2-year neu-
rodevelopmental outcomes in preterm infants, 
while Patel et al. [33] proposed a risk-factor-
based CUS screening protocol that improved 
resource utilization and brain injury detection 
rates. Other studies have demonstrated the 
value of aEEG in predicting the severity of HIE 
and guiding early interventions. By integrating 
aEEG and CUS parameters, this study address-
es the limitations of single-modality approach-
es, further enhancing diagnostic accuracy.

Moreover, this study reaffirms the clinical va- 
lue of CUS parameters (Vs, Vd, and RI) in dif-
ferentiating between infants with and without 
brain injury. These findings are consistent with 
previous reports on the application of CUS in 
assessing cerebral blood flow, further empha-
sizing its predictive utility for brain injury.  
Wang et al. [28] also supported the association 
between aEEG parameters and brain injury 
prognosis. Hüning et al. [34] combined aEEG 
and MRI to assess brain function and stru- 
cture, demonstrating the predictive value of 
integrated modalities for neurodevelopmental 
outcomes in preterm infants. Furthermore, 
O’Muircheartaigh et al. [29] illustrated the 

value of MRI-based brain models in detecting 
white matter injury, highlighting the importance 
of multimodal neuroimaging in brain injury 
assessment.

The combined diagnostic model based on  
aEEG and CUS parameters offers clinicians an 
effective tool for the early identification of BIPI. 
In the NICU environment, the non-invasive 
nature of aEEG and CUS allows for repeated 
assessments as the infant’s condition evolves, 
making these methods practical and reliable. 
The risk score model constructed using  
Lasso regression enables more accurate pre-
diction of brain injury, supporting timely inter-
ventions such as oxygen therapy and blood 
pressure or glucose management. These mea-
sures can help mitigate the long-term neuro- 
developmental impacts of brain injury in pre-
mature infants. Zhu et al. [17] demonstrated 
the potential of a radiomics model combined 
with CUS in predicting white matter injury in 
BIPI, further supporting the clinical value of 
multi-parameter approaches. Similarly, Patel  
et al. [33] emphasized the role of CUS proto- 
cols in optimizing resource allocation and 
improving detection rates, reinforcing the 
importance of multimodal diagnostic stra- 
tegies.

Despite its strengths, this study has several 
limitations. First, as a single-center retrospec-
tive study, it is susceptible to selection bias. 
Multi-center, large-sample prospective studies 
are needed to validate the model’s generaliz-
ability and robustness. Second, this study pri-
marily focused on aEEG and CUS parameters, 
excluding other potential factors such as  
genetic and metabolic biomarkers. Future 
research should incorporate additional biologi-
cal and imaging markers to develop more com-

Table 2. Comparison of diagnostic efficacy between combined model and individual indicators
Marker 1 Marker 2 Z value P value AUC Difference CI Lower Upper
Upper Boundary Voltage (μV) Lasso risk score -7.779 < 0.001 -0.237 -0.296 - -0.177
Lower Boundary Voltage (μV) Lasso risk score -6.81 < 0.001 -0.17 -0.219 - -0.121
Narrow band width (μV) Lasso risk score -8.989 < 0.001 -0.293 -0.357 - -0.229
aGGE score Lasso risk score -6.925 < 0.001 -0.181 -0.232 - -0.129
Vs (cm/s) Lasso risk score -6.618 < 0.001 -0.165 -0.214 - -0.116
Vd (cm/s) Lasso risk score -7.312 < 0.001 -0.202 -0.256 - -0.148
RI Lasso risk score -7.28 < 0.001 -0.217 -0.276 - -0.159
Note: aEEG: Amplitude-Integrated Electroencephalography, CUS: Cranial Ultrasound, RI: Resistance Index, Vs: Systolic Blood 
Flow Velocity, Vd: Diastolic Blood Flow Velocity, μV: microvolts, AUC: Area Under the Curve, and CI: Confidence Interval.
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prehensive predictive models. Finally, the rela-
tively short follow-up period limited the evalua-
tion of long-term neurodevelopmental out-
comes. Extending the follow-up duration in 
future studies will provide a more thorough 
assessment of the long-term effects of BIPI 
and the efficacy of early interventions.

In conclusion, this study successfully devel-
oped an early diagnostic model for BIPI based 
on the combined use of aEEG and CUS param-
eters, significantly improving diagnostic effica-
cy. The model enables clinicians to better iden-
tify high-risk infants and implement timely 
interventions, thereby reducing the long-term 
neurodevelopmental impacts of brain injury. 
With further validation in multi-center studies, 
this model holds promise as a valuable tool for 
the early diagnosis and intervention of BIPI, ulti-
mately improving the prognosis of premature 
infants.
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