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Abstract: Objectives: Tracheal intubation is a routine procedure in clinical surgeries and emergency situations, es-
sential for maintaining respiration and ensuring airway patency. Due to the complexity of laryngeal structures and 
the need for rapid airway management in critically ill patients, real-time, accurate identification of key laryngeal 
structures is crucial for successful intubation. This study presents a real-time laryngeal structure recognition meth-
od based on an improved YOLOv8-seg model. Methods: Laryngeal images from retrospective intubation procedures 
were used to assist clinicians in the rapid and precise identification of critical laryngeal structures, such as the 
epiglottis, glottis, and vocal cords. The proposed model, named SlimMSDA-YOLO, integrates a lightweight neck struc-
ture, Slimneck, into the original YOLOv8n-seg model by combining GSConv and standard convolutions. This modi-
fication effectively reduces the floating-point operations and computational resource requirements. Additionally, 
a multi-scale dilation attention module was incorporated between the neck and head sections to enhance the 
network’s ability to capture features across various receptive fields, thereby improving its focus on critical regions. 
Results: The SlimMSDA-YOLO model achieved a precision of 90.4%, recall of 84.2%, and mAP50 of 90.1%. The mod-
el’s Giga Floating Point Operations Per Second was 11.4, and the number of parameters was 3,139,819. These re-
sults demonstrate the effectiveness of the proposed method in enhancing both model efficiency and performance. 
Conclusions: The SlimMSDA-YOLO model is lightweight and efficient, making it ideal for real-time laryngeal structure 
recognition during intubation. Comparative experiments with other lightweight segmentation networks highlight the 
effectiveness and superiority of the proposed approach.
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Introduction

Tracheal intubation is a critical, life-saving pro-
cedure commonly used in surgeries, emergen-
cy medicine, and intensive care units (ICUs) to 
maintain airway patency and facilitate mechan-
ical ventilation or anesthesia delivery [1]. This 
procedure is vital for preserving life and reduc-
ing mortality, particularly in cases of airway 
obstruction, respiratory failure, or during gen-
eral anesthesia [2]. However, improper intuba-
tion can lead to complications such as mis-
placement into the esophagus, laryngeal trau-
ma, or vocal cord injury, all of which increase 
morbidity and mortality risks [3]. These risks 
are further heightened in specific clinical situa-
tions. For example, difficult airway manage-

ment-encountered in patients with anatomical 
abnormalities (e.g., obesity, cervical spine inju-
ries, or congenital malformations) presents 
challenges such as limited visualization and 
increased procedural complexity [4]. Similarly, 
pediatric intubation is complicated by smaller 
anatomical structures, dynamic airway changes 
during growth, and a higher risk of tissue dam-
age [5]. The success of endotracheal intubation 
largely depends on the operator’s skill, espe-
cially in cases involving challenging airways. To 
address these difficulties, tools such as fiber- 
optic bronchoscopes and video laryngoscopes 
have been developed, providing operators with 
clear visualization of critical structures on a dis-
play screen [6]. Although these tools are effec-
tive, they require extensive training, and profi-
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ciency levels can vary significantly, particularly 
in emergency situations involving critically ill 
patients.

With rapid advancements in computer vision, 
image analysis has become increasingly impor-
tant in medical applications, including the study 
of laryngeal structures. Ding et al. [7] proposed 
the CN-DA-Unet network based on U-Net for 
end-to-end segmentation of the glottis, incor-
porating color normalization of images before 
feature extraction and fusion, which improved 
segmentation results. Ren et al. [8] utilized a 
transfer learning approach using a pre-trained 
ResNet-101 model to classify normal laryngeal 
structures, vocal nodules, polyps, leukoplakia, 
and malignant tumors. Degala et al. [9] applied 
a basic U-Net model for glottis segmentation. 
Xiong et al. [10] used a deep convolutional neu-
ral network (CNN) to differentiate between 
laryngeal cancer, precancerous lesions, benign 
laryngeal tumors, and normal tissues.

Despite these advancements, no study has yet 
addressed laryngeal structure recognition in 
the context of endotracheal intubation, nor has 
a comprehensive recognition system been 
developed for various laryngeal structures dur-
ing intubation. Existing methods primarily focus 
on static or pathological laryngeal analysis, 
which lacks the adaptability required for dy- 
namic intubation scenarios. Unlike convention-
al static laryngeal recognition, dealing with still 
images or pathological conditions, the recogni-
tion of laryngeal structures during endotra- 
cheal intubation presents unique challenges. 
These include real-time detection of rapidly 
changing and often occluded anatomical fea-
tures, as well as the need for high accuracy in 
critical clinical environments. The dynamic 
nature of intubation requires recognition sys-
tems that can not only detect and analyze 
laryngeal structures but also adapt to real-time 
changes in the airway, making it more complex 
than traditional static analyses.

To address these challenges and minimize 
errors during intubation, we integrated artificial 
intelligence (AI) into the procedure. To enhance 
the safety and efficiency of intubation, we 
developed a deep learning algorithm based on 
YOLO (You Only Look Once) [11], which enabl- 
es real-time segmentation of laryngeal struc-
tures, including the tongue, palate, uvula, pha-
ryngeal wall, cartilago epiglottica, supraglottic 
region, glottic fissure, vocal cords, and endotra-

cheal tube. The results are displayed on a 
screen for real-time observation by the opera-
tor. YOLO is a single-stage object detection 
algorithm known for its superior detection 
speed compared to traditional two-stage algo-
rithms. Unlike two-stage methods, which first 
generate region proposals and then classify 
them, YOLO directly predicts bounding boxes 
and class probabilities in a single pass, stre- 
amlining the detection process and significant-
ly improving efficiency. The latest version of 
YOLO, the YOLOv8 model, supports both object 
detection [12] and instance segmentation [13], 
with the segmentation variant, YOLOv8-seg, 
providing precise object boundaries by seg-
menting objects at the pixel level in combina-
tion with detection boxes.

Given the complexity and variability of larynge- 
al anatomy, along with subtle color differences 
at the boundaries of physiological tissue struc-
tures, we made three primary contributions to 
the YOLOv8-seg model to improve recognition 
accuracy and real-time performance.

1. We replaced certain convolutions and the 
C2f module in the Neck structure of YOLOv8n-
seg with the Group Shuffle Convolution (GSC- 
onv) and VoVGSCSP modules from the Slimne- 
ck structure. This modification reduced model 
parameters and improved processing speed. 
Experimental results demonstrated that the 
lightweight neck structure performed effective-
ly in laryngeal dataset segmentation.

2. To enhance recognition accuracy for laryn-
geal structures, we introduced a Multi-Scale 
Dilation Attention (MSDA) mechanism at the 
Neck-Head junction. This mechanism ensures 
effective channel information transmission  
and refined processing, which is crucial for  
segmenting intricate and minute structures 
within laryngeal images. The MSDA mechanism 
strengthens feature representation while sup-
pressing irrelevant or noisy information.

3. The proposed algorithm improves the accu-
racy of laryngeal structure recognition while 
reducing computational complexity and the 
number of parameters.

Methods

The YOLOv8-seg model

YOLO (You Only Look Once) is a highly efficient 
single-stage object detection algorithm that 
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performs both localization and classification in 
a single forward pass, significantly improving 
detection speed compared to traditional two-
stage algorithms like Faster R-CNN [14]. 
YOLOv8 introduces several improvements in 
the YOLO series, as shown in Figure 1, includ-
ing a lightweight convolutional network archi-
tecture that incorporates a C2f module to 
enhance feature reuse and computational effi-
ciency. The backbone of YOLOv8 extracts  
multi-level features from the input image, while 
the SPPF module extends the receptive field 
using multi-scale pooling. The model’s Neck 
integrates Feature Pyramid Network [15] and 
Path Aggregation Network [16] to fuse multi-
level feature maps, thereby improving detec-
tion across various object scales. The detec- 
tion head uses dynamic anchor-free bounding 
boxes, allowing the model to directly learn 
bounding box parameters, thus optimizing the 
detection process and improving segmentation 
accuracy.

YOLOv8 offers five model variants: YOLOv8n 
(nano), YOLOv8s (small), YOLOv8m (medium), 

YOLOv8L (large), and YOLOv8x (extra-large), pri-
marily differing in the number of layers and 
parameters. YOLOv8-seg extends YOLOv8 to 
handle both object detection and semantic 
segmentation tasks. In addition to providing 
precise bounding boxes, YOLOv8-seg also  
delivers detailed classification information for 
each pixel. Compared to the standard YOLOv8 
model, YOLOv8-seg introduces a segmenta- 
tion branch that generates high-resolution seg-
mentation masks through upsampling and  
convolution, ultimately producing segmented 
mask images. YOLOv8-seg incorporates sever-
al loss functions, including segmentation loss 
(seg_loss), bounding box loss (box_loss), clas-
sification loss (cls_loss), and distribution focal 
loss (DFL_loss) to enhance segmentation 
accuracy.

The model improvements in this study are 
based on the YOLOv8n-seg architecture. Since 
our goal is to integrate the algorithm into a 
device, we focused on designing a lightweight 
model structure.

Figure 1. YOLOv8-seg network structure. C2f: Cross Feature Fusion Module; SPPF: Spatial Pyramid Pooling Fast.
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The proposed SlimMSDA-YOLO model

The structure of the improved SlimMSDA- 
YOLO model is shown in Figure 2. In the origin- 
al network, we incorporated a Slimneck struc-
ture and introduced a MSDA [17] mechanism 
between the neck and head sections. This 
improvement enhances model accuracy while 
maintaining a lightweight architecture. The fol-
lowing sections provide a detailed introduction 
to these improved modules.

The slimneck module

In this study, we optimized the YOLOv8n-seg 
model for laryngeal structure recognition by 
improving the Neck module. The original 
YOLOv8n-seg network was modified by intro-
ducing the Slimneck structure in the neck sec-
tion, which is based on GSConv [18] and the 
GSBottleneck module. To create a lightweight 
network, we replaced the standard convolution 
in the neck with GSConv. The structure of 
GSConv is shown in Figure 3. GSConv is a  
lightweight convolution operation that com-
bines Depthwise Separable Convolution [19], 

SC (Standard Convolution), and a shuffle op- 
eration. This reduces computational complexity 
while enhancing the model’s feature extraction 
capability. The calculation formulas are as 
follows:

( )T O K C C H W2
SC in out out out= : : : :                       (1)

( ) ( )T O K C C H W O C C H W2
DSC in out out out in out out out= +: : : : : : :   (2)

( )T O K G
C

G
C

H W2
GSConv

in out
out out= : : : :                (3)

In the formula, K2 represents the size of the 
convolution kernel, while Cin and Cout denote  
the number of channels in the input and out- 
put feature maps, respectively. Hout and Wout 
represent the height and width of the output 
feature map, and G denotes the number of 
groups, which divides the input channels into 
groups. As shown in the formula (1) (2) (3),  
the computational complexity of GSConv is 
minimal.

GSBottleneck is an enhanced module based  
on GSConv, as shown in Figure 4. By chaining 
two lightweight GSConv operations, GSBott- 

Figure 2. SlimMSDA-YOLO network structure. C2f: Cross Feature Fusion Module; SPPF: Spatial Pyramid Pooling Fast.
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leneck creates an efficient feature extraction 
unit, significantly reducing the model’s param-
eter count while maintaining strong feature 
representation.

Based on the GSBottleneck, the VoVGSCSCP 
module was further designed, as shown in 
Figure 5. VoVGSCSP is a multi-scale feature 
fusion module based on the GSBottlene- 
ck structure. This module relies on the 
GSBottleneck within its internal structure to 
perform feature extraction tasks. The light-
weight convolution and optimized feature 
fusion approach enable the network to ac- 
hieve strong performance with a reduced  
number of parameters, resulting in a stacked 
structure called “slim-neck”. Specifically, in  
the original YOLOv8n-seg neck, we replaced 
the standard convolution with GSConv and  
substituted the original C2f module with the 
VoVGSCSP module.

The MSDA module

In the YOLOv8n-seg network, the Neck struc-
ture is responsible for further fusing and 
enhancing multi-scale features extracted from 
the backbone, while the Head performs final 
target classification, bounding box prediction, 
and segmentation mask generation. The con-
nection between the Neck and Head is crucial 
for transferring feature information throughout 
the model, particularly for segmenting small 
and complex structures in medical images, 
where precise and effective information trans-
fer is essential.

The anatomical complexity of laryngeal struc-
tures, with subtle and blurred feature details, 
presents challenges for traditional convolution-
al or feature fusion layers, which may struggle 
to capture multi-scale information. This limita-
tion makes it difficult for the model to effective-

Figure 3. The GSConv module structure diagram. GSConv: Group Shuffle Convolution.

Figure 4. GSbottleneck module structure diagram. Figure 5. The VoVGSCSP structure diagram.
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ly segment these complex features. To improve 
feature representation, we introduced a MSDA 
[18] mechanism after the VoVGSCSP module at 
the connection between the Neck and Head 
structure, as shown in Figure 2. This enhance-
ment boosts the perception and segmentation 
accuracy of complex laryngeal features. The 
MSDA mechanism adaptively focuses on criti-
cal information at different scales, effectively 
highlighting important features while suppress-
ing irrelevant or noisy information. 

MSDA captures multi-scale feature information 
by assigning different dilation rates to different 
attention heads. Specifically, the input feature 
map is linearly projected and divided into mul-
tiple heads, with each head performing the 
Sliding Window Dilated Attention (SWAD) opera-
tion using a distinct dilation rate. SWAD lever-
ages the sparsity of the self-attention mecha-
nism at different scales to aggregate seman- 
tic information within the receptive field at vari-
ous scales. This approach effectively reduces 
redundancy in the self-attention mechanism 
without introducing additional computational 
overhead. The formulation of SWAD is describ- 
ed as follows:

( )X SWDA Q,K,V, r=                                            (4)

Here, Q, K, and V represent the query, key, and 
value matrices of the feature map X, respec-
tively, while r denotes the dilation rate, which 
determines the number of keys and values par-
ticipating in self-attention within the sliding win-
dow. In this mechanism, the dilation rate r con-
trols the receptive field size within the sliding 
window, allowing the model to integrate fea-
tures from different regions in a multi-scale 
manner. The formula for MSDA is as follows:

( , , , ),1

Concat , ...,

h SWDA Q K V r t n

X Linear h h1

i t t t t

n

=

=

# #

^ h6 @                       (5)

In this formula, the input feature maps Qt, Kt, 
and Vt are slices of the current feature map’s 
query, key, and value, respectively. Features 
are divided into n heads, with each head per-
forming SWAD at a unique dilation rate rt. The 
output of each head hi is based on the atten-
tion results from these inputs and dilation 
rates. All heads h1 to hn are then concatenated 
and passed through a linear layer (fully con-
nected layer) to aggregate features. This linear 
layer combines the multi-scale features from 

each head, yielding an overall feature repre- 
sentation X. Figure 6 illustrates the working 
principle of MSDA, which, by default, uses a 
3×3 convolution kernel with dilation rates of 1, 
2, and 3, resulting in attention receptive field 
sizes of 3×3, 5×5, and 7×7 for different heads.

Experiments and results

Dataset and pre-processing

The dataset used in this study was collected 
during tracheal intubation procedures con- 
ducted in the Department of Anesthesiology at 
the First Hospital of Putian City from 2022 to 
2023. It consists of 100 videos, encompassing 
a diverse range of patients in terms of age,  
gender, and clinical conditions. The images 
were captured using a video laryngoscope, 
ensuring the inclusion of eight key laryngeal 
structures and one device: the tongue, palate, 
uvula, pharyngeal wall, cartilago epiglottica, 
supraglottic region, glottic fissure, vocal cords, 
and endotracheal tube. The videos were split 
into frames, resulting in approximately 1,100 
high-quality, non-redundant images selected 
for annotation.

Figure 7 illustrates the label distribution and 
bounding box characteristics of the laryngeal 
dataset used for YOLO model training. The  
visualization includes attributes such as class 
instance distribution, bounding box center 
coordinates, bounding box size, and spatial 
location distribution. The histogram in the top-
left corner highlights a significant imbalance  
in the number of instances across different 
classes within the dataset. This class imbal-
ance could potentially affect model perfor-
mance, as some categories are underrepre-
sented. To address this, YOLOv8’s built-in data 
augmentation techniques were applied during 
data loading, helping to mitigate the imbalance 
and improving the model’s robustness across 
all categories.

All images were manually annotated by experi-
enced anesthesiologists using Labelme [20], 
an open-source image annotation tool support-
ing object detection and semantic segmenta-
tion. The annotation process employed poly-
gon-based labeling, to ensure precise delinea-
tion of anatomical structures such as the carti-
lago epiglottica, glottic fissure, and vocal cords. 
These polygonal annotations were converted 
into segmentation masks, which are essential 
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for training the YOLOv8n-seg model. To ensure 
accuracy and consistency, each image under-
went multiple review rounds. The annotated 
dataset, referred to as the “VL dataset”, con-
sists of images with a resolution of 640×480. 
The dataset was split into an 8:2 ratio for  
training and validation, with an independent 
clinical dataset designated as the test set.  
This structured division ensures robust model 
evaluation and reduces overfitting. Figure 8 
presents sample images with their respective 
annotations.

Implementation details

The hardware configuration used for the ex- 
periments is as follows: an Intel(R) Xeon(R) 
Gold 6258R CPU @ 2.70 GHz, 256 GB of RAM, 
and an NVIDIA RTX A6000 GPU. The operating 
system is 64-bit Ubuntu 11.2.0. The software 
environment includes Visual Studio Code as 

the code editor, PyTorch 1.13.0 as the deep 
learning framework, and Python 3.9. The GPU 
driver version is 515.65.01, and the CUDA ver-
sion is 11.7. Detailed parameter information is 
provided in Table 1.

Evaluation indicators

To evaluate the model’s performance, we used 
metrics such as precision, recall, mAP50,  
Giga Floating Point Operations Per Second 
(GFLOPS), and the number of parameters.  
First, we define some variables used in the for-
mulas: TP represents true positives, FP repre-
sents false positives, and FN represents false 
negatives. Additionally, weights, parameters, 
and GFLOPS were used to assess the model’s 
complexity.

Precision measures the proportion of predicted 
positive pixels that are actually true positives. 
The formula is as follows:

Figure 6. The MSDA structure diagram. MSDA: Multi-Scale Dilation Attention.
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precision
TP FP
TP=
+                                            (6)

Recall indicates the proportion of true positiv- 
es correctly predicted by the model out of all 
actual positives, reflecting the model’s ability to 
capture the target. The formula is as follows:

recall
TP FN
TP=
+                                                      (7)

mAP50 is a key metric for evaluating overall 
performance in object detection and segmen-
tation tasks and is widely used in YOLO mo- 
dels. mAP50 represents the mean precision 
across all classes at a 50% Intersection over 

Union (IoU) threshold. IoU measures the over-
lap between predicted and ground-truth boxes, 
with higher IoU values indicating better align-
ment. mAP50 is calculated by taking the 
weighted average precision across all classes, 
as shown in formulas (8) and (9). P(r) repre-
sents the precision value on the Precision-
Recall curve.

mAP50 N
1 APi,50
i 1

N

=
=
/                                         (8)

AP50 P(r)dr
0

1
= #                                                     (9)

GFLOPS, or Giga Floating Point Operations Per 
Second, represents the number of billions of 

Figure 7. Visualization results of the dataset.
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floating-point operations the computing device 
performs per second. Lower GFLOPS values 
can significantly improve runtime efficiency in 
practical applications.

The parameters refer to the total number of 
parameters that need to be trained and opti-
mized in the model, typically measured in mil-
lions (M) or billions (B). A larger number of 
parameters generally indicates greater model 
capacity and representation power.

YOLOv8 and SlimMSDA-YOLO experimental 
results

To compare the performance of the improv- 
ed model with the original YOLOv8 on our data-

clearly visible vocal cord boundary enables 
doctors to maneuver the tube accurately 
through the glottis without injuring the vocal 
cords. High-precision segmentation of the 
vocal cords is thus essential for surgical safety. 
For vocal cord segmentation, the improved 
model increased precision from 70.3% to 
93.7%, recall from 46.4% to 64.2%, and AP50 
from 59% to 74.8%, significantly reducing the 
probability of false positives.

The cartilago epiglottica, which covers the  
tracheal opening, is another key structure for 
preventing aspiration. During intubation, it is 
essential for physicians to clearly identify and 
avoid the cartilago epiglottica to ensure sm- 
ooth intubation. The improved model increased 

Figure 8. Throat images and corresponding labels. (A) and (C) images, (B) 
and (D) labels.

Table 1. Hardware specifications
Component Specification
CPU Intel(R) Xeon(R) Gold 6258R CPU @ 2.70 GHz
GPU NVIDIA Corporation GA102GL [RTX A6000]
Memory 256
CUDA CUDA 11.7
Python Python 3.9
PyTorch PyTorch1.13.0
Notes: CPU: Central Processing Unit; GPU: Graphics Processing Unit; CUDA: Com-
pute Unified Device Architecture.

Table 2. Comparison results with baseline
Models mPrecision mRecall mAP50 GFLOPS Parameters
YOLOv8n-seg 85.4% 81.4% 89.1% 12.6 3398187
SlimMSDA-YOLO 90.4% 84.2% 90.1% 11.4 3139819

set, this section analyzes  
the experimental results be- 
fore and after the improve-
ment. Table 2 presents the 
performance comparison in 
terms of precision, recall, 
mAP50, GFLOPS, and param-
eter count. From Table 2, we 
observed that in the original 
YOLOv8n-seg network, preci-
sion, recall, and mAP50 were 
85.4%, 81.4%, and 89.1%, 
respectively, while in the 
improved model, these met-
rics increased to 90.4%, 
84.2%, and 90.1%, respec-
tively. Additionally, GFLOPS 
decreased from 12.6 to 11.4, 
and the number of parame-
ters reduced from 3.4M to 
3.1M. These improvements 
indicate that the model offers 
higher segmentation accura- 
cy while reducing computa-
tional complexity, providing 
clinicians with a more real-
time visual experience and 
laying a solid foundation for 
future clinical applications.

Table 3 presents the seg- 
mentation metrics for each 
laryngeal class in both the 
YOLOv8n-seg and SlimMS- 
DA-YOLO models, comparing 
three representative precisi- 
on indicators. The vocal cords 
are a critical structure to av- 
oid during intubation, as a 
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precision for cartilago epiglottica segmentation 
from 92.6% to 96.2%, with AP50 remaining at 
97.2%. This enhancement allows the model to 
more accurately segment the cartilago epiglot-
tica in complex environments, aiding doctors in 
safely bypassing this structure.

For the tracheal tube, precision improved from 
97.9% to 98.9%, ensuring that clinicians can 
reliably track the tube’s position in real-time 
within the laryngoscopic view, reducing the risk 
of errors during intubation. Although the uvula 
is not a primary target in the intubation pro-
cess, accurate segmentation can provide phy-
sicians with a better understanding of the over-
all laryngeal structure. In the uvula segmenta-
tion task, the improved model showed a sig- 
nificant increase, with precision rising from 

80% to 90.5%, recall from 75% to 92.9%, and 
AP50 from 94.5% to 97.6%.

The glottic fissure, a key entry point for en- 
dotracheal intubation, saw an improvement in 
precision from 80.1% to 81.2% with the 
enhanced model, although recall slightly 
decreased, maintaining a stable overall perfor-
mance. Accurate localization of the glottis is 
essential for minimizing patient discomfort.

In addition to improved segmentation accura- 
cy, the SlimMSDA-YOLO model, with its light-
weight Slimneck structure, reduced GFLOPS 
from 12.6 to 11.4, significantly lowering  
computational complexity. This optimization 
enables real-time operation on low-resource 
devices. In procedures like endotracheal intu-

Table 3. Comparison results table with baseline for each class
YOLOv8n-seg SlimMSDA-YOLO

Precision% Recall% AP50% Precision% Recall% AP50%
Tongue 84.1 86 99.5 94 87 93.4
Palate 86.2 84.6 85.5 86.6 80.5 86.7
Uvula 80 75 94.5 90.5 92.9 97.6
Pharyngeal wall 86 90.1 91.5 84.3 85.7 89.2
Cartilago epiglottica 92.6 94 99.5 96.2 94.1 97.2
Supraglottic 91.8 81.5 86.1 88.5 87.9 92.7
Glottic fissure 80.1 77.5 87 81.2 68.5 79.6
Vocal cords 70.3 46.4 59 93.7 64.2 74.8
Tube 97.9 98 99.5 98.9 97.3 99.4

Figure 9. Precision-Recall curve (A) and F1-Confidence of curve (B).
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bation, where rapid response is critical, delays 
in segmentation can disrupt the clinician’s 
workflow and even increase surgical risks. The 
improved model not only enhances accuracy 
but also maintains speed, making it suitable for 
deployment in laryngoscopic devices.

Figure 9A presents the PR curve of the 
SlimMSDA-YOLO algorithm on the test set, with 
the x-axis representing recall and the y-axis  
representing precision. The closer the PR curve 
is to the top right corner, the better the seg-
mentation performance.

Figure 9B shows the F1 curve of the Slim- 
MSDA-YOLO model on the test set. The F1  
curve reflects the balance between the mo- 
del’s precision and recall, with values ranging 
from 0 to 1. The curve annotation indicates “all 
classes 0.94 at 0.387”, meaning that when  
the confidence threshold is set to 0.387, the 
model achieves an overall F1 score of 94% 
across all classes. This suggests that select- 

ing this confidence threshold allows the model 
to achieve a good balance between precision 
and recall for segmentation. The confidence 
threshold helps filter out pixels or regions with 
confidence levels above a certain threshold, 
ensuring stability and reliability in segmenta-
tion results. By adjusting the confidence thre- 
shold, an optimal balance between accuracy 
and efficiency can be found, leading to better 
segmentation performance. In summary, the 
improved SlimMSDA-YOLO model demonstrat- 
es excellent performance on the custom laryn-
geal dataset, accurately segmenting and identi-
fying each target class.

To more intuitively observe the segmentation 
performance of the model before and after 
improvement, we selected representative seg-
mentation results for display in Figure 10. The 
improved SlimMSDA-YOLO effectively detects 
and labels different laryngeal regions, achiev-
ing both segmentation mask labeling and 
bounding box detection. The detection box dis-

Figure 10. Result Visualization: (A) Original Image, (B) Ground Truth, (C) YOLOv8n-seg Segmentation Results, (D) 
SlimMSDA-YOLO Segmentation Results. MSDA: Multi-Scale Dilation Attention.
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plays the confidence level, indicating the mod-
el’s confidence in the detection result, with val-
ues ranging from 0 to 1; the closer the value is 
to 1, the higher the model’s confidence in the 
detection. This model efficiently segments and 
labels various laryngeal regions. As shown in 
the figure, the model accurately segments tar-
get areas across all nine laryngeal structure 
categories, demonstrating the robustness and 
anti-interference capabilities of the SlimMSDA-
YOLO model in the segmentation task. This is 
particularly evident in detailed areas like the 
glottis and vocal cords, where the model exhib-
its high accuracy and applicability.

Ablation experiment

We integrated two different optimization meth-
ods into the original YOLOv8n-seg network to 
construct ablation experiments and verify the 
effectiveness of each module. Four configura-
tions were developed: YOLOv8n-seg, Slimneck 
+ YOLOv8n-seg, MSDA + YOLOv8n-seg, and 
Slimneck + MSDA + YOLOv8n-seg. These net-
works were trained on our custom laryngeal 
structure dataset for 150 epochs under identi-
cal experimental configurations. The experi-
mental results are shown in Table 4.

As shown in Table 4, the improved model dem-
onstrated significant performance gains com-
pared to the original YOLOv8n-seg model.  
First, with the introduction of the Slimneck 
structure, GFLOPS reduced to 11.2, and the 
parameter count decreased to 3,052,331. This 
reduction in computational complexity and 

parameter count was accompanied by an 
improvement in precision to 90%. This enhan- 
cement reduces computational load and con-
tributes to smoother intubation procedures by 
enabling real-time identification of laryngeal 
structures. Second, when the MSDA attention 
mechanism was added, precision increased  
to 91.2%, recall rose to 84%, and mAP50 
improved to 89.9%. Although GFLOPS and 
parameters slightly increased from 12.6 to 
12.8, the MSDA mechanism significantly 
enhanced the model’s ability to recognize fine 
details in laryngeal structures, aiding in the 
accurate localization of critical regions. Finally, 
after integrating both the Slimneck and MSDA 
modules, further improvements were observ- 
ed in both precision and model speed. The 
combination of these two modules demon- 
strated superior performance in real-time seg-
mentation of laryngeal structures.

The ablation experiments show that the combi-
nation of the Slimneck lightweight design and 
the MSDA attention mechanism for global fea-
ture awareness effectively improves the mod-
el’s performance in recognizing laryngeal struc-
tures in complex environments. This has impor-
tant implications for clinical applications in 
endotracheal intubation, enhancing procedural 
safety and ensuring real-time operation.

Comparison experiments

To validate the detection performance of the 
proposed network on the laryngeal dataset, 
this section presents comparative experiments 

Table 4. Comparative analysis of ablation experiments
Models mPrecision% mRecall% mAP50% GFLOPS Parameters
YOLOv8n-seg 85.4 81.4 89.1 12.6 3398187
YOLOv8n-seg + Slimneck 90 83.4 89.1 11.2 3052331
YOLOv8n-seg + MSDA 91.2 84 89.9 12.8 3405679
Ours 90.4 84.2 90.1 11.4 3139819
Notes: GFLOPS: Giga Floating Point Operations Per Second; MSDA: Multi-Scale Dilation Attention.

Table 5. Compare the results with other models
Models mPrecision% mRecall% mAP50% GFLOPS Parameters
YOLOv5n-seg 85 81 85 15.7 4259845
YOLOv7n-seg 87 83 88 13.5 3969372
YOLOv10n-seg 87 84 87 14.2 3605675
Ours 90.4 84.2 90.1 11.4 3139819
Note: GFLOPS: Giga Floating Point Operations Per Second.
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with other lightweight segmentation models, 
including YOLOv5n-seg [21], YOLOv7n-seg [22], 
and YOLOv10n-seg [23]. All experiments were 
conducted under the same experimental con-
figurations and on the same dataset. The fol-
lowing section analyzes the experimental 
results.

Table 5 compares the improved SlimMSDA-
YOLO algorithm with other mainstream light-
weight segmentation algorithms. In terms of 
mprecision, the SlimMSDA-YOLO model achi- 
eved an accuracy of 90.4%, significantly  
outperforming YOLOv5n-seg at 85% and 
YOLOv7n-seg and YOLOv10n-seg at 87%, indi-
cating that the improved model has stronger 
accuracy in segmentation tasks. For recall, 
SlimMSDA-YOLO achieved 84.2%, slightly high-
er than YOLOv7n-seg at 83% and YOLOv5n- 
seg at 81%, and comparable to YOLOv10n- 
seg at 84%. This demonstrates that the 
SlimMSDA-YOLO model maintains high preci-
sion while retaining good target detection  
capability. In terms of mAP50, SlimMSDA-YOLO 
performed well with a score of 90.1%, exceed-
ing YOLOv5n-seg at 85%, YOLOv7n-seg at  
88%, and YOLOv10n-seg at 87%, further con-
firming the segmentation effectiveness of the 
improved model. Additionally, the improved 
model excels in computational complexity 
(GFLOPS), with a GFLOPS of 11.4, lower than 
other models, which range from 13.5 to 15.7. 
This indicates that SlimMSDA-YOLO has lower 
computational overhead and higher operation-
al efficiency. Finally, in terms of paramet- 
er count, SlimMSDA-YOLO has 3,139,819 
parameters, far fewer than YOLOv5n-seg 
(4,259,845), YOLOv7n-seg (3,969,372), and 
YOLOv10n-seg (3,605,675). This demonstrat- 
es that the improved model achieves a more 
lightweight design while maintaining preci- 
sion, making it more suitable for resource- 
limited environments. Overall, the improved 
SlimMSDA-YOLO outperforms other models in 
terms of precision, recall, mAP50, and GFLOPS, 
exhibiting a clear comprehensive advantage.

Discussion

In this study, we propose an improved light-
weight YOLO model, SlimMSDA-YOLO, designed 
to enhance segmentation and detection accu-
racy in laryngeal images, with a particular foc- 
us on identifying key laryngeal structures and 
detecting pathological regions. Experimental 
results show significant improvements in preci-

sion, recall, and mAP50, while effectively reduc-
ing the parameter count and computation- 
al complexity. These advancements make 
SlimMSDA-YOLO well-suited for deployment in 
resource-limited embedded devices and real-
time applications. The main innovations include 
the introduction of the Slimneck structure and 
the MSDA attention mechanism. The Slimneck 
structure optimizes both the lightweight con- 
volution module and feature fusion module, 
reducing the model’s size while improving its 
adaptability to laryngeal anatomical structures 
and maintaining high detection accuracy. The 
MSDA attention mechanism captures multi-
scale spatial information, enhancing the mod-
el’s focus on target regions and significantly 
improving segmentation and detection perfor-
mance in the complex laryngeal anatomical 
environment. Additionally, experiments on pub-
lic laryngeal datasets confirm the generaliza-
tion and robustness of SlimMSDA-YOLO.

While SlimMSDA-YOLO demonstrates notable 
improvements in both accuracy and efficiency, 
its real-time performance in highly constrain- 
ed environments (such as edge devices or 
embedded systems) could still face limitations 
due to hardware restrictions. Future work could 
explore the integration of advanced attention 
mechanisms, such as self-attention or trans-
former-based methods, to improve feature 
focusing, particularly for complex laryngeal 
structures where distinguishing subtle details 
is crucial. Moreover, multimodal data fusion, 
incorporating complementary information such 
as acoustic data or clinical text, could provide 
more comprehensive insights and improve  
the model’s robustness across diverse clini- 
cal scenarios. These advancements could 
enhance both the accuracy and interpretability 
of the model, enabling it to better adapt to a 
variety of clinical needs. Despite these limi- 
tations, SlimMSDA-YOLO shows substantial 
promise in clinical applications, supporting 
anesthesiologists in managing complex air-
ways and offering valuable assistance in train-
ing junior doctors. As technology advances, this 
model could become a core component of 
future intelligent medical devices, driving the 
integration of AI with medical image analysis.
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