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Abstract: Background: Diabetes is a chronic condition that significantly impacts the cardiovascular system and vari-
ous other organs. Photoplethysmogram (PPG) signals have been shown to correlate with variations in vascular blood 
flow and the presence of atherosclerosis. To effectively explore the complex nonlinear relationship between PPG 
signals and diabetes, we propose an automatic detection model based on the fusion of PPG features. Methods: The 
proposed model consists of two main components: 1. Dynamic Fusion Feature Extraction: Short PPG signal window 
segments are processed using the SGR spatial encoding algorithm to extract dynamic fusion features. 2. Feature 
Representation Learning: Multi-scale convolutional layers (MCNN) are employed to learn feature representations, 
while the Vision Transformer (ViT) model is utilized to capture global contextual semantic features. Results: The 
model was trained and validated on a self-collected medical dataset. The experimental results demonstrate that the 
classification model, which integrates short time window information, significantly improves detection performance. 
Specifically, the multi-period sequence input model achieves an accuracy of 91.11%, with a Receiver Operating 
Characteristic (ROC) curve area of 0.9341, indicating strong diagnostic capability. Conclusion: This study is a ret-
rospective case-control study that collected clinical data from three groups of people: those with normal glucose 
levels, those with poorly controlled diabetes, and those with well-controlled diabetes. The study aims to utilize deep 
learning algorithms for the early prevention and screening of diabetes.
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Introduction

Diabetes mellitus is a chronic metabolic disor-
der characterized by abnormal glucose accu-
mulation in the bloodstream. It can lead to 
severe cardiovascular damage and is associat-
ed with a wide range of complications [1]. 
Regular daily monitoring plays a crucial role in 
the prevention and early screening of diabetes. 
Although traditional invasive and minimally 
invasive testing methods provide reliable and 
accurate clinical evaluation and diagnosis, they 
are associated with patient discomfort and a 
risk of bloodborne infections, and they are lim-
ited by relatively high costs and the need for 
specialized personnel.

Photoplethysmogram (PPG) signal has been 
successfully integrated into commercial wear-
able devices and is widely used for heart rate 
and blood oxygen monitoring due to its low 

power consumption and high measurement 
efficiency [2]. The degree of hyperglycemia in 
diabetic patients can significantly influence 
blood viscosity and flow velocity [3]. For PPG 
signals, the characteristic waveform parame-
ters encapsulate valuable physiological infor-
mation, among which pulse wave velocity (PWV) 
is widely used to reflect the propagation time of 
the pressure wave [4]. In patients with diabe-
tes, the width of the pulse wave at one-third of 
its peak height increases, while the amplitude 
of the dicrotic wave decreases [5].

Diabetic patients and healthy controls were 
classified using a Bayesian classifier based on 
bilateral finger PPG measurements in response 
to reactive hyperemia [6]. Based on Heart Rate 
Variability (HRV) analysis, two logistic regres-
sion models have been trained to predict more 
than five levels of diabetes risk [7]. Recently, a 
noninvasive diabetes detection system was 
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constructed using the mixed characteristics of 
5SPPG signal segments [8]. A new index called 
the dynamic system vascular resistance index 
(DSVRI) is proposed; a pathologic feature asso-
ciated with systemic vascular resistance [9]. 
These features indicate a strong correlation 
with diabetes. In recent years, Convolutional 
Neural Network (CNN) has shown the advan-
tage of high efficiency and automatic image 
processing. Some scholars extract feature-re- 
lated information to encode PPG signals to  
distinguish patients with type 2 diabetes [10]. 
Using deep neural network and PPG signals, it 
achieved a good success rate of 90.25%, and 
highlights the potential for future commercial-
ization [11]. Additionally, a study demonstrat- 
ed for the first time that smartphone-based 
PPG can be used for diabetes detection. This 
18-layer CNN diabetes detection model, based 
on the original PPG signal, achieved a specifici-
ty of 65.4%, sensitivity of 75%, and average 
area under the curve (AUC) of 0.77 [12]. Further, 
some research focused on the two-dimension-
al image transformation form of PPG and diag-
nosed diabetes with the improved Visual Geo- 
metry Group Network (VGG-Net) model, which 
achieved an accuracy of 76.34% [13]. For the 
image coding of PPG signal and the use of CNN 
model with Multi-task fusion, the experimental 
results show that the best accuracy of Recur- 
sive map (RP) with the threshold ε 6000 reach-
es 90.6% [14]. Lu et al. used CNN to extract 
single-cycle and multi-cycle spatial characteris-
tics and used Long Short-Term Memory (LSTM) 
to extract long-term related features for cardio-
vascular disease classification, achieving 80% 
accuracy [15]. Other researchers collected PPG 
signals from different subjects through self-
made photoelectric sensors and used an artifi-
cial neural network integrated into the field pro-
grammable array (FPGA) to predict a blood 
glucose model, providing a new method for the 
auxiliary monitoring of diabetes [16].

In the aforementioned study, extensive data 
cleaning and preprocessing for denoising inevi-
tably introduced significant bias. Simple deep 
learning models are often insufficient in com-
prehensively extracting the features of the sig-
nals. Therefore, we further explore the charac-
teristics of blood flow fluctuations by spatially 
encoding short-term PPG signals. Using the 
multi-scale convolutional layers (MCNN) com-
bined with the Vision Transformer (ViT) in  
the Multi-scale Convolutional Neural Network 
Vision Transformer (MCNN-ViT) architecture we 

delve deeper into the cardiovascular dynamics 
embedded in the signal, indirectly mapping the 
complex nonlinear relationship between PPG 
and diabetes pathology. This approach enables 
screening of the diabetic population, offering a 
novel strategy for early prevention and non-
invasive continuous diagnosis of diabetes.

Materials and methods

Subjects

This study is a retrospective case-control analy-
sis that gathers clinical data from diabetic 
patients at a hospital. The datasets were 
obtained from the affiliated hospital of Ningxia 
Medical University, with research focused on 
the elderly population in Ningxia. The gender 
distribution within each group was approxi-
mately balanced, with a ratio near 1:1. 
Furthermore, the data collection process 
adhered to stringent protocols, ensuring high 
scientific rigor. Table 1 shows significant differ-
ences between the three groups for the 
Hemoglobin A1c (HbA1c), Blood Sugar AC, and 
Cholesterol parameters, which provides data 
support for the subsequent population group-
ing. The study was conducted according to the 
Declaration of Helsinki and approved by the 
biomedical research ethics committee of North 
Minzu University (No.2024-2).

Signal pretreatment

Ensemble Empirical Mode Decomposition - 
Hilbert-Huang Transform (EEMD-HHT) denois-
ing algorithm for PPG signal: During PPG acqui-
sition, interference from machine power 
frequency and baseline shifts caused by human 
respiration can occur [17]. The EEMD-HHT 
method is employed to denoise the signal, 
demonstrating superior performance for non-
linear and non-stationary signals compared to 
traditional Fourier transform and band-pass fil-
ters [18]. The experiment begins by applying a 
second-order band-pass filter to the collected 
signal for initial noise reduction, minimizing 
interference from noise and simple artificial 
distortion. A 6-second sliding window is then 
used to segment the original signal cycle. Due 
to the non-linear and non-smooth characteris-
tics of the PPG signal, the EEMD-HHT algorithm 
is chosen to eliminate the effects of power fre-
quency interference, low-frequency breathing 
noise, and baseline drift. Finally, the signal is 
normalized to the range [0, 1] to complete the 
preprocessing (Figure 1).
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Table 1. Basic human physiological parameters of the participants in the three groups
Significant Parameters Group 1 (n = 32) Group 2 (n = 22) Group 3 (n = 48)
Male/Female 16/16 11/11 25/23
Age (years) 56.38±7.42 65.18±10.55 62.56±11.40
BMI (kg/m2) 25.07±3.43 26.77±2.99 26.98±6.14
HbA1c (%) 5.88±0.35 6.32±0.32** 8.47±1.56**
Blood Sugar AC (mg/dL) 97.63±10.09 120.91±25.93** 163.3±54.12**
Cholesterol (mg/dL) 211.13±34.14 170±36.42** 180.5±37.48
Note: Group 1: Healthy subjects; Group 2: Subjects with better diabetes control; Group 3: Subjects with poor diabetes control; 
n: number of people. Where * indicates P<0.05, statistical difference between groups, ** indicates P<0.001, significant statis-
tical difference between groups. HbA1c: Hemoglobin A1c.

Figure 1. Block diagram of PPG signal pretreatment. Note: PPG: Photoplethysmogram, EEMD-HHT: Ensemble Empiri-
cal Mode Decomposition-Hilbert-Huang Transform.

Multi-kinetic fusion features: For PPG signals, 
the time-domain characteristics are highly simi-
lar. To extract relevant feature information and 
distinguish subtle differences between popula-
tions, we utilize the dynamic characteristics of 
the PPG signal to indirectly map the complex 
nonlinear relationship between PPG signals 
and diabetic pathology.

Spatial position encoding (SPE): Combining 
multiple spatial coding matrices enables a 
more comprehensive exploration of the effects 
of blood glucose levels. The use of SPE allows 
for the integration of spatial positioning and 
feature information, which enhances the ability 
of subsequent models to extract and distin-
guish key features. For PPG signals, the tempo-
ral information at different spatial locations 
reflects distinct characteristic fluctuation pat-
terns and blood flow dynamics, which facili-
tates the exploration of both local and global 
temporal dependencies, thereby enhancing  
the overall feature representation and utility 
[16]. 
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Where Φi is the angle vector and ri is the radius. 
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Recursive map (RP): RP analyzes the intrinsic 
temporal structure of the signal by capturing  
its periodicity, chaotic complexity, and nonlin-
ear non-stationarity. By extracting and repre-
senting the underlying hemodynamic charac-
teristics of the PPG signal, RP enhances both 
the resolution and versatility of the model, 
thereby improving its capability to perceive and 
interpret the potential physiological informa-
tion embedded within the signal [19].
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The threshold λ take 0.1 (normalized peak is  
1, taking 10% of the peak), Φ(•) as a step 
function.

The SPE, GASF, and RP (SGR) fusion algorithm 
is utilized to combine the generated multi- 
modal two-dimensional images into a three-
channel image, similar to an ‘RGB’ format. This 

fusion technique enables complementary infor-
mation exchange across modalities, improves 
the acquisition and preservation of comprehen-
sive feature information from multiple dimen-
sions, and effectively captures the subtle fluc-
tuation characteristics embedded in the signal 
(Figure 2).

The MCNN-ViT classification model

Due to the complexity and diversity of multi-
dynamic image datasets, a robust model capa-
ble of capturing both intricate local features 
and global contextual relationships in medical 
images is required. This study integrates multi-
scale convolution with ViT to develop a novel 
hybrid deep learning model, which aims to 
achieve effective local feature extraction while 
simultaneously modeling long-range global de- 
pendencies.

The constructed model MCNN-ViT consists of 
three important parts: MCNN, dual patch parti-
tion module, and ViT. The specific description is 
as follows (Figure 3).

Figure 2. N: normal group, Dg: diabetes group with good glycemic control, Db: diabetes group with good glycemic 
control. The SPE, GASF, and RP (SGR) fusion algorithm: The spatial representations of these segments are encoded 
using three complementary techniques: Symbolic Permutation Entropy (SPE), Gramian Angular Summation Field 
(GASF), and Recurrence Plot (RP). These three encoded modalities are subsequently integrated into a unified three-
channel fusion image to enhance feature representation for downstream analysis.
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Figure 3. The Multi-Scale Convolutional Neural Network-Vision Transformer (MCNN-ViT). Model architecture. Simple 
process: The image after fusion of multiple spatial encoding methods is passed through three different convolution-
al kernels to generate different feature maps. These feature maps are then fused for linear projection. By extracting 
two types of global information and utilizing the ViT encoder, multiple feature extractions are performed, ultimately 
enabling the screening of diabetic populations.

The CNN can mimic the human visual system 
and effectively recognize patterns and struc-
tures in scenes [20]. The diagonally symmetric 
space encodes critical features present in all 
matrices derived from the time series of pulse 
waveforms, including the SPE, GASF, and RP 
representations. Observations indicate that the 
resulting images exhibit three distinct regions 
along the diagonal. However, conventional sin-
gle-scale networks are typically designed to 
capture features at specific scales, limiting 
their ability to effectively capture dynamic 
changes within the data and the cross-scale 

dependencies embedded in these features 
[21]. Therefore, three convolutional kernels 
were applied to convolve the upper-left, cen- 
ter, and lower-right regions of the image. The 
three-channel image was subsequently trans-
formed into 8-channel, 16-channel, and 32- 
channel feature maps through three convolu-
tional layers. The step size for each kernel was 
set to 1, 2, and 3, respectively. Max pooling, 
batch normalization, and the ReLU activation 
function were employed, and the features 
extracted from the three scales were fused to 
obtain the preliminary feature representations.
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To further capture the potential relationships 
between features, the fused features were 
divided into 8×8 lag patches and 4×4 small 
patches as input tokens. These tokens were 
used to capture the two global aspects of the 
fused features, thereby enhancing the model’s 
ability to perceive global features. Subse- 
quently, linear fusion was applied to embed  
the features into the ViT. The fused feature 
information follows a multi-scale and multi- 
level architecture, reinforcing the correlations 
between features. The experiment employs the 
ViT model to analyze the relationships between 
regions of the image using the multi-head 
attention mechanism, enabling the model to 
understand a broader context beyond the lo- 
cal features. It uses the multi-head attention 
mechanism to obtain different input projec-
tions, to deal with different concerns, and get 
multiple groups of attention results, and then 
uses the results for splicing and linear projec-
tion to get the final output, experimental design 
long attention mechanism head for 4. The 
embedded dimension size is 128, and finally, 
through the forward transmission network, it 
gets classification output.

Training parameter dataset

The training and testing datasets were split into 
an 8:2 ratio, with 1/4 of the training dataset 
aside for validation. Adam was chosen as the 
optimizer for the stochastic gradient descent 
algorithm, with key hyperparameters set as fol-
lows: learning rate = 0.001, betas = (0.9, 
0.999), and epsilon = 1e-8. To prevent overfit-
ting, a normalization layer and a dropout layer 
were applied. The cross-entropy loss function 
was used to train the model and enhance its 
accuracy. The experiment was conducted using 
python 3.10 and pyorch.

relation with the subsequent adjacent cycle. In 
contrast, processing multi-cycle signal wave-
forms may produce more stable and complete 
results. To evaluate multi-cycle signal frag-
ments, the current cycle segment is combined 
with the adjacent segments before and after  
it, forming a new fragment for further analysis 
and discussion: yn = Conbined (Xn-1, Xn, Xn+1).

The experiment converts the input single- 
period and multi-period sequences into SGR 
dynamic images. The above result reflects that, 
when using sequence modeling with multiple 
cycles, which may contain more kinetic fea- 
ture information, its model has higher general-
ization and better classification performance 
(Table 2 and Figure 4). Single cycle signal fluc-
tuation may be delayed to before and after the 
two cycles. The delay characteristic fluctuation 
information also plays a role in improving the 
classification performance of the model (Figure 
4A, 4B).

Comparing with other models on two datasets

Table 3 presents a comparison of four classi- 
fication metrics for commonly used models 
based on two datasets, exploring the specific 
performance of each model. This further vali-
dates the advantage of the multi-period datas-
et and highlights the overall performance of the 
proposed model through the evaluation of the 
four metrics.

To control for variability between models, all the 
aforementioned models use CNN as the initial 
encoder, which is closely aligned with the struc-
ture of the baseline model. The results indicate 
that when the multi-period dataset is used as 
input, the four evaluation metrics for each 
model show improvement. An examination of 

Table 2. Comparison of MCNN-ViT model indexes based on two 
inputs

Datasets Input  
sequence ACC (%) SEN (%) PRE (%) F1-Score 

(%) AUC

Validation One 90.56 90.62 90.55 90.29 0.9296
Three 93.89 93.90 93.89 93.89 0.9543

Test One 88.89 88.89 88.89 88.89 0.9167
Three 91.11 91.21 91.11 91.16 0.9341

Note: MCNN-ViT: Multi-Scale Convolutional Neural Network-Vision Transformer. 
Four evaluation metrics: Accuracy (ACC), Sensitive (SEN), Precision (PRE), Area 
Under the Curve (AUC).

Experiments and results

Comparison of MCNN-ViT on 
two periodic datasets

In the following study, the ex- 
perimental results of single-
cycle and multi-cycle short ti- 
me windows are explored. In 
pulse fluctuations, the oscilla-
tion of a single cycle may be 
influenced by the preceding 
cycle, resulting in a strong cor-
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Figure 4. (A and B) Training, validation, and test loss values and accuracy curves for two inputs, (C and D) Receiver 
Operating Characteristic (ROC) curves and confusion matrices for validation and testing of two inputs.

the test datasets with two different periodic 
forms revealed that the overall performance of 
the Google Network (GoogLeNet), Densely 
Connected Convolutional Network-121 (Den- 
seNet-121), and Visual Geometry Group 16 
(VGG16) models were suboptimal, with accura-
cy ranging from 74.44% to 84.07%. In con- 
trast, the Residual Network-18 (ResNet-18) 
model, with its residual structure, exhibited a 
slight improvement, achieving an accuracy of 
84.81%. Compared to the other four commonly 
used classification models, MCNN-ViT demon-
strated significant improvements across all 
evaluation metrics. On the multi-period datas-
et, all four model evaluation metrics reached 
values above 91%.

Model ablation experiments

Based on these results, further ablation stud-
ies were conducted on the multi-period test 

dataset of PPG signals to validate the impor-
tance of the multi-channel dynamic features 
and the proposed network architecture. With 
the successive fusion of input encoded ima- 
ges, the performance of the MCNN-ViT model 
showed improvement, with the accuracy gra- 
dually increasing. The first fusion resulted in a 
2.22% improvement, while the second fusion 
achieved an increase of 3.89%. When the three 
dynamic features were fused as fixed inputs, it 
was observed that as the model network archi-
tecture continued to improve, the performance 
metrics of the ViT, CNN-ViT, and MCNN-ViT 
models progressively increased. Ultimately, all 
four evaluation metrics of the MCNN-ViT model 
surpassed 91% (Table 4).

Discussion

The results, as shown in Table 2 and Figure 4A, 
4B, reveal that the introduction of the multi-
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Table 3. Performance comparison of different models on two datasets
Input dataset Single cycle Multi-cycle
Model index ACC (%) SEN (%) PRE (%) F1_Score ACC (%) SEN (%) PRE (%) F1_Score
Densenet121 74.44 80.30 74.44 77.26 84.07 84.23 84.07 84.15
Googlenet 75.93 81.91 75.93 78.81 81.86 83.82 81.85 82.82
ResNet-18 78.15 83.28 78.15 80.63 84.81 84.18 82.59 83.38
VGG16 77.04 82.03 77.04 79.46 83.33 83.13 83.33 83.23
MCNN-ViT 88.89 88.89 88.89 88.89 91.11 91.21 91.11 91.16
Note: The Densely Connected Convolutional Network-121 (Densenet121), Google Network (GoogLeNet), Visual Geometry 
Group 16 (VGG16), the Residual Network-18 (ResNet-18) are commonly used deep learning models. Ours: Multi-Scale Con-
volutional Neural Network-Vision Transformer (MCNN-ViT) model. Four evaluation metrics: Accuracy (ACC), Sensitive (SEN), 
Precision (PRE) Area Under the Curve (AUC).

Table 4. Ablation experiments for components with different inputs and MCNN-ViT
Dynamic feature fusion

Model ACC (%) SEN (%) PRE (%) F1_Score (%)
SPE GASF RP
√ MCNN-ViT 85.00 85.24 85.00 85.12
√ √ MCNN-ViT 87.22 87.48 87.22 87.35
√ √ √ ViT 88.43 89.10 88.43 88.76
√ √ √ CNN-ViT 89.44 90.22 89.44 89.83
√ √ √ MCNN-ViT 91.11 91.21 91.11 91.16
Note: Three spatial encoding methods: Spatial position encoding (SPE), Gramian Angular Summation Field (GASF), Recursive 
map (RP). Models: Vision Transformer (ViT) model, Convolutional Neural Network - Vision Transformer model, Multi-Scale 
Convolutional Neural Network-Vision Transformer (MCNN-ViT) model. Four evaluation metrics: Accuracy (ACC), Sensitive (SEN), 
Precision (PRE), Area Under the Curve (AUC).

period dataset accelerates the model’s con- 
vergence. On both the validation set and the 
test set, the iteration curves gradually become 
more stable. This indicates that the multi-peri-
od dataset helps reduce feature loss, further 
enhancing the capture of blood flow fluctuation 
information. In Table 3, the comparison of mod-
els across two datasets verifies that the pro-
posed model does not exhibit any special 
dependency on the dataset. Googlenet121, 
Densenet121, and VGG16 model, when applied 
to complex images from different regions, suf-
fer from excessive stacking of convolutional  
layers, which deepens network degradation 
and leads to the accumulation of excessive 
loss. Although ResNet_18 alleviates this phe-
nomenon to some extent, its expressive power 
is limited, making it difficult to effectively cap-
ture high-level patterns and complex relation-
ships within the images. 

In contrast, the MCNN-ViT model demonstrates 
a unique advantage in spatially fused encoded 
images, combining the strengths of MCNN and 
ViT. It effectively captures both local details 
and the fluctuation features of global variables, 

thereby enhancing the model generalization 
ability. Table 4 shows that the continuous 
fusion of three spatial encodings (SPE, GASF, 
RP) progressively captures the fluctuations and 
dynamic evolution patterns of the time-series 
signals, improving the model’s resolution and 
generalization ability. The integration of dynam-
ic characteristics provides a more comprehen-
sive representation of human blood flow fluctu-
ations, enhancing the model’s generalization 
ability and classification accuracy. Compared  
to the standalone ViT, MCNN-ViT, which inclu- 
des CNN as the initial encoder, extracts low-
level features that deepen the model’s under-
standing of the image and allow it to capture 
more local details. The two components com-
plement each other, enabling the extraction of 
more diverse and richer features. The MCNN 
used in this study leverages three different con-
volution kernels to extract semantic informa-
tion from relevant regions. The fused features 
comprehensively reflect the internal complexity 
of the image. Additionally, the dual-token mech-
anism for obtaining global information enables 
a better understanding of the semantic con-
cepts of different image blocks. Combined with 
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the multi-head attention mechanism of ViT,  
this improves the model sensitivity to complex 
medical images, ultimately enhancing its over-
all performance.

Compared to previous work, the proposed 
MCNN-ViT model achieves superior perfor-
mance in processing PPG signals and screen-
ing diabetic populations. Its novelty lies in three 
aspects. First, the SGR fusion image encoding 
method introduced in this study helps reduce 
significant errors in feature parameter selec-
tion and dependency on the time domain of 
PPG signals. Unlike single spatial encoding, the 
continuous fusion and increase in multi-space 
encoding information enable the representa-
tion of more comprehensive human blood flow 
dynamics. This is closely related to the arterial 
sclerosis phenomenon in human blood vessels 
and the onset characteristics of diabetes. Se- 
cond, experimental results fully demonstrate 
that the multi-cycle form, compared to single-
cycle data, captures missing information in 
periodic signals and more comprehensively 
obtains complete human blood flow cycle fluc-
tuation characteristics. Finally, in contrast to 
previous approaches using simple networks 
with accumulated convolution layers, the pro-
posed model utilizes multi-scale convolutions 
to initially extract high-level semantic features 
and latent information from different regions of 
the image. By employing two-scale tokens to 
capture two types of global information from 
the fused features, the model enhances its 
ability to perceive global features. The introduc-
tion of ViT further facilitates the complementa-
ry capture of both local details and global 
dependencies, improving the model’s general-
ization ability and robustness.

The limitation of this study lies in the complexi-
ty and parameter count of the MCNN and ViT 
architecture, which may introduce slight biases 
when balancing the fusion of information from 
different scales. Additionally, the hospital data-
set lacks diversity, leading to a certain degree 
of overfitting in the model. Future research 
could expand the dataset and incorporate light-
weight modules to accelerate model conver-
gence and improve prediction efficiency.

Conclusion

This study utilizes the spatial fluctuation char-
acteristics of PPG signals to construct a diabe-

tes screening model based on MCNN and ViT. 
The model demonstrates excellent performan- 
ce in terms of accuracy and generalization abil-
ity, providing strong clinical support for the 
early screening and prevention of diabetes. It 
also shows significant potential for non-inva-
sive real-time diagnostics in daily practice.
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