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Abstract: Obesity, marked by adipose tissue dysfunction and systemic metaflammation, poses a major global health 
burden. Emerging evidence underscores a critical interplay between neural regulation and immune-metabolic cross-
talk in obesity pathogenesis. This review highlights the dynamic roles of sympathetic and sensory nerves in lipid me-
tabolism, as well as metaflammation involving macrophage polarization, inflammatory cytokine cascades, and mito-
chondrial dysfunction. In obesity, decreased sympathetic nerve density and impaired adrenergic receptor signaling 
compromise lipolysis and thermogenesis, while sensory neuropeptides worsen metabolic dysregulation through 
immune cell interactions. Adipose tissue macrophages adopt pro-inflammatory phenotypes, releasing cytokines 
that inhibit insulin signaling - forming pathological crown-like structures. Mitochondrial dysfunction, characterized 
by excessive fission and reduced fusion, disrupts energy homeostasis and increases oxidative stress. Therapeutic 
approaches targeting neuropeptide signaling, inflammasome activation, and mitochondrial dynamics show promise 
in restoring metabolic balance. The neuro-immune-metabolic axis thus represents a novel therapeutic frontier for 
obesity, supporting integrated strategies targeting neural, inflammatory, and mitochondrial pathways.
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Introduction

Obesity and its associated metabolic disor- 
ders-including type 2 diabetes mellitus (T2DM), 
cardiovascular diseases (CVDs), and non-alco-
holic fatty liver disease (NAFLD) have become  
a global public health crisis. According to the 
World Health Organization (WHO), the global 
prevalence of obesity has nearly tripled since 
1975. In 2016, over 1.9 billion adults were 
classified as overweight, and 650 million met 
the criteria for obesity (body mass index [BMI] 
≥30 kg/m2). Projections estimate that by 2030, 
1 billion individuals will be affected by obesity 
[1].

Obesity is not merely a result of energy intake 
and expenditure imbalance but is also closely 
associated with adipose tissue dysfunction. 
This condition is characterized by chronic  
low-grade systemic inflammation and metabol-
ic dysregulation, significantly contributing to 

increased all-cause mortality and healthcare 
burdens [2].

Recent research has shown that adipose tissue 
functions not only as an energy reservoir but 
also as an active endocrine and immunomodu-
latory organ. Through the secretion of leptin, 
adiponectin, and pro-inflammatory cytokines,  
it directly influences insulin sensitivity, glucose 
and lipid metabolism, and immune homeosta-
sis [3, 4]. For example, alterations in adipose 
tissue macrophage (ATM) polarization states 
can promote localized inflammation [5].

The functional regulation of adipose tissue criti-
cally depends on the balance between neural 
innervation and the immune microenvironment. 
The sympathetic nervous system (SNS) pro-
motes lipolysis and thermogenesis via norepi-
nephrine-mediated activation of β3-adrener- 
gic receptors (β3-ARs) on adipocytes, while the 
parasympathetic nervous system (PNS) may 
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counteract these effects through cholinergic 
signaling [6, 7]. In obesity, reduced sympathet-
ic nerve fiber density and dysregulated neu-
rotransmitter release contribute to adipose  
tissue “neuro-remodeling”, further aggravating 
metabolic dysfunction [8].

Concurrently, immune cells infiltrating adipose 
tissue and nerve terminals form a bidirectional 
communication network through cytokines and 
neuropeptides [9, 10]. Disruption of this cross-
regulatory mechanism is now recognized as a 
central pathological feature of obesity-related 
metaflammation, although its precise molecu-
lar underpinnings and therapeutic potential 
remain incompletely understood [11].

This review examines the crosstalk between 
adipose tissue innervation and metaflamma-
tion, with a focus on its implications for obe- 
sity treatment. We systematically explore the 
regulation of lipid metabolism by the SNS and 
PNS, the role of metaflammation-including ATM 
polarization imbalance, cytokine cascades, 
and mitochondrial dynamic dysregulation in 
systemic metabolic disturbances, and the inte-
gration of neuro-immune interactions. By eluci-
dating how neurotransmitters and inflammato-
ry mediators co-regulate metabolic homeos- 
tasis, this review aims to establish a theore- 
tical foundation for precision therapeutic 
strategies.

Neural innervation of adipose tissue

Neural distribution in adipose tissue

Adipose tissue innervation exhibits substantial 
anatomical and functional heterogeneity. Both 
brown adipose tissue (BAT) and white adipose 
tissue (WAT) are primarily innervated by sympa-
thetic and sensory nerves. Sympathetic ner- 
ves regulate mitochondrial uncoupling protein 
1 (UCP1)-mediated thermogenesis and lipoly-
sis via norepinephrine (NE) activation of β3- 
ARs on adipocytes [12]. In rodents, sympathet-
ic fibers (tyrosine hydroxylase-positive [TH+]) in 
BAT are primarily associated with vasculature 
and form neuro-adipose nexuses with multiloc-
ular adipocytes [13], whereas WAT contains 
fewer sympathetic fibers, mainly localized ar- 
ound blood vessels [14]. Viral tracing studies 
using adeno-associated virus (AAV)-mediated 
labeling demonstrate that obesity and aging 
reduce sympathetic nerve density in adipose 

tissue [15], while aberrant proliferation of sen-
sory nerves may contribute to metabolic dys-
function [16].

The presence of parasympathetic innervation 
in adipose tissue remains controversial. His- 
tochemical analyses have failed to detect clas-
sical parasympathetic markers such as ace- 
tylcholinesterase and vesicular acetylcholine 
transporter (VAChT) in mouse subcutaneous 
(scWAT) and epididymal WAT [17, 18]. Similarly, 
retrograde transsynaptic viral tracing of vagal 
nerves has not identified direct parasympa- 
thetic innervation of adipose tissue. However, 
recent studies have identified cholinergic ma- 
crophages (choline acetyltransferase-positive 
[ChAT+]) within the stromal vascular fraction of 
mouse scWAT. These cells release acetylcho-
line, which activates nicotinic receptors in beige 
adipocytes to promote thermogenesis [19, 20]. 
These findings suggest that immune cells may 
partially mimic parasympathetic signaling via 
paracrine mechanisms, though their physiologi-
cal relevance remains to be fully elucidated.

Sensory innervation of adipose tissue has been 
increasingly characterized. Peptidergic sensory 
nerves derived from dorsal root ganglia (DRG), 
including calcitonin gene-related peptide-posi-
tive (CGRP+) and substance P-positive (SP+) 
fibers, directly influence adipocyte function  
via neuropeptide release. For instance, CGRP 
enhances lipolysis through cAMP-independent 
pathways [21], while substance P suppresses 
lipid accumulation and promotes fatty acid 
efflux [22]. Whole-mount immunofluorescence 
imaging of mouse scWAT reveals that sensory 
fibers include myelinated nerves aligned with 
large vessels and unmyelinated fibers innervat-
ing the adipocyte parenchyma [13]. Notably, 
obesity increases both sensory nerve density 
and circulating CGRP levels [23], potentially 
exacerbating local inflammation through acti-
vation of neurokinin-1 receptors (NK-1R) on 
adipose-resident macrophages [24].

Neural regulation of lipid metabolism

Sympathetic signaling exhibits receptor sub-
type- and tissue-specific regulation of lipid 
metabolism. In WAT, NE activates the cAMP-
PKA signaling cascade via β3-ARs, promoting 
phosphorylation of key lipolytic enzymes such 
as adipose triglyceride lipase (ATGL) and hor-
mone-sensitive lipase [25]. NE also exhibits 
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Table 1. Neural regulation of adipose tissue and obesity-related abnormalities

Neural Type Signaling Molecules/
Receptors Physiological Functions Obesity-Related Alterations References

Sympathetic 
nerves

β3-AR, NE, FGF21 Promote lipolysis (ATGL/HSL activation), 
induce thermogenesis (UCP1), regulate 
mitochondrial biogenesis

Reduced sympathetic nerve density; 
enhanced α2-AR signaling causing lipolysis 
resistance; impaired thermogenesis

[6, 8, 12, 15]

Sensory nerves 
(DRG-derived)

CGRP, SP, NK-1R, 
PAC-1R

Modulate lipolysis (cAMP-independent 
pathways), inhibit lipid synthesis (DGAT-
1), mediate inflammation (via NK-1R on 
macrophages)

Abnormal sensory nerve proliferation; 
elevated CGRP/SP levels exacerbating local 
inflammation and metabolic dysregulation

[16, 21-24]

Cholinergic  
immune cells

ACh, VAChT Mimic parasympathetic functions, 
activate beige adipocyte thermogenesis 
via nicotinic receptors

Impaired cholinergic macrophage activity, 
potentially linked to reduced beige fat 
activation

[17, 19, 20]

ATGL, adipose triglyceride lipase; HSL, hormone-sensitive lipase.

dose-dependent effects: low concentrations 
preferentially activate α2-ARs, suppressing 
lipolysis, whereas higher concentrations acti-
vate β-ARs to promote lipolysis [26]. This bi- 
phasic regulation becomes dysregulated in 
obesity, where enhanced α2-AR signaling con-
tributes to lipolytic resistance [12]. Genetic 
studies confirm that adipocyte-specific deletion 
of α2-AR restores lipolysis in high-fat diet-fed 
mice, while β3-AR knockout abolishes cold-
induced thermogenesis [27].

Thermogenic regulation in BAT relies on pre- 
cise spatiotemporal sympathetic activation. 
Cold exposure induces synchronized firing of 
BAT sympathetic nerves via the hypothalamic-
spinal axis, rapidly elevating local NE concen-
trations within minutes. This activates β3-ARs 
and triggers UCP1-mediated proton leak [28]. 
Single-cell transcriptomic analyses reveal that 
sympathetic terminals in BAT form functional 
units with vascular endothelial cells. NE release 
increases local blood flow, facilitating substrate 
delivery for thermogenesis [29]. NE also sti- 
mulates BAT adipocytes to secrete fibroblast 
growth factor 21 (FGF21), which promotes mi- 
tochondrial biogenesis in neighboring cells via 
paracrine signaling [30].

Sensory nerves modulate metabolic home- 
ostasis through neuropeptides. Ablation of 
DRG-derived CGRP+ sensory fibers leads to 
hyperactivation of β3-AR signaling in scWAT, 
accompanied by upregulation of lipolytic and 
thermogenic (UCP1, Dio2) genes [16]. Mecha- 
nistically, CGRP enhances β-AR-cAMP signaling 
by inhibiting protein phosphatase 2A (PP2A)  
in adipocytes [31], while substance P suppress-
es insulin-induced expression of the lipid syn-
thesis enzyme diacylglycerol acyltransferase-1 

(DGAT-1) via NK-1R [22]. Interestingly, cold 
exposure increases BAT sensory nerve acti- 
vity, which downregulates pituitary adenylate 
cyclase-activating polypeptide receptor (PAC-
1R) to suppress thermogenesis, while upregu-
lating PAC-1R in scWAT to promote browning 
[30], indicating tissue-specific neuropeptide 
regulation.

Orexin also modulates BAT sensory nerve func-
tion. It acts via orexin receptor type 2 (OX2R)  
on sensory terminals to suppress TH expres-
sion and NE release, forming a negative feed-
back loop [32]. Orexin-deficient mice exhibit 
impaired mitochondrial function and reduced 
UCP1 expression in BAT, while exogenous orex-
in restores PGC-1α-mediated thermogenesis 
[33]. This central-peripheral feedback axis 
offers new therapeutic opportunities. For in- 
stance, CGRP monoclonal antibodies improve 
diabetic metabolic phenotypes by enhancing 
energy expenditure [31], and the NK-1R antago-
nist CJ-12,255 mitigates obesity by inhibiting 
adipogenesis and inflammation [34] (Table 1).

The role of metaflammation in obesity

Metaflammation and mitochondrial dysfunc-
tion

Origins and central propagation of metaflam-
mation: In obesity, adipose tissue expansion 
reshapes the immune microenvironment, mar- 
ked by increased macrophage infiltration and 
elevated secretion of pro-inflammatory cyto-
kines, such as tumor necrosis factor-alpha 
(TNF-α), interleukin-1 beta (IL-1β), and interleu-
kin-6 (IL-6), establishing chronic low-grade sys-
temic inflammation [35-37]. This peripheral 
inflammation influences the central nervous 
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gates neuroinflammation [49, 54]. On the oth- 
er hand, TNF-α impairs insulin signaling by 
downregulating key mitochondrial biogenesis 
regulators-peroxisome proliferator-activated re- 
ceptor gamma coactivator-1 alpha (PGC-1α) 
and sirtuin 1 (SIRT1) thereby inhibiting respira-
tory complex synthesis [55]. In diabetic animal 
models, hippocampal mitochondria show incre- 
ased basal oxygen consumption but reduced 
ATP production efficiency, indicating oxidative 
phosphorylation uncoupling [56]. In obese ani-
mals, hypothalamic mitochondria exhibit aber-
rant glucose sensing, with glutathione redox 
imbalance and ROS accumulation, which may 
impair systemic insulin sensitivity via dysregu-
lated vagal signaling [57].

Recent findings reveal that NLRP3 activation 
not only intensifies IL-1β-driven neuroinflam- 
mation but also disrupts sympathetic-adipose 
communication. Guo et al. reported that ROS-
induced NLRP3 activation in hypothalamic 
microglia downregulates β3-AR expression 
through NF-κB-dependent transcriptional re- 
pression, impairing lipolysis and thermogene-
sis in adipose tissue [54]. Furthermore, mito-
chondrial ROS accumulation in ATMs in obese 
individual reduces TH activity in sympathetic 
terminals, reducing norepinephrine release 
[57]. These findings highlight a feedforward 
loop in which metaflammation-induced oxida-
tive stress undermines neural regulation of 
metabolism and promotes adipose tissue 
dysfunction. 

Targeted intervention strategies and therapeu-
tic potential: Preclinical studies suggest prom-
ising interventions targeting the metaflamma-
tion-mitochondrial dysfunction axis. Antioxidant 
therapies, such as N-acetylcysteine (NAC), re- 
duce hippocampal ROS levels and suppress 
TLR4/NF-κB signaling by restoring glutathione 
precursors, thereby mitigating HFD-induced 
synaptic damage and memory impairment [58-
60]. Exercise interventions, such as 12-week 
voluntary running, enhance mitochondrial re- 
spiratory capacity and calcium retention in the 
hippocampus of obese mice while reducing 
mitochondrial permeability transition pore 
(mPTP) sensitivity, thus inhibiting neuronal 
apoptosis [61]. Modulation of mitochondrial 
dynamics-through Drp1 inhibition or Mfn2 over-
expression-improves insulin sensitivity in hy- 
pothalamic neurons; for example, ceramide 

system (CNS) through multiple mechanisms. 
First, activation of the nuclear factor kappa B 
(NF-κB) pathway compromises blood-brain bar-
rier integrity by reducing tight junction protein 
expression, allowing peripheral cytokines and 
pathogen-associated molecules to enter the 
brain parenchyma [38, 39]. Second, saturated 
fatty acids bind to Toll-like receptor 4 (TLR4), 
activating NF-κB and activator protein-1 (AP-1) 
signaling in the hypothalamus and microglia, 
thereby amplifying neuroinflammation [40, 41]. 
Clinical studies have reported increased levels 
of pro-inflammatory cytokines in the hippocam-
pus and prefrontal cortex of obese individuals, 
which are significantly correlated with cognitive 
decline [42, 43].

Mitochondrial dynamics imbalance and energy 
metabolism dysregulation: Mitochondria, as 
central regulators of energy metabolism, ex- 
hibit impaired dynamics and function in obesi-
ty-related neurodegeneration. High-fat diets 
(HFD) suppress the expression of mitochond- 
rial fusion proteins, mitofusin 1 (Mfn1), mito-
fusin 2 (Mfn2), and optic atrophy 1 (Opa1), 
while promoting cytoplasmic translocation of 
the fission protein dynamin-related protein 1 
(Drp1) to the mitochondrial outer membrane, 
leading to excessive mitochondrial fragmenta-
tion [44-46]. This imbalance reduces respira-
tory efficiency, evidenced by decreased activity 
of complexes I and IV, reduced adenosine tri-
phosphate (ATP) production, and elevated reac-
tive oxygen species (ROS) levels [47-49]. In ani-
mal models, 12 weeks of HFD feeding results in 
decreased mitochondrial membrane potential 
(ΔΨm), mitochondrial swelling, and impaired 
calcium (Ca2+) retention in the hippocampus, 
directly impairing synaptic plasticity [50, 51]. 
Additionally, Mfn2 deficiency in hypothalamic 
pro-opiomelanocortin (POMC) neurons disrupts 
endoplasmic reticulum (ER)-mitochondria con-
tacts, triggering ER stress and leptin resis-
tance, which further exacerbates metabolic 
dysregulation [52, 53].

Oxidative stress and the vicious cycle of inflam-
matory signaling: Mitochondrial dysfunction 
and metaflammation are interconnected th- 
rough a bidirectional regulatory loop. On one 
hand, excessive ROS activates the NLR family 
pyrin domain-containing 3 (NLRP3) inflamma-
some, promoting IL-1β maturation and release, 
which in turn activates microglia and propa-
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reduction reverses mitochondrial fragmenta-
tion and restores leptin signaling [62]. Addi- 
tionally, sirtuin 3 (SIRT3) agonists alleviate  
obesity-related cerebral metabolic deficits by 
enhancing fatty acid oxidation and tricarboxylic 
acid cycle enzyme activity via mitochondrial 
protein deacetylation [63]. Together, these 
strategies offer a multifaceted approach to 
treating obesity-associated metabolic and cog-
nitive impairments by targeting the metaflam-
mation-mitochondria axis.

Recruitment, polarization, and neuro-immune 
crosstalk of adipose tissue macrophages

Mechanisms of macrophage recruitment in 
obesity: ATMs originate from both circulating 
monocytes and tissue-resident macrophages. 
In obesity, adipocyte hypertrophy induces local 
hypoxia and lipotoxicity, which stimulate the 
release of chemokines such as C-C motif che-
mokine ligand 2 (CCL2) and C-X-C motif chemo-
kine 12 (CXCL12), promoting monocyte infiltra-
tion into adipose tissue [64, 65]. The CCL2/
CCR2 axis plays a central role in ATM recruit-
ment, with elevated CCL2 expression observed 
in adipose tissue of obese humans and mice. 
Genetic deletion of CCL2 or its receptor CCR2 
reduces macrophage infiltration and improves 
metabolic outcomes [66, 67]. The CXCL12/
CXCR4 axis similarly regulates monocyte migra-
tion, while additional chemokines (e.g., CCL5, 
CCL7) and complement components (e.g.,  
C3a) further contribute to ATM accumulation 
[68-70]. Notably, local macrophage prolifera-
tion, particularly around crown-like structures 
(CLSs), exacerbates ATM density in obesity 
[71-73].

Beyond driving inflammation, these recruit-
ment mechanisms may influence sympathetic 
nerve function via neuro-immune interactions. 
Inflammatory cytokines can modulate neu-
rotransmitter release, such as norepinephrine, 
from local nerve terminals, establishing a posi-
tive feedback loop that sustains metaflamma-
tion [74, 75].

Macrophage polarization phenotypes and me- 
taflammation: Obese adipose tissue favors 
ATM polarization toward the pro-inflamma- 
tory M1 phenotype. M1 macrophages express 
CD11c and secrete cytokines including TNF-α, 
IL-6, and IL-1β, which inhibit insulin signaling  
in adipocytes [76-78]. These cells often cluster 

around necrotic adipocytes, forming CLSs, and 
their abundance correlates with the severity  
of inflammation [79, 80]. In contrast, lean indi-
viduals predominantly harbor anti-inflammato-
ry M2 macrophages (CD206+), which support 
metabolic homeostasis through apoptotic cell 
clearance and induction of adipocyte browning 
[81, 82].

Single-cell transcriptomic analyses reveal ATM 
heterogeneity, identifying subsets such as met-
abolically activated macrophages (MMe) and 
lipid-associated macrophages (LAM). MMe 
aggravate early-stage inflammation but later 
aid in insulin sensitivity via lysosomal lipid 
clearance [83, 84]. LAMs rely on triggering 
receptor expressed on myeloid cells 2 (TREM2) 
signaling; TREM2 deficiency worsens metabolic 
dysfunction [85]. Cold exposure or β3-AR acti-
vation induces M2 polarization and prompts 
macrophage secretion of Slit3 and peroxisome 
proliferator-activated receptor gamma (PPARγ) 
ligands, which activate sympathetic-adipocyte 
signaling and enhance thermogenesis [86, 87]. 
These findings highlight the integration of  
neural and metabolic signals in macrophage 
polarization.

Neuro-Immune crosstalk in macrophage func-
tion regulation: The interplay between neural 
and immune elements in adipose tissue is a 
growing research focus. Electron microscopy 
reveals sympathetic nerve terminals (H+) locat-
ed within 1 µm of ATMs in mouse subcutane-
ous white adipose tissue (scWAT), with local 
norepinephrine (NE) levels sufficient to modu-
late ATM function via β2-ARs [88]. Sensory 
nerve-derived neuropeptides, such as CGRP 
and substance P, can directly stimulate CD8+ T 
cell proliferation and cytokine release [89]. 
Optogenetic stimulation of scWAT sympathetic 
nerves transiently suppresses ATM nuclear  
factor kappa B (NF-κB) activity, while sensory 
nerve ablation upregulates pro-inflammatory 
cytokines such as TNF-α, emphasizing the reg-
ulatory potential of neural input on local 
immune responses [90].

Sympathetic NE release activates β3-AR sig- 
naling to induce adipose browning, a process 
that requires macrophage involvement. β3-AR 
agonists stimulate M2 macrophages to secrete 
osteopontin and 9-/13-hydroxyoctadecadieno-
ic acids (9-/13-HODE), promoting recruitment 
of beige adipocyte precursors and enhancing 
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Table 2. Core molecules and pathological mechanisms of obesity-associated metaflammation

Category Key Molecules/
Pathways

Functions/ 
Mechanisms Association with Obesity Intervention Outcomes References

Macrophage 
polarization

M1 (CD11c+, 
TNF-α, IL-1β)

Secrete pro-inflammatory 
cytokines, suppress 
insulin signaling, form 
crown-like structures 

M1 dominance in obesity drives 
adipose inflammation and insulin 
resistance

NLRP3 inhibitors (e.g., MCC950) 
reduce IL-1β release and M1 
polarization; IL-1β antagonists 
improve insulin sensitivity

[5, 35-37, 
54, 76-78]

M2 (CD206+, 
IL-4/IL-13)

Clear apoptotic cells, 
promote browning (Slit3, 
PPARγ ligands)

Reduced M2 polarization; cold 
exposure or β3-AR agonists 
restore M2 activity

β3-AR agonists or cold exposure 
restore M2 activity and 
thermogenesis

[81-83, 86, 
87]

Mitochondrial 
dynamics

Drp1, Mfn1/2, 
Opa1

Drp1 mediates fission; 
Mfn1/2 and Opa1  
regulate fusion

Drp1 hyperactivation and Mfn1/2 
suppression cause mitochondrial 
fragmentation, ROS  
accumulation, and energy deficits

Drp1 inhibitors (e.g., Mdivi-1) 
restore fusion-fission balance; 
SIRT3 agonists enhance mito-
chondrial respiration

[44-47, 52, 
62, 63]

Neuro-immune 
crosstalk

β2-AR 
(macrophages), 
CGRP (T cells)

NE suppresses  
macrophage NF-κB via 
β2-AR; CGRP enhances T 
cell proliferation

Reduced sympathetic activity 
weakens immune regulation; 
CGRP dysregulation amplifies 
metabolic inflammation

CGRP monoclonal antibodies 
reduce sensory nerve-driven 
inflammation; TNF-α blockade 
restores sympathetic tone

[24, 88-90, 
92]

PPARγ, peroxisome proliferator-activated receptor gamma; CGRP, calcitonin gene-related peptide; β3-Ars, β3-adrenergic receptors; ROS, reactive oxygen species.

thermogenesis [87, 91]. Cold exposure induces 
eosinophil-derived IL-4 and IL-13, which drive 
M2 polarization and facilitate browning [86]. 
Conversely, obesity-associated chronic inflam-
mation may impair sympathetic activity via 
TNF-α signaling, creating an “inflammation-in- 
duced neural suppression” cycle [92]. Recent 
studies have identified macrophage-derived 
molecules such as Slit3 that modulate sympa-
thetic tone and influence systemic metabolism 
[93]. Additionally, deletion of circadian clock 
genes (e.g., Period 1/2 [PER1/PER2]) in macro-
phages disrupts PPARγ expression, worsening 
adipose inflammation and insulin resistance 
[94]. These findings suggest that targeting neu-
ro-immune regulatory nodes, such as β3-AR or 
PPARγ signaling, could offer promising thera-
peutic avenues (Table 2).

In summary, ATM recruitment and polarization 
are central to obesity-associated metaflam- 
mation, with their function tightly regulated by 
neural signaling. Elucidating the mechanisms 
underlying neuro-immune crosstalk may inform 
the development of macrophage-targeted ther-
apies for obesity.

Therapeutic targeting of neural, metaflamma-
tory, and neuro-immune axes

Emerging therapeutic strategies for obesity 
increasingly focus on modulating lipid meta- 
bolism, metaflammation, and neuro-immune 
crosstalk through either single or combina- 
tion approaches. Pharmacological activation of 
sympathetic signaling using β3-AR agonists, 
such as Mirabegron, promotes lipolysis and 

thermogenesis by enhancing cAMP-PKA signal-
ing and upregulating UCP1 expression [12, 87]. 
In contrast, inhibiting sensory nerve hyperactiv-
ity via CGRP antagonism or sensory denerva-
tion reduces lipolysis resistance and neuropep-
tide induced inflammation [16, 31].

Targeting metaflammation includes approach-
es such as inhibition of the NLRP3 inflamma-
some using agents like MCC950, which sup-
press interleukin-1β (IL-1β) release and limit 
mitochondrial ROS accumulation, thereby miti-
gating adipose inflammation [54, 58]. Promo- 
ting anti-inflammatory M2 macrophage polar-
ization, either through β3-AR stimulation or 
cold exposure, enhances IL-4/IL-13 secretion 
and facilitates beige adipocyte recruitment [86, 
87].

Neuro-immune crosstalk represents another 
promising therapeutic node. Blocking TNF-α or 
CGRP signaling interrupts pathological feed-
back between macrophages and neurons, re- 
storing sympathetic tone and improving insulin 
sensitivity [24, 92]. For instance, TNF-α inhibi-
tion reverses sympathetic dysfunction, while 
CGRP neutralizing antibodies attenuate senso-
ry neuropeptide driven immune activation [24, 
31].

Combination therapies have demonstrated en- 
hanced efficacy by simultaneously targeting 
multiple mechanistic pathways. Co-admini- 
stration of β3-AR agonists with NLRP3 inhibi-
tors synergistically restores sympathetic activi-
ty and suppresses inflammasome-mediated 
metaflammation [12, 54]. Likewise, combining 



Cross-regulation between adipose tissue innervation and metaflammation

4093 Am J Transl Res 2025;17(6):4087-4100

Table 3. Advantages and disadvantages of therapeutic strategies targeting the neuro-immune-meta-
bolic axis
Target Category Advantages Disadvantages References
Neural Signaling Restores lipolysis/thermogenesis;  

Enhances UCP1
Risk of sympathetic overactivation; Sensory 
nerve hypersensitivity

[12, 16, 31, 87]

Inflammatory 
Pathways

Reduces metaflammation; Improves insulin 
sensitivity

Systemic immunosuppression; Cytokine 
rebound

[54, 58]

Mitochondrial 
Regulators

Improves energy metabolism; Reduces ROS Disrupts mitochondrial adaptability; Limited 
tissue specificity

[44, 62, 63]

Combination 
Therapy

Synergistic efficacy; Multi-pathway targeting Increased side effects; Pharmacokinetic 
challenges

[12, 54, 58]

Drp1 inhibitors (e.g., Mdivi-1) with SIRT3 ago-
nists reduces mitochondrial fission and oxida-
tive stress while enhancing fatty acid oxida- 
tion, thereby improving overall energy meta- 
bolism [44, 62, 63]. Concurrent inhibition of 
CGRP and IL-1β signaling also disrupts neuro-
immune-metabolic amplification loops, under-
scoring the potential of multi-targeted thera-
peutic regimens [31, 54].

These strategies highlight the importance of 
addressing the multifactorial nature of obesity 
through integrated interventions. Future re- 
search should prioritize validating combination 
therapies in preclinical models that reflect met-
abolic heterogeneity, with a particular focus on 
neural plasticity, macrophage-nerve interac-
tions, and mitochondrial dynamics as key 
mechanistic targets. Table 3 summarizes the 
advantages and limitations of therapeutic stra- 
tegies targeting the neuro-immune-metabolic 
axis. While monotherapies have shown prom-
ise in experimental models, combination strat-
egies may offer broader benefits but require 
careful optimization to minimize potential risks.

Summary and perspectives

The pathogenesis of obesity is driven by com-
plex interactions between adipose tissue in- 
nervation and metaflammation. Sympathetic 
nerves regulate lipolysis and thermogenesis  
via β3-ARs; however, obesity leads to reduced 
sympathetic nerve density and aberrant α2-AR 
signaling, contributing to lipolysis resistance. 
Although parasympathetic nerves do not direct-
ly innervate adipose tissue, cholinergic macro-
phages can modulate beige adipocyte function 
through paracrine acetylcholine signaling. Sen- 
sory nerves dynamically regulate lipid metabo-
lism and inflammation via neuropeptides such 
as CGRP and substance P, whose dysregulated 
activation promotes metabolic dysfunction.

An imbalance in ATM polarization fosters local 
inflammation, with pro-inflammatory cytokines 
such as TNF-α and IL-1β impairing insulin sig-
naling and exacerbating systemic metabolic 
dysregulation. Mitochondrial dynamics are dis-
rupted, with downregulation of fusion proteins 
(Mfn1, Mfn2) and hyperactivation of the fi- 
ssion protein Drp1, leading to increased ROS, 
impaired ATP production, and uncoupling of oxi-
dative phosphorylation. This creates a vicious 
cycle of inflammation and mitochondrial dys-
function. Within the central nervous system, 
mitochondrial impairment in the hypothalamus 
and hippocampus has been linked to cognitive 
decline. Meanwhile, the neuro-immune axis 
modulates macrophage polarization through 
norepinephrine and cytokines, further influenc-
ing systemic metabolic homeostasis (Table 4; 
Figure 1).

Metaflammation and neuro-immune crosstalk 
form a central axis in obesity development.  
Pro-inflammatory cytokines such as TNF-α and 
IL-1β suppress sympathetic signaling by down-
regulating β3-AR expression and TH activity 
[54, 92], while sensory neuropeptides like 
CGRP recruit immune cells and sustain adipose 
inflammation [24]. In turn, reduced sympathet-
ic tone aggravates mitochondrial dysfunction 
and ROS accumulation, activating the NLRP3 
inflammasome and downstream cytokine cas-
cades [54]. This bidirectional feedback loop 
perpetuates metabolic dysfunction through re- 
ciprocal neural remodeling and immune dys-
regulation. Therapeutic strategies that target 
both pathways, such as β3-AR agonists to 
restore sympathetic tone and inflammasome 
inhibitors to attenuate metaflammation hold 
potential for disrupting this cycle [12, 87].

The relationship between obesity and neuro-
logical dysfunction is both reciprocal and inter-
dependent. Adipose tissue expansion in obesi-
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Table 4. Potential therapeutic strategies targeting the neuro-immune-metabolic axis
Target Category Intervention Mechanism of Action Experimental Evidence References
Neural signaling β3-AR agonists 

(e.g., Mirabegron)
Activate sympathetic signaling to 
enhance lipolysis and  
thermogenesis

Restores cold-induced  
thermogenesis and reduces  
adiposity in rodent models

[12, 27, 87]

CGRP monoclonal 
antibodies

Block CGRP-induced metabolic 
disturbances and inflammation

Improves glucose homeostasis and 
energy expenditure in diabetic mice

[31, 89]

Inflammatory 
pathways

NLRP3 inhibitors 
(e.g., MCC950)

Suppress inflammasome activation 
and IL-1β release

Reduces adipose inflammation and 
systemic insulin resistance

[54, 58, 59]

Mitochondrial 
regulators

Drp1 inhibitors 
(e.g., Mdivi-1)

Inhibit excessive mitochondrial  
fission, restore fusion-fission  
balance

Improves mitochondrial membrane 
potential and reduces neuronal 
oxidative damage

[44, 62]

SIRT3 agonists Enhance mitochondrial  
deacetylation to boost fatty acid 
oxidation and TCA cycle activity

Alleviates metabolic  
syndrome-associated energy 
deficits

[63]

Combination 
therapy

β3-AR agonist + 
IL-1β antagonist

Synergistically improve neural  
signaling and dampen inflammation

Preclinical studies show superior  
efficacy compared to monotherapy

[58, 87]

CGRP, calcitonin gene-related peptide; NLRP3, NLR family pyrin domain-containing 3; β3-Ars, β3-adrenergic receptors; SIRT3, sirtuin 3; TCA, 
tricarboxylic acid.

Figure 1. Obesity alters adipose tissue homeostasis through dual mechanisms involving innervation and metaflam-
mation. Obesity-induced adipose tissue expansion leads to altered neural regulation (innervation), involving sympa-
thetic, sensory, and possibly parasympathetic nerves (indicated by the question mark), and triggers metaflammation 
characterized by immune cell activation. This includes mitochondrial dysfunction in adipose tissue macrophages 
and polarization toward pro-inflammatory M1 phenotypes. These changes contribute to a feedback loop that exac-
erbates adipose tissue dysfunction and impairs neural regulation.

ty triggers sympathetic nerve degeneration and 
aberrant sensory nerve sprouting, impairing 
lipolysis and thermogenesis while promoting 
neuropeptide-mediated inflammation [8, 16]. 
In turn, diminished β3-AR signaling and α2-AR 
hyperactivity in adipocytes further exacerbate 

metabolic disturbances [12, 27]. Neuro-im- 
mune crosstalk intensifies this interplay: mac-
rophages polarized by inflammatory cytokines 
inhibit sympathetic activity via TNF-α, while 
CGRP recruits immune cells to sustain me- 
taflammation [24, 88]. Collectively, these 
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mechanisms support a model in which neural 
remodeling and adipose dysfunction mutually 
reinforce obesity progression. Targeting neuro-
immune-metabolic interfaces may offer a strat-
egy to restore bidirectional homeostasis.

Despite promising advances, current thera- 
pies targeting the neuro-immune-metabolic 
axis face significant limitations. Neural inter-
ventions may risk sympathetic overstimulation 
or sensory hypersensitivity; anti-inflammatory 
therapies may lead to systemic immunosup-
pression or cytokine rebound. Mitochondrial-
targeted agents struggle with tissue specificity 
and adaptability. Combination therapies, while 
synergistic, are complicated by pharmacokinet-
ic challenges and the potential for increased 
side effects. Furthermore, much of the current 
evidence is derived from preclinical models, 
revealing a translational gap in addressing 
human obesity heterogeneity.

Future directions include elucidating the molec-
ular interplay between neurotransmitters and 
cytokines, developing nanotechnology-based 
delivery systems to improve tissue targeting, 
and designing combination regimens, such as 
β3-AR agonists paired with inflammasome 
inhibitors to modulate neuro-immune nodes. 
Clinical translation will require personalized 
therapeutic approaches that account for indi-
vidual variation in obesity phenotypes, poten-
tially advancing precision medicine strategies 
for metabolic disorders.
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