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Abstract: Objectives: To develop and validate a multimodal predictive model combining positron emission tomog-
raphy/computed tomography (PET/CT) radiomic features with clinical data for the preoperative assessment of lym-
phovascular invasion (LVI) in patients with gastric cancer (GC). Methods: Between December 2017 and December 
2022, 325 GC patients with pathologically confirmed LVI status were retrospectively enrolled. PET/CT scans were 
performed according to standard protocols, and 1,057 radiomic features were extracted from both imaging modali-
ties following appropriate preprocessing. LASSO regression was used to select informative features for separate CT, 
PET, and combined PET/CT models. Key clinical variables - including age, maximum standardized uptake value, total 
lesion glycolysis, lymph node metastasis, and tumor grade - were integrated using multivariate logistic regression 
to construct a comprehensive predictive model. Model performance was assessed using ROC curve analysis. Diag-
nostic metrics - including AUC, sensitivity, specificity, accuracy, and Net Reclassification Improvement (NRI) - were 
calculated for each model. Results: The CT, PET, and combined PET/CT models achieved AUCs of 0.823, 0.761, 
and 0.861, respectively. The final multimodal model integrating PET/CT radiomics with clinical data demonstrated 
superior performance, with an AUC of 0.904, specificity of 91.91% and sensitivity of 74.07%. Independent predic-
tors of LVI included age, SUVmax, TLG, and lymph node metastasis. NRI analysis showed a 10.35% improvement 
in risk classification compared to the PET/CT radiomic model alone. Conclusions: The multimodal predictive model 
demonstrated excellent diagnostic accuracy for preoperative assessment of LVI in GC patients and may support 
individualized treatment planning and risk stratification. Prospective multicenter studies are needed to further vali-
date its clinical utility.
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Introduction

Gastric cancer (GC) is among the most common 
and lethal malignancies worldwide [1]. Accor- 
ding to recent statistics, GC ranks fifth in inci-
dence and fourth in cancer-related mortality, 
with particularly high prevalence in East Asia 
[2]. Due to its aggressive behavior and hetero-
geneity, patient prognosis is closely tied to 
tumor staging. Approximately 80% of GC cases 
are diagnosed at an advanced stage, with 
median survival under 12 months for late-stage 
patients [3]. Although advances in neoadjuvant 
therapy, targeted therapy, and immunotherapy 

have been made, surgical resection combined 
with D2 lymphadenectomy remains the corner-
stone of treatment [4]. Therefore, early diagno-
sis and accurate staging are essential for for-
mulating effective treatment strategies and 
improving survival.

Lymphovascular invasion (LVI) is a critical 
pathologic feature of GC, indicative of tumor 
aggressiveness, metastatic potential, and over-
all prognosis [5]. Its presence is associated 
with poor clinical outcomes. However, current 
LVI diagnosis depends on postoperative histo-
pathologic examination, which is invasive, time-
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consuming, and unsuitable for preoperative 
decision-making [6]. Thus, a non-invasive me- 
thod for preoperatively predicting LVI would be 
highly valuable for guiding surgical planning, 
lymph node dissection, and adjuvant therapy 
selection.

With the development of advanced imaging 
and data analysis techniques, radiomics has 
emerged as a promising tool for extracting 
high-dimensional quantitative features from 
medical images to characterize tumor biology 
[7]. Radiomics enables the capture of tumor 
heterogeneity and microenvironmental infor-
mation, offering novel opportunities for preop-
erative diagnosis and prognostic assessment 
in GC [8]. Positron emission tomography/com-
puted tomography (PET/CT), which combines 
functional and anatomic imaging, is widely 
used in GC for staging, treatment monitoring, 
and recurrence detection [9]. Data such as 
metabolic tumor volume (MTV), maximum stan-
dardized uptake value (SUVmax), and total 
lesion glycolysis (TLG) provide valuable infor-
mation on tumor metabolism and aggressive-
ness [10]. However, the diagnostic accuracy of 
PET or CT alone remains limited. For instance, 
PET/CT shows reduced sensitivity in certain GC 
subtypes, such as signet ring cell carcinoma, 
while CT has low resolution for detecting small 
metastatic lesions [11]. Therefore, integrating 
PET/CT radiomic features with clinical data into 
a multimodal predictive model represents a 
promising research direction.

This study aimed to develop a multimodal pre-
dictive model that combines PET/CT radiomic 
features with clinical variables using LASSO 
regression for feature selection. The goal is to 
accurately predict preoperative LVI status in GC 
patients, thereby aiding risk stratification and 
personalized treatment planning. The novelty 
of this study lies in the integration of radiomic 
and clinical data to improve interpretability and 
practicality. The model demonstrates strong 
predictive performance for clinical use to opti-
mize individual management for GC patients.

Patients and methods

Patient information

This retrospective study was approved by the 
Ethics Committee of Sir Run Run Shaw Hospital, 
Zhejiang University School of Medicine. Due to 

data anonymization, the requirement for writ-
ten informed consent was waived. 325 total GC 
patients with pathologically confirmed LVI diag-
nosed between December 2017 and December 
2022 were included.

Inclusion and exclusion criteria

Inclusion criteria: 1. Preoperative PET/CT imag-
ing performed. 2. LVI status confirmed by path-
ological examination of surgical specimens. 3. 
No prior radiotherapy, chemotherapy, or other 
antitumor treatments. 4. Complete clinical data 
available. 5. No severe organ dysfunction (e.g., 
cardiac, renal, or hepatic failure) prior to sur-
gery. 6. No serious infections or immune sys-
tem diseases that could affect imaging out-
comes. 7. Imaging data met the quality require- 
ments for radiomic analysis.

Exclusion criteria: 1. History of other malignan-
cies. 2. Prior treatments or experimental thera-
pies for other tumors. 3. Poor PET/CT image 
quality due to abnormal metabolism or severe 
obesity. 4. Postoperative pathology inconsis-
tent with GC (e.g., mesenchymal tumor or lym-
phoma). 5. Non-standard image acquisition or 
preprocessing protocols.

Grouping criteria

LVI status was diagnosed through standard 
hematoxylin-eosin histologic evaluation and 
other methods, independently assessed by two 
pathologists. The patients were divided into an 
LVI-positive group (189 cases, 58.2%) and an 
LVI-negative group (136 cases, 41.8%). The LVI-
positive group had tissue samples confirming 
lymphatic or vascular invasion, while no such 
invasion was found in the LVI-negative group.

Data collection

Baseline data were retrieved from the hospi-
tal’s electronic medical records. Clinical infor-
mation included: (1) Gender (categorical: male/
female). (2) Lymph node metastasis (LNM, cat-
egorical: negative/positive). (3) Tumor grade 
(categorical: well/moderately/poorly differenti-
ated). (4) Molecular subtype (categorical: undif-
ferentiated/diffuse/mixed/intestinal); (5) T sta- 
ge (categorical: T1/T2/T3/T4); (6) N stage (cat-
egorical: N0/N1/N2/N3); (7) M stage (categori-
cal: M0/M1); (8) Clinical TNM stage (categori-
cal: I/II/III/IV); (9) Age (continuous, years).
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Laboratory data included serum levels of 
Cancer Antigen 125 (CA125), Cancer Antigen 
19-9 (CA199) (both continuous, U/mL).

Imaging data from PET/CT included: SUVmax, 
SUVmean, MTV, TLG, and tumor thickness (all 
continuous). These datasets were used for 
comprehensive analysis of clinical, pathologic, 
and imaging characteristics.

PET/CT imaging procedure

All patients fasted for at least 6 hours before 
scanning, with blood glucose levels controlled 
below 11.0 mmol/L. PET/CT scans were per-
formed using the Discovery VCT 64 PET/CT sys-
tem (GE Healthcare, Milwaukee, USA). Following 
intravenous injection of ^18F-FDG at a dose of 
3.78 MBq/kg, patients rested for approximate-
ly 60 minutes before imaging.

A whole-body CT scan was first performed with 
the following parameters: (1) Tube current: 140 
mA; (2) Tube voltage: 140 kV; (3) Slice thick-
ness: 3 mm; (4) Reconstruction interval: 3 mm; 
(5) Matrix size: 512×512.

Subsequently, PET images were acquired with 
a 2-minute acquisition per bed position. Image 
reconstruction was conducted using the 3D 
ordered-subset expectation maximization al- 
gorithm.

Image analysis

PET/CT images were independently reviewed 
by two radiologists (Reader 1: 10 years of expe-
rience; Reader 2: 15 years), both blinded to 
clinical and pathologic information. Regions of 
interest (ROIs) were delineated on axial PET 
images using proprietary software (PET VCAR, 
GE Healthcare, USA), and metabolic parame-
ters such as SUVmax were measured using a 
40% SUVmax threshold for ROI definition. Any 
discrepancies between the readers were re- 
solved by consensus.

Tumor segmentation and radiomic feature 
extraction

PET and CT images were retrieved from the 
Picture Archiving and Communication System 
for tumor segmentation. Tumor regions were 
automatically segmented on both PET and CT 
images using LIFEx software based on a 40% 
SUVmax threshold and were further refined by 

the radiologists. To ensure reproducibility, 40 
cases (20 LVI-positive and 20 LVI-negative) 
were randomly selected and segmented twice 
by both radiologists. Preprocessing steps 
included: 1. Resampling images to a voxel size 
of 1 mm3. 2. Gray level discretization (CT: bin 
width =25; PET: bin width =0.1). 3. Denoising 
using a Gaussian filter.

A total of 1,057 radiomic features - including 
shape, texture, and first-order statistics - were 
extracted following the Image Biomarker 
Standardisation Initiative guidelines using an 
AI-based platform (Artificial Intelligence Kit, GE 
Healthcare).

Radiomic feature selection and model con-
struction

All radiomic features were standardized using 
Z-score normalization. Multivariate logistic 
regression was used to identify variables asso-
ciated with LVI. Lasso regression was then 
employed to select the most informative subset 
of radiomic features for model construction, 
yielding separate diagnostic models for CT, PET, 
and combined PET/CT data. A comprehensive 
multimodal model integrating PET/CT radiomics 
with clinical data was constructed through mul-
tivariate logistic regression. Model performan- 
ce was assessed using area under the curve 
(AUC), sensitivity, specificity, and accuracy.

Outcome measurements

Primary outcome: Development of a multimod-
al predictive model for LVI using PET/CT 
radiomic features and clinical data.

Secondary outcomes: 1. Comparison of imag-
ing parameters (SUVmax, SUVmean, MTV, TLG) 
and laboratory indicators (CA125, CA199) 
between LVI-positive and LVI-negative groups 
using the Mann-Whitney U test and logistic 
regression to identify clinical, laboratory, and 
imaging predictors of LVI. 2. Selection of 
radiomic features using Lasso regression for 
construction of a radiomic signature. 3. Eva- 
luation of diagnostic performance of CT, PET, 
PET/CT, and multimodal models, and develop-
ment of a nomogram incorporating clinical 
data, validated by ROC curve analysis. 4. 
Evaluation of the multimodal model’s added 
value in LVI risk stratification through Net 
Reclassification Improvement (NRI) analysis.
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Statistical analysis

All statistical analyses and visualizations were 
performed using R software (version 4.3.3). 
Continuous variables were expressed as mean 
± standard deviation or median [interquartile 
range], as appropriate. Inter-group compari-
sons were conducted using independent sam-
ples t-tests for normally distributed data and 
Mann-Whitney U tests for non-normally distrib-
uted data. Categorical variables (frequencies 
and percentages) were compared using chi-
square or Fisher’s exact tests, depending on 
sample size. Differences in AUC between mod-
els were evaluated using the DeLong test. 
Multivariate logistic regression was used to 
identify independent predictors, and Lasso 
regression was applied for radiomic feature 
selection. Diagnostic performance was asse- 
ssed via ROC curve analysis, reporting AUC, 
sensitivity, specificity, and accuracy. Improve- 
ment in risk stratification was quantified using 
NRI. All statistical tests were two-sided, with 
P<0.05 considered significant.

Results

Comparison of baseline features between LVI-
positive and LVI-negative patients

Significant differences in clinical and imaging 
findings were observed between LVI-positive 
and LVI-negative patients. LVI-positive patients 
had a significantly higher incidence of LNM 
(P<0.001), higher tumor grade (P=0.006), and 
distinct distributions of molecular subtypes 
(P=0.036). Additionally, they were older on 
average (P=0.015). In terms of imaging fea-
tures, LVI-positive patients exhibited signifi-
cantly elevated SUVmax (P<0.001), SUVmean 
(P=0.003), and TLG (P<0.001), reflecting great-
er metabolic activity. No significant differences 
were found in sex, T, N, M stages, clinical TNM 
stage, CA125, CA199, or tumor thickness (all 
P>0.05; Table 1).

Multivariate analysis of factors associated with 
LVI positivity

Categorical clinical variables were numerically 
encoded (Table 2), and multivariate logistic 
regression was performed to identify indepen-
dent predictors of LVI. The analysis revealed 
that age (P<0.001, OR=5.187, 95% CI: 2.437-
11.681), SUVmax (P<0.001, OR=0.125, 95% 

CI: 0.064-0.232), TLG (P=0.001, OR=0.356, 
95% CI: 0.192-0.652), LNM (P<0.001, OR 
=5.502, 95% CI: 2.792-11.288), tumor grade 
(P=0.043, OR=1.690, 95% CI: 1.021-2.832), 
and PET/CT model (P<0.001, OR=19.063, 95% 
CI: 5.501-99.417) were significant predictors of 
LVI. In contrast, SUVmean (P=0.262, OR=0.709, 
95% CI: 0.388-1.294) and undifferentiated 
molecular subtype (P=0.135, OR=0.808, 95% 
CI: 0.609-1.067) were not significantly associ-
ated with LVI (Table 3).

Lasso regression-based feature selection for 
LVI diagnostic models

Lasso regression was applied to identify 
radiomic features for each model. The CT model 
retained 28 features, the PET model retained 
14, and the combined PET/CT model selected 
33 features (Figure 1A-C). The selected fea-
tures and corresponding coefficients are 
detailed in Tables S1, S2, S3.

Construction of a multivariate model combin-
ing clinical data and PET/CT features

Multivariate logistic regression incorporating 
both clinical data and PET/CT radiomic features 
identified the following independent predictors 
of LVI: age (P<0.001, OR=6.089, 95% CI: 2.654-
15.230), SUVmax (P<0.001, OR=0.133, 95% 
CI: 0.067-0.252), TLG (P=0.002, OR=0.372, 
95% CI: 0.194-0.702), LNM (P<0.001, OR 
=4.959, 95% CI: 2.457-10.440), and PET/CT 
(P<0.001, OR=19.063, 95% CI: 5.501-99.417). 
Tumor grade approached significance (P= 
0.060, OR=1.688, 95% CI: 0.986-2.943; Table 
4).

Score distribution across diagnostic models

Score distributions between LVI-positive and 
LVI-negative groups were compared across dif-
ferent diagnostic models. Significant differenc-
es were observed in all models, including the 
PET (P<0.001), CT (P<0.001), PET/CT model 
(P<0.001), and PET/CT + clinical data models 
(P<0.001). In all cases, LVI-positive patients 
had significantly higher scores (Table 5).

Diagnostic performance of various models

Receiver operating characteristic (ROC) curve 
analysis was used to evaluate model perfor-
mance. The PET/CT + clinical data model 
achieved the highest AUC of 0.904 (95% CI: 



PET/CT radiomics in gastric cancer

5445	 Am J Transl Res 2025;17(7):5441-5452

Table 1. Distribution of clinical and imaging factors in LVI-positive and LVI-negative patients

Clinical Factors LVI-Positive Patients 
(n=189)

LVI-Negative Patients 
(n=136) Statistic P-value

Gender 0.701 0.402
    Female 61 (32.28%) 38 (27.94%)
    Male 128 (67.72%) 98 (72.06%)
Lymph Node Metastasis 50.71 <0.001
    Negative 24 (12.7%) 66 (48.53%)
    Positive 165 (87.3%) 70 (51.47%)
Tumour Grade 10.255 0.006
    Well-Differentiated 6 (3.17%) 10 (7.35%)
    Moderately Differentiated 66 (34.92%) 65 (47.79%)
    Poorly Differentiated 117 (61.9%) 61 (44.85%)
Molecular Subtype 8.524 0.036
    Undifferentiated 56 (29.63%) 22 (16.18%)
    Diffuse 54 (28.57%) 42 (30.88%)
    Mixed 43 (22.75%) 36 (26.47%)
    Intestinal 36 (19.05%) 36 (26.47%)
T Stage 4.286 0.232
    T1 33 (17.46%) 33 (24.26%)
    T2 97 (51.32%) 70 (51.47%)
    T3 53 (28.04%) 27 (19.85%)
    T4 6 (3.17%) 6 (4.41%)
N Stage 0.772 0.856
    N0 49 (25.93%) 31 (22.79%)
    N1 83 (43.92%) 61 (44.85%)
    N2 43 (22.75%) 31 (22.79%)
    N3 14 (7.41%) 13 (9.56%)
M Stage 2.72 0.099
    M0 128 (67.72%) 80 (58.82%)
    M1 61 (32.28%) 56 (41.18%)
Clinical TNM Stage 3.14 0.371
    I 4 (2.12%) 2 (1.47%)
    II 71 (37.57%) 48 (35.29%)
    III 53 (28.04%) 30 (22.06%)
    IV 61 (32.28%) 56 (41.18%)
Age (years) 62.639 ± 10.206 59.813 ± 10.297 -2.453 0.015
CA125 (U/mL) 15.54 [9.37, 21.46] 16.12 [9.29, 26.60] 1.574 0.115
CA199 (U/mL) 64.55 [29.29, 106.42] 70.31 [30.44, 113.61] 0.856 0.392
SUVmax 6.184 ± 2.237 8.938 ± 2.670 10.088 <0.001
Tumour Thickness (cm) 1.673 ± 0.592 1.685 ± 0.547 0.193 0.847
TLG (mL×SUV) 76.15 [48.87, 105.05] 103.80 ± 46.76 -5.111 <0.001
SUVmean 7.97 [4.95, 11.12] 9.69 [7.30, 11.75] 2.989 0.003
MTV (mL) 8.76 [5.24, 12.09] 8.64 [5.09, 11.45] 0.606 0.545
Note: LVI: Lymphovascular Invasion, CA125: Cancer Antigen 125, CA199: Cancer Antigen 19-9, SUVmax: Maximum Standard-
ized Uptake Value, SUVmean: Mean Standardized Uptake Value, TLG: Total Lesion Glycolysis, MTV: Metabolic Tumor Volume, 
T Stage: Tumor Stage, N Stage: Node Stage, M Stage: Metastasis Stage, Clinical TNM Stage: Clinical Tumor-Node-Metastasis 
Stage.
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0.873-0.935), outperforming the PET (AUC 
=0.761, 95% CI: 0.709-0.812), CT (AUC=0.823, 
95% CI: 0.778-0.867), and PET/CT models 
(AUC=0.861, 95% CI: 0.822-0.901). This model 
also demonstrated the best sensitivity, speci-
ficity, Youden index, and accuracy (Table 6). 
DeLong test results confirmed statistically sig-
nificant differences in AUCs between the PET 
model and all other models (P<0.05), and 
between the CT and PET/CT models (P=0.005). 
The PET/CT + clinical model was significantly 
superior to all others (P<0.05; Table 7 and 
Figure 2).

NRI of the PET/CT + clinical model

NRI analysis demonstrated that the PET/CT + 
clinical model improved risk stratification by an 
overall rate of 10.35% (NRI=0.1035) compared 
to the PET/CT-only model. Specifically, the 
improvement was 3.26% (NRI+ =0.0326) for 
LVI-positive cases and 7.09% (NRI- =0.0709) 
for LVI-negative controls. In the LVI-positive 
group, 20.11% of patients were reclassified 
into higher-risk categories and 16.85% into 
lower-risk categories. In the LVI-negative group, 

29.08% were reclassified to lower-risk and 
21.99% to higher-risk categories. These results 
suggest that the new model significantly 
enhanced risk differentiation, particularly 
among LVI-negative patients (Figure 3).

Discussion

This study aimed to develop and validate a mul-
timodal predictive model incorporating PET/CT 
radiomic features and clinical data to preopera-
tively assess LVI status in patients with GC. A 
retrospective analysis of 325 patients with 
pathologically confirmed GC and documented 
LVI status demonstrated that the multimodal 
model - integrating PET/CT radiomic features 
with clinical variables - achieved excellent diag-
nostic performance, with an AUC of 0.904. This 
significantly outperformed the single-modality 
models, including PET (AUC=0.761), CT 
(AUC=0.823), and combined PET/CT (AUC 
=0.861). Furthermore, the multimodal model 
yielded a NRI of 10.35%, highlighting its poten-
tial clinical value in LVI risk stratification.

Multivariate logistic regression identified age, 
SUVmax, TLG, and LNM as independent predic-

Table 2. Variable coding table
Variable Classification
Age (years) <57.62=0, ≥57.62=1
SUVmax <7.055=0, ≥7.055=1
TLG (mL×SUV) <106.205=0, ≥106.205=1
SUVmean <8.045=0, ≥8.045=1
Lymph Node Metastasis Negative =0, Positive =1
Tumor Grade Well-Differentiated =1, Moderately Differentiated =2, Poorly Differentiated =3
Undifferentiated Type Undifferentiated =1, Diffuse =2, Mixed =3, Intestinal =4
LVI Negative =0, Positive =1
Note: LVI: Lymphovascular Invasion, SUVmean: Mean Standardized Uptake Value, TLG: Total Lesion Glycolysis, Clinical TNM 
Stage: Clinical Tumor-Node-Metastasis Stage.

Table 3. Multivariate logistic regression analysis for diagnostic variables of LVI
Variable β Value SE P-value OR Value Lower Upper
Age 1.646 0.397 <0.001 5.187 2.437 11.681
SUVmax -2.081 0.326 <0.001 0.125 0.064 0.232
TLG -1.033 0.311 0.001 0.356 0.192 0.652
SUVmean -0.344 0.307 0.262 0.709 0.388 1.294
Lymph Node Metastasis 1.705 0.355 <0.001 5.502 2.792 11.288
Tumor Grade 0.525 0.259 0.043 1.69 1.021 2.832
Undifferentiated Type -0.213 0.143 0.135 0.808 0.609 1.067
Note: LVI: Lymphovascular Invasion, SUVmean: Mean Standardized Uptake Value, TLG: Total Lesion Glycolysis, Clinical TNM 
Stage: Clinical Tumor-Node-Metastasis Stage.
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tors of LVI, reinforcing their potential for roles in 
the pathogenesis and progression of LVI in GC.

In recent years, radiomics has gained increas-
ing attention for its utility in GC diagnosis and 
prognostic evaluation. Prior studies have dem-
onstrated that PET/CT-derived parameters 
such as SUVmax, MTV, and TLG, are valuable 
for assessing tumor metabolism and invasive-
ness. Integrating radiomic features with clinical 
data has been shown to enhance LVI prediction 
accuracy [12]. For example, Chen et al. [13] 
found that contrast-enhanced CT-based 
radiomics effectively predicted LVI status in GC. 
However, single-modality imaging approaches, 
such as PET-only or CT-only, have inherent limi-
tations in sensitivity and specificity [14, 15].

This study addressed these limitations by com-
bining PET and CT radiomic features with clini-
cal data to construct a multimodal model, 
thereby improving prediction accuracy. Al- 
though consistent with findings from other mul-
timodal radiomics research, this study is dis-
tinct in several respects - including the large 
number of features extracted, the application 
of Lasso regression for dimensionality reduc-
tion, and the model’s enhanced clinical inter-
pretability and feasibility.

The multimodal model capitalizes on the com-
plementary strengths of PET and CT imaging. 
PET provides quantitative metrics of tumor 
metabolism (e.g., SUVmax and TLG), which 
reflect proliferative activity and glycolytic rate, 

Figure 1. Selection process of feature variables for CT, PET, and CT + PET models based on Lasso regression. A. CT 
Model Lasso Regression Selection Process: The left graph shows the variation in cross-validation error, and the right 
graph displays the path of regression coefficients for each variable, resulting in the selection of 28 feature variables. 
B. PET Model Lasso Regression Selection Process: The left graph shows the variation in cross-validation error, and 
the right graph displays the path of regression coefficients for each variable, resulting in the selection of 14 feature 
variables. C. CT + PET Combined Model Lasso Regression Selection Process: The left graph shows the variation in 
cross-validation error, and the right graph displays the path of regression coefficients for each variable, resulting in 
the selection of 33 feature variables. Note: CT: Computed Tomography, PET: Positron Emission Tomography, CT + 
PET: Combined Computed Tomography and Positron Emission Tomography, LASSO: Least Absolute Shrinkage and 
Selection Operator.
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while CT offers detailed anatomic and morpho-
logic information (e.g., tumor shape, volume, 
and boundary characteristics). By integrating 
these data sources, the model delivers a more 
comprehensive characterization of tumor biol-
ogy and the tumor microenvironment, ultimate-
ly enhancing the accuracy of preoperative LVI 
prediction.

This study identified age as an important inde-
pendent predictor of LVI, with older patients 
being more susceptible. This may be attributed 
to age-related declines in immune function, 
alterations in the tumor microenvironment, and 
changes in the expression of genes associated 
with tumor progression. Tumor cells in older 
individuals may exhibit greater invasiveness, 

Table 5. Comparison of score distributions between LVI-positive and LVI-negative patients across dif-
ferent models
Variable LVI-Positive Patients (n=189) LVI-Negative Patients (n=136) Statistic P-value
PET 0.40 [0.28, 0.56] 0.24 [0.08, 0.33] 8.021 <0.001
CT 0.54 [0.26, 0.86] 0.08 [-0.18, 0.25] 9.931 <0.001
PET/CT 0.58 [0.30, 0.86] -0.02 [-0.22, 0.23] 11.11 <0.001
PET/CT + Clinical Data 6.52 [4.56, 7.51] 2.68 ± 1.63 12.423 <0.001
Note: PET/CT: Positron emission tomography/computed tomography. Clinical Data (Age, SUVmax, TLG, Lymph Node Metasta-
sis).

Table 6. Diagnostic performance of various models

Marker AUC CI  
Lower-Upper Specificity Sensitivity Youden 

Index Cut-off Accuracy Precision F1 
Score

PET 0.761 0.709-0.812 76.47% 65.08% 41.55% 0.341 69.85% 65.08% 71.51%
CT 0.823 0.778-0.867 77.21% 75.13% 52.34% 0.264 76.00% 75.13% 78.45%
PET/CT 0.861 0.822-0.901 86.03% 71.96% 57.99% 0.354 77.85% 71.96% 79.07%
PET/CT + Clinical Data 0.904 0.873-0.935 91.91% 74.07% 65.99% 4.666 81.54% 74.07% 82.35%
Note: PET/CT: Positron emission tomography/computed tomography. Clinical Data (Age, SUVmax, TLG, Lymph Node Metastasis).

Table 7. Comparative analysis of AUC differences between diagnostic models
Marker1 Marker2 Z-value P-value AUC Difference CI Lower-Upper
PET CT -1.998 0.046 -0.062 -0.122
PET PET/CT -4.469 <0.001 -0.1 -0.088
PET PET/CT + Clinical Data -5.115 <0.001 -0.143 -0.11
CT PET/CT -2.777 0.005 -0.038 -0.054
CT PET/CT + Clinical Data -3.394 <0.001 -0.081 -0.094
PET/CT PET/CT + Clinical Data -2.018 0.044 -0.043 -0.083
Note: PET/CT: Positron emission tomography/computed tomography. Clinical Data (Age, SUVmax, TLG, Lymph Node Metasta-
sis).

Table 4. Multivariate analysis of clinically significant variables combined with PET/CT for constructing 
LVI diagnostic model
Variable β Value SE P-value OR Value Lower Upper
Age 1.807 0.443 <0.001 6.089 2.654 15.23
SUVmax -2.02 0.338 <0.001 0.133 0.067 0.252
TLG -0.989 0.327 0.002 0.372 0.194 0.702
Lymph Node Metastasis 1.601 0.367 <0.001 4.959 2.457 10.44
Tumor Grade 0.523 0.278 0.06 1.688 0.986 2.943
PET/CT 2.948 0.72 <0.001 19.063 5.501 99.417
Note: PET/CT: Positron emission tomography/computed tomography, LVI: Lymphovascular Invasion, SUVmean: Mean Standard-
ized Uptake Value, TLG: Total Lesion Glycolysis, Clinical TNM Stage: Clinical Tumor-Node-Metastasis Stage.
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increasing their propensity to infiltrate vascular 
and lymphatic structures [16-18].

Interestingly, SUVmax, which reflects the 
tumor’s highest metabolic activity, was inverse-
ly associated with LVI positivity. This suggests 
that tumors with lower metabolic activity may 
have a higher tendency for lymphatic dissemi-
nation [19]. While this finding contrasts with 
certain prior studies, it highlights the heteroge-
neity of tumor biology and warrants further 
investigation. One possible explanation is that 
a low SUVmax may indicate reduced prolifera-
tion but enhanced potential for invasion 
through alternative mechanisms, such as epi-
thelial-mesenchymal transition (EMT).

TLG, a composite measure of MTV and mean 
SUV, reflects the tumor’s overall metabolic bur-
den [20]. This study found that lower TLG val-
ues were also associated with LVI positivity, 
supporting the notion that tumors with lower 
metabolic activity may still exhibit high invasive 
and metastatic potential. Some studies sug-

and machine learning models have demon-
strated the potential of advanced imaging for 
LVI and LNM prediction, supporting the multi-
modal approach adopted in this study. Similarly, 
Xue et al. [27] showed that combining radiomic 
features with traditional clinical indicators sig-
nificantly improves LNM prediction accuracy. 
Ge et al. [28] validated the role of multimodal 
radiomics using spectral CT and machine learn-
ing techniques, in line with our findings.

The multimodal predictive model developed in 
this study exhibited high diagnostic accuracy in 
preoperatively assessing LVI status in GC 
patients and offers substantial clinical utility. It 
may aid clinicians in surgical planning, includ-
ing determining resection margins and guiding 
lymphadenectomy, possibly reducing surgical 
trauma and recurrence. Moreover, the model 
facilitates early identification of high-risk 
patients, enabling individualized adjuvant ther-
apies such as chemotherapy, radiotherapy, or 
targeted treatment. Preoperative LVI prediction 
also provides prognostic insights and informs 

Figure 2. ROC curves and AUC comparison of various predictive models. 
Note: ROC: Receiver Operating Characteristic, AUC: Area Under the Curve, 
CT: Computed Tomography, PET: Positron Emission Tomography, PET/CT: 
Combined Computed Tomography and Positron Emission Tomography. Clini-
cal Data (Age, SUVmax, TLG, Lymph Node Metastasis).

gest that such tumors may 
leverage alternative invasion 
pathways, including EMT, to 
promote LVI [21].

Additionally, Kim et al. [22] 
reported that endoscopic fea-
tures - such as tumor morphol-
ogy and surface color changes 
- can serve as valuable predic-
tors of LVI. Lin et al. [23], 
through an international multi-
center study, developed a pre-
dictive model based on preop-
erative factors for assessing 
LVI and LNM, underscoring the 
importance of multimodal inte-
gration for clinical prediction.

LNM is a crucial clinical indica-
tor of LVI, reflecting tumor 
aggressiveness and metastat-
ic potential. Patients with LNM 
are more likely to exhibit LVI. 
Oh et al. [24] identified tumor 
size, depth of invasion, and 
histologic type as significant 
predictors of LNM, indepen-
dent of LVI status. Meanwhile, 
studies by Xue et al. [25] and 
Zhu et al. [26] using PET-CT 
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follow-up strategies, allowing for timely detec-
tion of recurrence or metastasis.

The implementation of PET/CT radiomic analy-
sis is feasible in clinical settings, leveraging 
existing imaging platforms and standardized 
workflows. The use of automated image acqui-
sition and feature extraction tools supports 
seamless integration into clinical practice. 
Furthermore, incorporating electronic medical 
record data enhances workflow efficiency and 
enables real-time prediction to support person-
alized treatment decisions.

This study has several strengths. The relatively 
large sample size (n=325) enhances the statis-
tical power and reliability of the findings. The 
integration of PET/CT radiomic features with 
clinical data improved predictive performan- 
ce by leveraging complementary information 
sources. The application of Lasso regression 
for high-dimensional feature selection reduced 
model complexity while maintaining interpret-
ability. Diagnostic performance was rigorously 
evaluated through ROC analysis and AUC 
comparison.

model combining PET/CT radiomic features 
with clinical data, demonstrating strong diag-
nostic performance in preoperative LVI assess-
ment among GC patients. The model holds sig-
nificant clinical potential in guiding personalized 
treatment and improving patient outcome.
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Table S1. The CT feature variables were filtered by lasso
variable weight
original_shape_Sphericity.CT 0.451269435
log.sigma.3.0.mm.3D_ngtdm_Coarseness.CT 2.960767109
wavelet.LHH_gldm_SmallDependenceEmphasis.CT -0.141650226
wavelet.HLH_glszm_GrayLevelVariance.CT 0.002438399
original_glszm_SizeZoneNonUniformityNormalized.CT 1.331090563
log.sigma.4.0.mm.3D_glcm_Contrast.CT 0.07606041
original_glszm_SmallAreaEmphasis.CT 13.31256998
wavelet.LHL_firstorder_Entropy.CT 0.014365532
wavelet.LLH_glcm_Idmn.CT -0.348362421
wavelet.LLH_glszm_LargeAreaLowGrayLevelEmphasis.CT -0.007743832
wavelet.HLH_firstorder_Kurtosis.CT 4.492034252
original_glcm_Correlation.CT 0.019309818
original_glcm_ClusterProminence.CT -0.462714481
original_firstorder_Skewness.CT 6.640129682
wavelet.LHL_glcm_Contrast.CT -4.19636E-05
wavelet.LLL_glcm_Imc1.CT 0.008845578
wavelet.HLL_glszm_LargeAreaHighGrayLevelEmphasis.CT -2.391167812
log.sigma.2.5.mm.3D_glcm_Dissimilarity.CT -6.022301129
wavelet.LLL_glszm_SmallAreaEmphasis.CT -11.3729082
wavelet.HHL_gldm_DependenceEntropy.CT -0.291766899
wavelet.HHH_glcm_ClusterShade.CT 1.339092137
wavelet.LHH_firstorder_Median.CT -0.034970394
wavelet.LHL_glszm_LargeAreaEmphasis.CT -2.578511172
wavelet.LHL_glcm_Idn.CT -1.105948524
wavelet.HLL_glszm_HighGrayLevelZoneEmphasis.CT 0.002052111
wavelet.LHH_firstorder_Kurtosis.CT 0.080220315
wavelet.HLH_firstorder_Energy.CT -0.101156592
wavelet.LHH_glszm_SizeZoneNonUniformityNormalized.CT 0.007451411

Table S2. The PET feature variables were filtered by lasso
variable weight
wavelet.HHH_glcm_ClusterShade.PET -1.647612368
wavelet.HLL_glszm_LargeAreaHighGrayLevelEmphasis.PET 0.585577283
original_glszm_SmallAreaEmphasis.PET -1.584806561
original_glszm_SizeZoneNonUniformityNormalized.PET -0.949995944
wavelet.LLH_glszm_LargeAreaLowGrayLevelEmphasis.PET 0.013887931
wavelet.LHH_glszm_SizeZoneNonUniformityNormalized.PET 0.120520629
wavelet.HLH_firstorder_Kurtosis.PET 1.813839574
log.sigma.3.0.mm.3D_ngtdm_Coarseness.PET -1.77937138
wavelet.LHH_firstorder_Median.PET -0.163115928
log.sigma.2.5.mm.3D_glcm_Dissimilarity.PET -0.023021383
wavelet.LLL_glcm_Imc1.PET -0.206481766
original_firstorder_Skewness.PET 0.425849364
wavelet.HLH_glszm_GrayLevelVariance.PET 0.600941031
wavelet.LHH_gldm_SmallDependenceEmphasis.PET 1.572385006
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Table S3. The CT / PET feature variables were filtered by lasso
variable weight
wavelet.HHH_glcm_ClusterShade.PET -2.377105435
wavelet.HLL_glszm_LargeAreaHighGrayLevelEmphasis.PET 0.64071659
wavelet.HHL_glcm_Idn.PET 0.249045766
original_glszm_SmallAreaEmphasis.PET -0.369968448
log.sigma.3.0.mm.3D_ngtdm_Coarseness.CT 0.978214558
wavelet.LHH_gldm_SmallDependenceEmphasis.CT -0.143843241
wavelet.HLH_glszm_GrayLevelVariance.CT 0.001405012
original_glszm_SizeZoneNonUniformityNormalized.CT 1.353130597
original_glszm_SmallAreaEmphasis.CT 7.579289356
wavelet.LHL_firstorder_Entropy.CT 0.006726383
original_glszm_SizeZoneNonUniformityNormalized.PET -1.381720385
wavelet.LLH_glcm_Idmn.CT -0.194975259
wavelet.LLH_glszm_LargeAreaLowGrayLevelEmphasis.CT -0.007176366
wavelet.HLH_firstorder_Kurtosis.CT 3.683144761
wavelet.LHH_glszm_SizeZoneNonUniformityNormalized.PET 0.772132618
wavelet.HLH_firstorder_Kurtosis.PET 3.089325336
original_firstorder_Skewness.CT 3.188204198
wavelet.LLL_glcm_Imc1.CT 0.013712976
wavelet.HLL_glszm_LargeAreaHighGrayLevelEmphasis.CT -0.928407935
log.sigma.3.0.mm.3D_ngtdm_Coarseness.PET -2.330698235
log.sigma.2.5.mm.3D_glcm_Dissimilarity.CT -5.223945643
wavelet.LLL_glszm_SmallAreaEmphasis.CT -8.900796857
log.sigma.2.5.mm.3D_glcm_Dissimilarity.PET -0.027907699
wavelet.HHL_gldm_DependenceEntropy.CT -0.087199486
log.sigma.4.0.mm.3D_glcm_Contrast.PET -0.000484795
wavelet.HHH_glcm_ClusterShade.CT 1.212315196
wavelet.LHH_firstorder_Median.CT -0.017543072
wavelet.LHL_glszm_LargeAreaEmphasis.CT -3.345517292
wavelet.LLL_glcm_Imc1.PET -0.110072218
wavelet.LHL_glcm_Idn.CT -0.427666102
wavelet.HLL_glszm_HighGrayLevelZoneEmphasis.CT 0.001400157
wavelet.HLH_firstorder_Energy.CT -0.0870774
wavelet.LHH_gldm_SmallDependenceEmphasis.PET 1.473854946


