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Abstract: Purpose: Chronic Hepatitis B (CHB) is a leading cause of liver fibrosis. Accurate and non-invasive diagnosis 
of liver fibrosis in CHB patients is of critical clinical importance. This study aimed to develop and validate machine 
learning (ML)-based models for predicting significant liver fibrosis in CHB patients. Methods: This retrospective 
cohort study included 328 CHB patients (225 with non-significant liver fibrosis and 103 with significant liver fibro-
sis) from 2017 to 2022. Four ML models were constructed based on four selected features identified through the 
least absolute shrinkage and selection operator (LASSO) regression. Model performance was assessed using the 
receiver operating characteristic (ROC) curve, and the area under the curve (AUC), accuracy, sensitivity, specific-
ity, and SHapley Additive exPlanations (SHAP) analysis. Results: The random forest (RF) model demonstrated the 
highest predictive performance, with an AUC of 0.874 (95% CI: 0.813-0.934) in the training set and 0.863 (95% 
CI: 0.772-0.955) in the test set, outperforming extreme gradient boosting (XGBoost), logistic regression (LR), and 
support vector machine (SVM). Compared with the traditional fibrosis indices such as aspartate aminotransferase 
to platelet ratio index (APRI) (AUC = 0.585) and fibrosis-4 (FIB-4) (AUC = 0.633), the RF model (AUC = 0.863) demon-
strated significantly higher predictive accuracy. SHAP analysis identified platelet count (PLT) as the most influential 
predictor in the RF model. Conclusion: The ML-based RF model offers a highly accurate, non-invasive interpretable 
tool for predicting significant liver fibrosis in patients with CHB, offering potential for clinical application in routine 
fibrosis risk assessment.
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Introduction

Chronic hepatitis B (CHB) remains a major  
global public health concern with severe impli-
cations for human health [1, 2]. Persistent 
infection with the hepatitis B Virus (HBV) can 
lead to chronic hepatic inflammation, gradually 
progressing to liver fibrosis. Without timely 
diagnosis and intervention, fibrosis may ad- 
vance to cirrhosis or hepatocellular carcinoma, 
severely affecting patient prognosis and quality 
of life [3, 4]. Although liver biopsy is considered 
the “gold standard” for diagnosing liver fibrosis, 
it is an invasive procedure associated with risks 
such as bleeding and infection. Moreover, the 
sampling limitations of liver biopsy may lead to 
inaccurate assessments of the overall fibrosis 
extent, complicating frequent dynamic monitor-
ing [5, 6]. 

Currently, numerous studies have focused on 
developing non-invasive diagnostic models for 
liver fibrosis, such as the aspartate aminotr- 
ansferase-to-platelet ratio index (APRI) (AUC = 
0.660) and fibrosis-4 (FIB-4) [7]. However, 
these models have certain limitations in accu-
rately predicting liver fibrosis in CHB patients, 
particularly in distinguishing different fibrosis 
stages [8, 9], necessitating further improve-
ment in diagnostic performance. In recent 
years, machine learning (ML) has emerged as  
a powerful tool in disease diagnosis and pre- 
diction. ML-based models leverage large datas-
ets and complex feature interactions to iden- 
tify hidden patterns and nonlinear relationships 
that traditional statistical models might over-
look [10, 11]. By integrating clinical, biochemi-
cal, imaging, and genetic data, ML algorithms 
have demonstrated promising potential in im- 
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proving the accuracy, robustness, and general-
izability of liver fibrosis prediction [12, 13]. 
Recent studies have indicated the potential of 
ML-based models in liver fibrosis grading. For 
instance, shear wave velocity-based ML algo-
rithm outperformed median shear wave velo- 
city in identifying significant hepatic fibrosis, 
with performance comparable to MR elastogra-
phy-based fibrosis staging [14]. Li et al. have 
revealed that ML-based algorithms effectively 
stage liver disease by quantifying arterial den-
sity and correlating it with collagen proportion-
ate area and METAVIR staging [15]. Despite 
these advancements, challenges persist in the 
clinical implementation of ML-based fibrosis 
models, including dataset heterogeneity, the 
need for external validation across diverse po- 
pulations, and the interpretability of complex 
ML algorithms for clinical decision-making. 
Therefore, further research is needed to refine 
ML-based fibrosis models, optimize biomarker 
selection, and enhance their clinical integration 
for improved patient management.

In this study, we selected essential predictive 
variables and developed four ML-based classifi-
cation models, including random forest (RF), 
support vector machines (SVM), extreme gra- 
dient boosting (XGBoost), and logistic pegres-
sion (LR). We evaluated their efficacy in predict-
ing significant liver fibrosis. Our findings sug-
gest that ML models, particularly RF, offer 
superior diagnostic accuracy and clinical utility 
compared to traditional scoring systems. By 
providing a non-invasive and objective fibrosis 
assessment approach, these models hold po- 
tential for facilitating early intervention and 
individualized patient management in CHB.

Materials and methods

Study population

This retrospective cohort study was conducted 
at Xinjiang Uygur Autonomous Region People’s 
Hospital. Clinical data were collected from 328 
patients diagnosed with CHB between January 
2017 and December 2022. The included crite-
ria were: (1) patients who met the diagnostic 
criteria for CHB; (2) availability of liver biopsy 
histopathological results; (3) complete clinical 
data. The exclusion criteria were: (1) presence 
of other liver diseases, such as non-alcoholic 
fatty liver disease or autoimmune hepatitis; (2) 
diagnosis of decompensated cirrhosis, hepato-

cellular carcinoma, or other severe hepatic dys-
function; (3) presence of other malignancies, or 
severe heart, kidney, or pulmonary diseases; 
(4) continued use of medications known to 
affect liver function for more than three mon- 
ths. This study was approved by the Ethics 
Committee of Xinjiang Uygur Autonomous Re- 
gion People’s Hospital (No. KY2024052420).

Diagnostic criteria

The diagnostic criteria for CHB were based on 
the Guidelines for the Prevention and Treatment 
of Chronic Hepatitis B (2022 Edition), which 
classify CHB into chronic HBV carrier state, 
HBeAg-positive CHB, inactive HBsAg carrier 
state, HBeAg-negative CHB, occult HBV infec-
tion, and compensated cirrhosis in HBV-related 
liver cirrhosis. The diagnostic criteria for liver 
fibrosis followed the Consensus on the Dia- 
gnosis and Treatment of Liver Fibrosis (2019 
Edition), using the Scheuer scoring system to 
classify fibrosis into five stages. Significant 
fibrosis was defined as Scheuer stage ≥ S2, 
characterized by the presence of fibrous septa 
or bridging fibrosis, whereas S0-S1 was classi-
fied as non-significant fibrosis.

Feature selection

Based on previous studies on liver fibrosis and 
clinical practice at our hospital, a total of 32 
variables were collected as candidate features. 
The selected variables were categorized into 
three main groups: (1) Baseline characteris- 
tics: sex, age, history of hypertension, history of 
diabetes, smoking history, alcohol consump-
tion history, and body mass index (BMI); (2) 
Blood biochemical parameters: C-reactive pro-
tein (CRP), creatinine (Crea), prealbumin (PA), 
cystatin C (Cys_C), alanine aminotransferase 
(ALT), aspartate aminotransferase (AST), gam-
ma-glutamyl transferase (GGT), indirect biliru-
bin (IBIL), total bilirubin (TBIL), direct bilirubin 
(DBIL), albumin (ALB), globulin (GLO), total pro-
tein (TP), alkaline phosphatase (ALP), alpha-
fetoprotein (AFP), cholinesterase (ChE), total 
bile acid (TBA), Triglycerides (TG), total cho- 
lesterol (TC), low-density lipoprotein choleste- 
rol (LDL-C), high-density lipoprotein cholesterol 
(HDL-C), platelet count (PLT), prothrombin time 
(PT), prothrombin activity (PTA), and fibrinogen 
(Fbg); (3) Pathological diagnosis results.

BMI classification was based on the Chinese 
Adult BMI Classification Standard (WS/T 428-
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2013): underweight (BMI < 18.5 kg/m2), nor-
mal weight (18.5 kg/m2 ≤ BMI < 24.0 kg/m2), 
overweight (24.0 kg/m2 ≤ BMI < 28.0 kg/m2), 
and obese (BMI ≥ 28.0 kg/m2). 

A comprehensive screening of all 32 varia- 
bles was performed using univariate statistical 
tests to identify factors significantly associat- 
ed with liver fibrosis. To mitigate multicollinear-
ity and reduce the risk of overfitting, the least 
absolute shrinkage and selection operator 
(LASSO) regression algorithm was employed, 
enabling the selection of the most informative 
variables by penalizing less relevant features 
and shrinking their coefficients to zero. Key 
variables identified via LASSO regression were 
subsequently subjected to multivariate logistic 
regression to evaluate their independent asso-
ciations with significant liver fibrosis.

Construction and performances assessment 
of the ML models

Patients were randomly assigned into two 
groups, with 70% allocated to the training set 
and the remaining 30% to the testing set. Using 
the selected predictive factors, four ML models 
were developed, including LR, RF, SVM, and 
XGBoost. The receiver operating characteristic 
(ROC) curve was plotted, and the area under 
the curve (AUC) was calculated to examine the 
overall classification capability of the models. 
Additionally, the precision-recall (PR) curve was 
analyzed to evaluate the models’ classification 
performance at various thresholds. Further- 
more, the calibration curve was employed to 
evaluate the concordance between predicted 
probabilities and actual event occurrences, 
while the decision curve analysis (DCA) was 
conducted to quantify the net clinical benefit  
of each model across different decision thresh-
olds. To comprehensively evaluate model per-
formance, key metrics including the F1-score, 
accuracy, specificity, and sensitivity were com-
puted and compared. Moreover, to enhance 
model stability and generalizability, a ten-fold 
cross-validation approach was employed dur-
ing both model training and validation, minimiz-
ing the impact of data partitioning and improv-
ing robustness. 

Visualization of the prediction by SHapley Addi-
tive exPlanations (SHAP)

SHAP is a machine learning interpretability 
method that quantifies the contribution of fea-

tures to model predictions by calculating Sha- 
pley values. The principle behind SHAP is to 
objectively quantify the synergistic and inde-
pendent effects of various features on a spe-
cific prediction outcome by calculating the 
weighted average effect of all possible feature 
subset combinations.

In this study, we first calculated the absolute 
SHAP values of each feature to quantify their 
contribution to the prediction model, and gen-
erated SHAP waterfall and swarm plots to vi- 
sualize the results. These visualizations were 
compared with clinical guideline indicators to 
ensure that the decision-making logic of the 
model is in line with evidence-based medical 
knowledge.

Statistical analysis

Data analysis was carried out with SPSS 28.0 
and Python 3.11 statistical software. For nor-
mally distributed continuous variables, the 
results were expressed as mean ± standard 
deviation (

_
x  ± s), and comparisons between 

groups were conducted using the t-test. For 
skewed distribution of continuous variables, 
the results were presented as median and 
interquartile range [M (Q1, Q3)], with compari-
sons conducted using non-parametric tests. 
Categorical variables were presented as fre-
quency and proportions, with comparisons per-
formed using the χ2 test. Corrected χ2 test or 
Fisher exact test was used when the expecta-
tion value did not meet the requirements of the 
χ2 test. A p-value of < 0.05 was considered sta-
tistically significant for all analyses. The λ value 
corresponding to one standard error above the 
minimum λ (λ.1se) was chosen as the optimal 
threshold.

Results

Patient demographics and baseline character-
istics

In this study, 328 patients with CHB were 
enrolled. Based on pathological findings, the 
patients were categorized into a non-significant 
liver fibrosis group (225 cases) and a significant 
liver fibrosis group (≥ S2; 103 cases). Statistical 
analysis was conducted to compare the clini- 
cal characteristics between the two groups. No 
substantial differences were found between 
the two groups regarding gender, BMI, history 
of hypertension, history of diabetes, alcohol 
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Table 1. Comparison of clinical data between the non-significant liver fibrosis and significant liver 
fibrosis groups

Variables Non-significant liver  
fibrosis group

Significant liver  
fibrosis group Statistical values P

Gender (cases)
    Male 135 (60.0%) 66 (64.1%) χ2 = 0.495 0.482
    Female 90 (40.0%) 37 (35.9%)
Age (years)
    ≤ 40 133 (59.1%) 51 (49.5%) χ2 = 10.235 0.006
    40-59 84 (37.3%) 39 (37.9%)
    ≥ 60 8 (3.6%) 13 (12.6%)
BMI (kg/m2)
    Underweight 10 (4.4%) 2 (1.9%) χ2 = 6.165 0.104
    Normal 102 (45.3%) 37 (35.9%)
    Overweight 84 (37.3%) 42 (40.8%)
    Obese 29 (12.9%) 22 (21.4%)
History of hypertension 
    Yes 17 (7.6%) 7 (6.8%) χ2 = 0.060 0.806
    No 208 (92.4%) 96 (93.2%)
History of diabetes mellitus 
    Yes 8 (3.6%) 4 (3.9%) χ2 = 0.022 0.883
    No 217 (96.4%) 99 (96.1%)
Alcohol consumption history
    Yes 38 (16.9%) 26 (25.2%) χ2 = 3.140 0.076
    No 187 (83.1%) 77 (74.8%)
Smoking history 
    Yes 44 (19.6%) 27 (26.2%) χ2 = 1.847 0.174
    No 181 (80.4%) 76 (73.8%)
PT (s) 11.90 (11.20, 12.78) 12.50 (11.78, 13.39) Z = -3.920 < 0.001
PTA (%) 96.26 ± 15.19 85.76 ± 16.83 t = 5.589 < 0.001
ALB (g/L) 40.47 ± 4.53 38.58 ± 4.78 t = 3.433 0.001
LDL-C (mmol/L) 2.58 ± 0.70 2.35 ± 0.62 t = 2.855 0.005
HDL-C (mmol/L) 1.09 (0.97, 1.25) 1.04 (0.91, 1.22) Z = -1.675 0.094
TP (g/L) 68.08 ± 6.04 70.27 ± 6.55 t = -2.966 0.003
ChE (U/L) 9.17 ± 2.96 7.91 ± 2.71 t = 3.678 < 0.001
CRP (mg/L) 3.23 (1.99, 4.91) 4.10 (2.35, 15.64) Z = -2.726 0.006
Crea (μmol/L) 65.17 (54.12, 75.00) 64.35 (55.30, 75.58) Z = -0.305 0.760
PA (mg/dL) 22.24 (19.65, 24.35) 19.20 (16.40, 22.10) Z = -5.501 < 0.001
Cys-C (mg/L) 0.85 (0.76, 0.99) 0.94 (0.83, 1.03) Z = -2.972 0.003
Fbg (g/mL) 2.35 (2.01, 2.74) 2.12 (1.83, 2.49) Z = -2.985 0.003
GLO (g/L) 22.80 (18.79, 27.70) 24.34 (19.95, 29.68) Z = -2.360 0.018
PLT (×109/L) 217.29 ± 60.16 161.10 ± 56.81 t = 7.954 < 0.001
ALT (U/L) 29.00 (20.00, 51.24) 50.00 (32.75, 98.05) Z = -6.264 < 0.001
AST (U/L) 23.00 (18.00, 33.05) 38.00 (28.00, 67.00) Z = -7.733 < 0.001
DBIL (μmol/L) 4.50 (2.93, 6.30) 5.70 (4.14, 8.66) Z = -4.560 < 0.001
IBIL (μmol/L) 7.3 (5.22, 11.00) 8.6 (6.28, 12.80) Z = -2.365 0.018
TBIL (μmol/L) 12.10 (8.91, 16.94) 15.15 (10.53, 21.08) Z = -3.530 < 0.001
TC (mmol/L) 4.19 (3.60, 4.67) 4.06 (3.55, 4.49) Z = -1.987 0.047
TG (mmol/L) 1.10 (0.82, 1.54) 1.03 (0.84, 1.38) Z = -0.789 0.430
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ALP (U/L) 67.21 (55.14, 77.95) 76.50 (60.36, 93.00) Z = -3.700 < 0.001
TBA (μmol/L) 6.37 (4.06, 9.91) 11.95 (6.83, 19.84) Z = -6.390 < 0.001
AFP (μg/L) 2.75 (1.85, 4.13) 4.90 (3.31, 10.85) Z = -7.496 < 0.001
GGT (U/L) 21.00 (15.00, 34.56) 42.00 (24.38, 80.25) Z = -6.907 < 0.001
BMI: Body Mass Index; PT: Prothrombin Time; PTA: Prothrombin Activity; ALB: Albumin; LDL-C: Low-Density Lipoprotein Choles-
terol; HDL-C: High-Density Lipoprotein Cholesterol; TP: Total Protein; ChE: Cholinesterase; CRP: C-Reactive Protein; Crea: Cre-
atinine; PA: Prealbumin; Cys-C: Cystatin C; Fbg: Fibrinogen; GLO: Globulin; PLT: Platelet Count; ALT: Alanine Aminotransferase; 
AST: Aspartate Aminotransferase; DBIL: Direct Bilirubin; IBIL: Indirect Bilirubin; TBIL: Total Bilirubin; TC: Total Cholesterol; TG: 
Triglyceride; ALP: Alkaline Phosphatase; TBA: Total Bile Acids; AFP: Alpha-Fetoprotein; GGT: Gamma-Glutamyl Transferase.

consumption, smoking history, HDL-C, Crea, 
and TG levels (P > 0.05). However, significant 
differences were detected in age, PT, PTA, ALB, 
LDL-C, TP, ChE, CRP, PA, Cys-C, Fbg, GLO, PLT, 
ALT, AST, DBIL, IBIL, TBIL, TC, ALP, TBA, AFP, 
and GGT between the two groups (P < 0.05). 
Detailed data are presented in Table 1.

Identification of key predictors for significant 
liver fibrosis in CHB using LASSO regression

LASSO regression was employed to identify  
the most relevant predictors for liver fibrosis 
diagnosis. Using 10-fold cross-validation, the  
λ value was selected based on the one-stan-
dard-error (1-SE) rule. This rule assumes that 
the cross-validation error does not exceed the 
minimum error by one standard error, and the  
λ value that minimizes model parameters was 

1.181, 95% CI: 1.100-1.267) were indepen-
dent predictors for significant liver fibrosis in 
CHB patients (P < 0.05; Table 2), suggesting 
their potential clinical utility in fibrosis as- 
sessment.

Construction and evaluation of ML-based 
diagnostic models for significant liver fibrosis 
in CHB patients

To develop non-invasive diagnostic models for 
significant liver fibrosis, the dataset was ran-
domly split into a training set (70%) and a test 
set (30%). Key clinical indicators, including  
PTA, PLT, ALB, and TP were selected as model 
input features. Using the training set, four 
machine learning models (RF, SVM, XGBoost, 
and LR) were constructed and validated with  
a 10-fold cross-validation method. The ROC 

Figure 1. Mean square error path using 10-fold cross validation in the least 
absolute shrinkage and selection operator (LASSO) regression model. The 
x-axis represents the log-transformed λ values (Log_Lambda). The y-axis 
represents the cross-validation error (CVM), with error bars indicating stan-
dard deviations.

selected as the optimal po- 
int. The LogLambda_1se value 
identified in this study was 
-3.257, which was used to 
finalize the selection of key 
clinical characteristic varia- 
bles. 

The LASSO regression analys- 
is identified seven key clinical 
feature variables, including PA, 
PTA, PLT, ALT, GGT, ALB, and TP 
(Figures 1, 2). Subsequently, 
the seven key feature varia- 
bles were entered into a multi-
variate logistic regression an- 
alysis to assess their indepen-
dent associations with signifi-
cant liver fibrosis in CHB pa- 
tients. The findings indicated 
that PTA (OR = 0.977, 95%  
CI: 0.956-0.998), PLT (OR = 
0.985, 95% CI: 0.980-0.990), 
ALB (OR = 0.848, 95% CI: 
0.754-0.953), and TP (OR = 
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Figure 2. Cross-validation for tuning parameter selection in the LASSO re-
gression model. The x-axis represents the log-transformed λ values (Log_
Lambda), where λ is the regularization parameter. The y-axis represents the 
CVM, with error bars indicating standard deviations.

curve analysis revealed that the RF model 
exhibited the highest predictive ability, with an 
AUC of 0.874 (95% CI: 0.813-0.934), outper-
forming XGBoost (AUC = 0.865, 95% CI: 0.802-
0.928), LR (AUC = 0.861, 95% CI: 0.797-0.926), 
and SVM (AUC = 0.852, 95% CI: 0.785-0.919) 
(Figure 3A). The RF model demonstrated supe-
rior performance in both precision and recall, 
highlighting its strong ability to accurately iden-
tify positive cases (Figure 3B). To evaluate the 
clinical applicability of these models, DCA cur- 
ves were plotted. The results indicated that the 
RF model yielded the highest net benefit across 
different probability thresholds (Figure 3C). In 
addition, the RF model showed excellent cali-
bration, with a lower Brier score than the other 
three models, and the predicted probability 
was highly consistent with the actual results of 
significant liver fibrosis (Table 3; Figure 3D).

Performance evaluation of ML models on the 
test set

The performance of the four ML models in pre-
dicting significant liver fibrosis in CHB patients 
was then evaluated using the test set. Among 
the models, RF achieved the highest predictive 
performance, with an AUC of 0.863 (95% CI: 
0.772-0.955), followed by XGBoost (AUC = 
0.846, 95% CI: 0.750-0.942), LR (AUC = 0.843, 

95% CI: 0.748-0.939), and 
SVM (AUC = 0.841, 95% CI: 
0.746-0.937). Further valida-
tion through ROC curves, PR 
curves, DCA analysis, and ca- 
libration plots confirmed the 
superior predictive performan- 
ce of RF, particularly in han-
dling imbalanced datasets and 
demonstrating higher clinical 
applicability (Figure 4A-D). The 
PR curve analysis indicated 
that RF had the highest preci-
sion-recall AUC (0.768), while 
DCA showed that RF provided 
the greatest net benefit ac- 
ross various risk thresholds. 
Additionally, calibration curve 
analysis demonstrated that RF 
exhibited the best agreement 
between predicted and ob- 
served probabilities (Table 4), 
underscoring its potential as  
a non-invasive and effective 

diagnostic model for CHB-related significant 
fibrosis. 

Feature importance and contribution to signifi-
cant liver fibrosis prediction in CHB patients

To further examine the predictive power of the 
RF model, we compared its performance with 
traditional fibrosis assessment models, includ-
ing APRI and FIB-4. FIB-4 contains 4 indexes, 
ALT, AST, PLT and age, and its calculation for-
mula is 4FIB

PLT ALT
Age AST- =

#

# . FIB-4 score < 1.45 usually 
indicates no significant liver fibrosis or fibrosis 
grade ≤ 2, while a score > 3.25 indicates se- 
vere fibrosis (grade 3 or 4).

Our results demonstrated that the RF model 
exhibited superior diagnostic accuracy (AUC = 
0.863, 95% CI: 0.772-0.955), significantly sur-
passing APRI (AUC = 0.585, 95% CI: 0.494-
0.677) and FIB-4 (AUC = 0.633, 95% CI: 0.509-
0.756) (Table 5). Meanwhile, the results of the 
Delong test showed that the ROC curve perfor-
mance of the RF model was significantly supe-
rior to that of both the APRI and FIB-4 models 
(Table 6). These findings suggest that within 
the scope of this study, the RF model may be  
a potentially more accurate and efficient tool 
for identifying significant liver fibrosis in CHB 
patients compared to traditional scoring sy- 
stems. 
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Table 2. Seven key feature variables were included in the multifactor logistic regression analysis

Variables b SE (b) Wald P OR
95% CI

Lower limit Upper limit
PA -0.051 0.040 1.616 0.204 0.951 0.879 1.028
PTA -0.024 0.011 4.775 0.029 0.977 0.956 0.998
PLT -0.015 0.003 30.964 0.000 0.985 0.980 0.990
ALT 0.002 0.002 1.056 0.304 1.002 0.998 1.006
GGT 0.003 0.003 0.937 0.333 1.003 0.997 1.009
ALB -0.165 0.059 7.710 0.005 0.848 0.754 0.953
TP 0.166 0.036 21.366 0.000 1.181 1.100 1.267
PA: Prealbumin; PTA: Prothrombin Activity; PLT: Platelet Count; ALT: Alanine Aminotransferase; GGT: Gamma-Glutamyl Transfer-
ase; ALB: Albumin; TP: Total Protein.

Figure 3. Construction and evaluation of ML-based diagnostic models for significant liver fibrosis in CHB patients 
using the training set. A. Receiver operating characteristic (ROC) curves for four ML models, including logistic regres-
sion (LogisticTEST), random forest (RFTEST), support vector machine (SVMTEST), and extreme gradient boosting 
(XGBTEST). The x-axis represents 1-specificity (false positive rate), and the y-axis represents sensitivity (true positive 
rate). The dashed diagonal line represents the random classification baseline (AUC = 0.5). B. The precision-recall 
(PR) curve provides a comparative analysis of the predictive performance of four ML models. The dashed diagonal 
line represents the baseline performance of a random classifier. C. Decision curve analysis (DCA) curve evaluates 
the clinical net benefit of four ML models. The x-axis represents the risk threshold, which determines the probability 
at which a patient would be classified as high-risk and receive intervention. The y-axis represents the net benefit, 
calculated by considering both the true positives and false positives. D. The agreement between predicted probabili-
ties and observed outcomes for four ML models was analyzed through the calibration plot. The x-axis represents the 
predicted probability of the event occurring. The y-axis represents the observed proportion of actual outcomes. The 
dashed diagonal line represents the ideal calibration line, where predicted probabilities perfectly match observed 
proportions.

SHAP analysis was employed to determine the 
contribution of individual features to RF mod-
el’s predictions. The SHAP feature importance 

plot indicated that different features had vary-
ing impacts on the model’s prediction, with PLT 
showing the highest absolute SHAP value. In 
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Table 3. Diagnostic efficacy of four machine learning models in predicting significant liver fibrosis in 
the training set
Models Accuracy Precision F1-Score AUC Specificity Recall MCC Brier
RF 0.803 0.733 0.629 0.874 0.913 0.550 0.508 0.133
XGBoost 0.788 0.773 0.548 0.865 0.946 0.425 0.457 0.136
SVM 0.773 0.692 0.545 0.852 0.913 0.450 0.420 0.147
Logistic 0.803 0.769 0.606 0.861 0.935 0.500 0.502 0.137
RF: Random Forest; XGBoost: eXtreme Gradient Boosting; SVM: Support Vector Machine; Logistic: Logistic Regression.

Figure 4. Evaluation of ML-based diagnostic models for significant liver fibrosis in CHB patients using the test set. A. 
Receiver operating characteristic (ROC) curves of four ML models were compared, with corresponding AUC values 
and optimal thresholds presented. B. The precision-recall curves for the four ML models and indicated their respec-
tive AUC values. C. Decision curve analysis (DCA) curves for four ML models. D. The calibration plot for the four 
models, comparing the predicted probabilities with the actual observed proportions.

Table 4. Diagnostic efficacy of four machine learning models in predicting significant liver fibrosis in 
the test set
Models Accuracy Precision F1-Score AUC Specificity Recall MCC Brier
RF 0.788 0.714 0.682 0.863 0.860 0.652 0.524 0.144
XGBoost 0.803 0.813 0.667 0.846 0.930 0.565 0.551 0.150
SVM 0.788 0.765 0.650 0.841 0.907 0.565 0.515 0.159
Logistic 0.833 0.833 0.732 0.843 0.930 0.652 0.623 0.150
RF: Random Forest; XGBoost: eXtreme Gradient Boosting; SVM: Support Vector Machine; Logistic: Logistic Regression.

contrast, ALB had the lowest impact on the 
model’s predictions (Figure 5A). Individual 
SHAP values indicated that higher PLT and TP 

levels positively contributed to fibrosis predic-
tion, whereas elevated PTA and ALB levels were 
associated with lower fibrosis risk (Figure 5B). 
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Table 5. Diagnostic effect of RF model and traditional models

Models AUC SE (b) P
95% CI

Lower limit Upper limit
RF 0.863 0.047 < 0.001 0.772 0.955
APRI 0.585 0.047 0.068 0.494 0.677
FIB-4 0.633 0.063 0.035 0.509 0.756
RF: Random Forest; APRI: Aspartate Aminotransferase to Platelet Ratio Index; FIB-4: Fibrosis-4 Index.

Table 6. Pairwise comparison of ROC curves (Delong test)

Models Z SE (b) P
95% CI

Lower limit Upper limit
RF-APRI 3.868 0.303 < 0.001 0.173 0.383
RF-FIB-4 5.197 0.327 < 0.001 0.114 0.347
FIB-4-APRI 0.816 0.327 0.414 -0.067 0.162
RF: Random Forest; APRI: Aspartate Aminotransferase to Platelet Ratio Index; FIB-4: Fibrosis-4 Index.

Figure 5. SHapley Additive exPlanations (SHAP) value analysis for fea-
ture importance and impact on model predictions. A. SHAP values for 
feature importance in the predictive model. The y-axis lists the fea-
tures: PLT (platelet count), PTA (prothrombin activity), TP (total protein), 
and ALB (albumin). The x-axis represents the SHAP values, indicating 
the contribution of each feature to the model’s predictions. A higher 
SHAP value suggests a greater impact of the corresponding feature 
on the model’s output. B. SHAP waterfall plot illustrating the impact 
of features (PLT, PTA, TP, and ALB) on model predictions. The x-axis 
represents the SHAP value, and the y-axis lists the features along with 
their corresponding values. Blue bars indicate a negative contribution 
to the prediction, while red bars indicate a positive contribution. C. 
SHAP beeswarm plot visualizing the distribution of SHAP values for 
four features (PLT, PTA, TP, and ALB) and their respective impact on the 
model’s predictions. The color scale indicates the feature values, with 
“High” in purple and “Low” in orange.

The SHAP beeswarm plot revealed 
the distribution of feature impor-
tance across samples (Figure 5C). 

Discussion

HBV infection triggers a complex 
and dynamic cascade of pathologi-
cal alterations across different dis-
ease stages, involving immune ac- 
tivation, hepatocellular injury, and 
progressive fibrogenesis [16]. Wi- 
thout timely intervention, this path-
ological progression can cause cir-
rhosis and hepatocellular carcino-
ma, substantially increasing morbi- 
dity and mortality among patients 
with CHB [17]. Considering the cen-
tral role of fibrosis in disease pro-
gression, early diagnosis of sig- 
nificant fibrosis (≥ S2) is vital for 
optimizing clinical management, 
especially in determining the opti-
mal timing for initiating antiviral 
therapy [18]. In this research, we 
identified key predictive biomark- 
ers using a retrospective cohort of 
328 CHB patients through LASSO 
regression and constructed four  
ML models, including RF, SVM, 
XGBoost, and LR. Among these 
models, the RF algorithm demon-
strated the highest predictive per-
formance, outperforming tradition-
al fibrosis indices, including APRI 
and FIB-4. 
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By LASSO and multivariate logistic regression 
analyses, we identified PTA, PLT, ALB, and TP as 
independent predictors. The molecular and cel-
lular mechanisms underlying their association 
with liver fibrosis warrant further investigation. 

There is a complex pathophysiological associa-
tion between prothrombin activity (PTA) and 
hepatic fibrosis, with underlying mechanisms 
potentially involving impaired hepatic synthetic 
function, activation of inflammatory cascades, 
and altered intrahepatic hemodynamics [19, 
20]. Physiologically, PTA reflects the ability of 
the liver to synthesize coagulation factors [21]. 
The liver, as the primary site for coagulation 
factor synthesis, undergoes structural damage 
as fibrosis progresses. Hepatic stellate cell 
activation and excessive extracellular matrix 
deposition disrupt the liver parenchyma, reduc-
ing the number of hepatocytes and impairing 
coagulation factor production, leading to a 
decrease in PTA [22]. A rat model of hepatic 
fibrosis showed that, with disease progression, 
the expression of relevant genes involved in 
coagulation factor synthesis was significantly 
down-regulated in the liver, resulting in de- 
creased coagulation factor production and a 
gradual reduction in PTA levels [23]. Empirical 
studies have shown that coagulation indices 
effectively reflect the level of liver injury and 
have clinical significance in the diagnosis of 
liver disease progression [24].

The pathophysiological mechanism underlying 
the association of PLT with liver fibrosis may 
involve a combination of portal hypertension 
and hypersplenism. As liver fibrosis progress- 
es, intrahepatic vascular structure is damaged 
and the resistance of blood vessels increases, 
which in turn leads to increased portal pres-
sure [25]. When portal vein pressure becomes 
excessively high, it causes splenomegaly and 
hypersplenism. In this condition, a large num-
ber of platelets are retained and destroyed in 
the spleen, resulting in a reduction in circulat-
ing PLT levels. Meanwhile, the altered hemato-
poietic microenvironment in the liver during 
hepatic fibrosis further impairs PLT production, 
contributing to decreased PLT levels [26].

The pathophysiological mechanisms underly- 
ing the association of ALB with liver fibrosis 
mainly stem from impaired hepatocyte synthe-
sis and metabolic disturbances driven by the 
inflammatory microenvironment. The liver is 

the sole site of ALB synthesis, and this process 
of ALB synthesis depends on the normal me- 
tabolism and function of hepatocytes. As liver 
fibrosis progresses, the number of hepatic pa- 
renchymal cells decreases and their function  
is impaired, directly impairing ALB synthesis. A 
study in patients with alcoholic cirrhosis found 
that plasma ALB levels gradually decreased 
with the advancement of liver fibrosis, with ALB 
levels in cirrhotic patients being significantly 
lower than in healthy controls [27]. The associ-
ation between ALB and liver fibrosis may also 
be influenced by nutrient metabolism, as 
patients with liver fibrosis often experience 
symptoms such as loss of appetite and diges-
tive and absorption dysfunction, which lead to 
insufficient protein intake and consequently 
hinder synthesis of ALB. Furthermore, during 
fibrosis, the liver experiences dual metabo- 
lic abnormalities: hepatocyte damage reduces 
ALB synthesis, while the chronic inflammatory 
state may activate the proteolytic pathway, 
accelerating the degradation of ALB [28].

Total Protein (TP) is the sum of albumin and 
globulin in the serum, and changes in both can 
affect TP levels during the course of liver fibro-
sis. On one hand, as mentioned earlier, liver 
fibrosis results in hepatocyte damage and 
decreased albumin synthesis, which lowers TP 
levels. On the other hand, the body’s immune 
system is activated in response to ongoing 
inflammatory damage and viral infections, 
causing an increase in the production of im- 
mune cells such as lymphocytes, which in turn 
promotes a significant increase in globulin syn-
thesis [29]. This compensatory increase in 
globulin partially offsets the reduction in al- 
bumin, and may even lead to elevated TP. In 
some cases, the rise in globulin can surpass 
the decline in albumin, ultimately leading to 
elevated TP levels, which have been associat- 
ed with an increased risk of liver fibrosis [30].

In this study, the independent predictive value 
of PTA, PLT, ALB and TP in the CHB popula- 
tion was verified, and an RF model with superi-
or predictive performance was constructed. In 
this study, by incorporating key indicators re- 
flecting liver synthetic function, coagulation 
status, and portal hypertension, such as PTA, 
PLT, ALB and TP, we overcame the limitations  
of traditional models like APRI and FIB-4, which 
rely primarily on hepatic enzymes. Additionally, 
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we utilized the nonlinear modeling and self-
help sampling characteristics of the RF model 
to efficiently capture the complex interactions 
among the indicators, such as the predictive 
value of PLT in combination with ALB for identi-
fying advanced fibrosis [31, 32]. Furthermore, 
SHAP value analysis provided an objective 
quantification of the contribution of each indi-
cator, ensuring stability and improving diag- 
nostic performance through internal validation. 
Meanwhile, compared with some existing ML 
models for predicting liver fibrosis, the RF 
model constructed in this study achieved a 
higher predictive performance (AUC = 0.863). 
In contrast, the model constructed by Rui et al. 
[33] had a lower AUC of 0.778 in predicting 
advanced fibrosis, which may be influenced by 
factors such as study population, sample size, 
and other variables.

There are limitations to this study, including 
potential selection bias due to the retrospec-
tive single-center design, inclusion of metrics 
that do not cover emerging fibrosis markers or 
imaging parameters, and lack of external vali-
dation of key machine learning models. Al- 
though the RF model demonstrated strong  
performance in internal training and testing 
cohorts, its efficacy in CHB patients with dif- 
ferent geographic, ethnic, and etiologic back-
grounds has not been validated. Variations in 
laboratory testing protocols and disease het-
erogeneity may further affect the model’s sta-
bility, potentially leading to an overestimation 
of its generalizability. Future studies should pri-
oritize multicenter external validation, incorpo-
rate diverse patient cohorts to assess the real-
world performance of the model, and integrate 
multidimensional indicators, such as molecular 
markers and imaging data, to build a more 
comprehensive prediction system. Mechanistic 
studies and the creation of interpretive tools 
will be crucial for enhancing the clinical relia- 
bility and utility of this model, ultimately trans-
lating it into a precision diagnostic tool.

Conclusion

The significant liver fibrosis diagnostic model 
constructed in this study, based on the RF algo-
rithm, demonstrates excellent diagnostic per-
formance and outperforms the traditional  
APRI and FIB-4 models. Our study demon-
strates that ML-based models, particularly RF, 

provide a highly accurate, non-invasive, and 
interpretable approach for liver fibrosis as- 
sessment in CHB patients. The integration of 
ML methods with traditional clinical markers 
represents a significant advancement in fibro-
sis prediction, offering the potential for earlier 
diagnosis, improved risk stratification, and per-
sonalized treatment strategies for CHB pa- 
tients. 
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