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Abstract: Objective: To construct and validate a multidimensional model for evaluating tumor-infiltrating lymphocyte 
(TIL) levels in breast cancer (BC) patients. Methods: This retrospective study included 318 BC patients with 318 
lesions confirmed by MRI and surgical pathology in the First Affiliated Hospital of Guangxi Medical University from 
January 2021 to December 2024. The patients were randomly split into a training set (n=228) and a validation 
(n=90) set, and further divided into low and high TIL groups based on immunophenotype assessment. Multivariate 
Logistic regression was used to identify independent predictors of TILs levels. A gradient boosting machine (GBM) 
model and a Logistic regression model were built. Model performance was assessed using receiver operating char-
acteristic (ROC) curves, calibration curves, and decision curve analysis (DCA). An external validation cohort of 120 
BC patients admitted between January 2025 and May 2025 was used to verify the predictive accuracy of the GBM 
model. Results Ki-67 level, internal enhancement pattern, multifocality, apparent diffusion coefficient (ADC) value, 
and neutrophil-to-lymphocyte ratio (NLR) were identified as independent predictors of high TIL levels. The GBM 
model demonstrated superior performance compared to the Logistic regression in the training set (AUC: 0.859 vs 
0.724; P=0.014). Calibration curves indicated good agreement between predicted and observed probabilities in 
both models. DCA showed that the GBM model provided higher clinical utility. External validation yielded an AUC of 
0.784 for the GBM model, with the calibration curve and DCA further confirming the model’s good calibration and 
clinical applicability. Conclusion: The GBM-based multidimensional model reliably predicts TIL levels in BC patients, 
supporting prognosis evaluation and guiding personalized treatment strategies.
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Introduction

Breast cancer (BC) is the most prevalent malig-
nancy among women worldwide. According to 
the International Agency for Research on 
Cancer (IARC), 2.26 million new BC cases were 
reported in 2020, surpassing lung cancer as 
the most commonly diagnosed cancer [1, 2]. Its 
incidence continues to rise annually and exhib-
its a trend toward younger age groups, impos-
ing a substantial burden on families and health-
care systems [3]. As understanding of BC path- 
ophysiology deepens, tumor-infiltrating lympho-
cytes (TILs) - comprising T cells, B cells, and 
other immune subsets in the tumor microenvi-
ronment - have emerged as critical prognostic 
markers [4-6].

Studies have shown that high TIL levels corre-
late with improved disease-free survival (DFS) 
and overall survival (OS), particularly in triple-
negative breast cancer (TNBC) and HER2-posi- 
tive subtypes [7-9]. For example, TNBC patients 
with high TIL infiltration exhibit a 30% lower 
recurrence risk, as TILs directly mediate tumor 
cell cytotoxicity and inhibit metastasis [10, 11]. 
However, traditional pathological assessment 
of TIL via hematoxylin and eosin-stained sec-
tions is limited by inter-observer variability and 
subjective interpretation, resulting in inconsis-
tent accuracy [12]. Recent advances in medi- 
cal technology have enabled multi-dimensional 
solutions. Magnetic resonance imaging (MRI) 
provides quantitative parameters (e.g., appar-
ent diffusion coefficient [ADC], vascular perme-
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ability) reflecting tumor microenvironment 
(TME) characteristics [13, 14]. In addition, sys-
temic inflammatory markers from peripheral 
blood, such as neutrophil-lymphocyte ratio 
(NLR) and platelet-lymphocyte ratio (PLR), have 
been shown to correlate with immune status 
and tumor progression [15, 16].

Logistic regression is a widely used method 
due to its simplicity and interpretability, esti-
mating the probability of binary outcomes 
based on linear combinations of variables [17]. 
However, it often underperforms in imbalanced 
datasets and lacks the flexibility to capture 
complex, non-linear relationships. In contrast, 
gradient boosting machines (GBM), an ensem-
ble learning approach, build predictive models 
by iteratively fitting decision trees to the residu-
als of previous models, allowing accurate mod-
eling of high-dimensional and non-linear data 
[18, 19].

Based on this, integrating multi-dimensional 
indicators to build an accurate model for pre-
dicting TIL levels holds significant clinical value. 
Such a model is expected to improve the accu-
racy and reliability of TIL assessment, reduce 
observer-related variability, and provide robust 
prognostic and therapeutic guidance. Further- 
more, by exploring the intrinsic correlation bet- 
ween multi-dimensional indicators, it may en- 
hance our understanding of TIL-related mecha-
nisms in the TME and inform the development 
of novel immunotherapeutic strategies. The 
purpose of this study is to systematically inte-
grate multi-dimensional parameters and con-
struct a robust GBM-based model to predict TIL 
levels in BC patients.

Materials and methods

Research subjects

This retrospective study included 318 BC pa- 
tients with 318 lesions who were treated at the 
First Affiliated Hospital of Guangxi Medical 
University between January 2021 and Dece- 
mber 2024. In addition, another 120 BC pa- 
tients admitted to our hospital between January 
2024 and May 2025 were selected as the vali-
dation set to verify the predictive performance 
of the developed models.

Inclusion criteria: (1) Histopathologically con-
firmed invasive BC with complete pathological 

and immunohistochemical data; (2) Age >18 
years; (3) Receipt of multiparametric MRI exam-
ination at the study center within two weeks 
prior to surgery; (4) Availability of histopatho-
logical assessment of TIL levels in surgical 
specimens. Exclusion criteria: (1) Receipt of 
preoperative neoadjuvant therapy; (2) Any 
breast-related treatment before MRI examina-
tion; (3) Poor MRI image quality precluding anal-
ysis; (4) Incomplete clinical or imaging data. 
This study was approved by the Ethics Com- 
mittee of the First Affiliated Hospital of Guangxi 
Medical University.

Methods

Imaging protocol: Multi-parametric MRI was 
performed using a 1.5T MRI scanner (uMR 
560, United Imaging) equipped with a dedicat-
ed 4-channel SENSE breast coil. Patients were 
positioned prone, with both breasts naturally 
suspended within the coil. Scanning sequences 
and parameters: T1WI (repetition time (TR)=4.8 
ms, echo time (TE)=2.1 ms, matrix=320×320, 
slice thickness=3 mm), T2W1 (TR=3800 ms, 
TE=42.7 ms, matrix=328×350, slice thick-
ness=4 mm), DWI (TR=3800 ms, TE=78.4 ms, 
matrix=350×200, slice thickness=4 mm, b=50 
and 800 s/mm2). Dynamic contrast-enhanced 
MRI (DCE-MRI): A high-resolution isotropic vol-
ume excitation (THRIVE) sequence was used 
with TR=5.1 ms, TE=2.1 ms, matrix=320×320, 
and slice thickness=2.4 mm. A pre-contrast 
mask image was acquired, followed by intrave-
nous injection of gadopentetate dimeglumine 
at a dose of 0.2 ml/kg body weight using a 
power injector via the median cubital vein at a 
flow rate of 1.5 ml/s. This was immediately fol-
lowed by a 20 ml normal saline flush at the 
same rate. Post-contrast images were obtained 
in six consecutive phases, each with a 60-sec-
ond interval. ADC mapping was generated by 
single exponential fitting of DWI signals at b=50 
and 800 s/mm2, using the following formula: 
ADC=[InS0-InS (b)]/b, where S0 and S (b) repre-
sent the DWI signal intensity at b=50 and 800 
s/mm2, respectively.

MRI image analysis: According to the American 
College of Radiology Breast Imaging Reporting 
and Data System (ACR BI-RADS) standard [20], 
multi-parametric MRI images were evaluated. 
Two radiologists with 3 and 15 years of experi-
ence in breast MRI interpretation independent-
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ly reviewed all images. Both were blinded to 
pathological outcomes. In cases of disagree-
ment on qualitative assessments, consensus 
was reached through discussion. Quantitative 
measurements were analyzed to assess inter-
observer consistency.

Lesions were categorized as either mass or 
non-mass enhancement (NME). When both 
types coexisted, the NME component was used 
to characterize the lesion. The MRI features 
evaluated included morphological features 
(lesion shape, margin, internal enhancement 
features), kinetic features (time-signal intensity 
curve (TIC) types), invasion of surrounding tis-
sues (e.g., pectoralis muscle, skin, or nipple), 
axillary lymph nodes, multifocality/multicentric-
ity, peritumoral edema, maximum lesion diam-
eter, and ADC value.

TICs were classified into three types: persistent 
(type I), plateau (type II), and washout (type III). 
Surrounding tissue invasion was defined as 
clear imaging evidence of tumor extension into 
the pectoralis muscle, skin or nipple. Positive 
axillary lymph nodes were defined by one or 
more of the following: round or irregular shape, 
absent fatty hilum, cortical thickening, or short-
axis diameter ≥10 mm. Multifocality was 
defined as multiple lesions within the same 
quadrant, while multicentricity referred to 
lesions located in different quadrants. Peri- 
tumoral edema was identified as a hyperin-
tense signal on T2-weighted imaging surround-
ing or extending posterior to the tumor, consis-
tent with fluid signal characteristics [21]. Mea- 
surement of maximum lesion diameter was 
performed on the image showing the most 
prominent enhancement. In cases of multiple 
lesions, the largest lesion was selected for 
analysis. ADC values were measured by placing 
a region of interest (ROI) (4-5 mm in diameter) 
within the area of lowest signal intensity on the 
ADC map (corresponding to the highest signal 
on DWI). ROI placement was guided by DCE-
MRI and T2WI images to avoid necrotic zones, 
cystic components, or artifacts.

Clinical data collection and pathological data 
evaluation

Clinical and pathological data were collected 
for each patient, including age, menstrual sta-
tus, lesion location, preoperative T stage, histo-
pathological subtype, preoperative T stage, es- 

trogen receptor (ER) status, progesterone rece- 
ptor (PR) status, human epidermal growth fac-
tor receptor 2 (HER-2), and Ki-67 levels.

According to the 2010 American Society of 
Clinical Oncology/College of American patholo-
gists (ASCO/CAP) guidelines [22], ER and PR 
positivity was defined as ≥1% of tumor nuclei 
exhibiting positive staining; <1% was defined as 
negative. HER-2 low expression was defined as 
HER-2 immunohistochemistry (IHC) score of 1 + 
or 2 + with negative fluorescence in situ hybrid-
ization (FISH); while high HER-2 expression was 
defined as HER-2 IHC score of 3 +, or 2 + with 
FISH positive results. Based on the 2013 St. 
Gallen International Expert Consensus [23], 
Ki-67<14% is defined as low expression, and 
Ki-67≥14% is defined as high expression.

Peripheral blood data were obtained from rou-
tine preoperative laboratory tests. Based on 
absolute neutrophil count, lymphocyte count, 
and platelet count, the following inflammatory 
indices were calculated: NLR, PLR, and system-
ic Immune-Inflammatory Index (SII).

Evaluation of TIL proportion

HE stained histological sections of surgical 
specimens were evaluated by designated pa- 
thologists according to the 2014 recommenda-
tions of the Breast Cancer International TILs 
Working Group [24]. The percentage of TILs 
was calculated under an optical microscope. 
The average value was defined as the percent-
age of stromal area within the tumor occupied 
by mononuclear immune cells, evaluated under 
a light microscope. The average value across 
fields was recorded as the TILs proportion for 
each sample. TILs <10% were defined as low 
TILs level, and the samples with TILs ≥10% 
were defined as high TILs level. In cases where 
the TIL proportion was uncertain, final classifi-
cation was determined by consensus after con-
sultation with senior pathologists.

Statistical methods

SPSS 29.0 was used for data analysis. Con- 
tinuous variables with normal distribution were 
expressed as mean ± standard deviation (mean 
± sd) and compared using the independent 
sample t-test. Non-normally distributed contin-
uous variables were presented as median and 
interquartile range [M (P25, P75)] and compared 
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using the Mann-Whitney U test. Categorical 
variables were presented in the form of per-
centage (%) and compared using the χ2 test. 
Univariate and multivariate Logistic regression 
analysis was performed to identify factors 
associated with TILs levels in BC patients. 
Based on the selected variables, both a GBM 
model and a multivariate Logistic regression 
model were constructed. The relative impor-
tance of each clinical feature was obtained 
using GBM algorithm. The receiver operating 
characteristic (ROC) curve and calibration curve 
were used to evaluate the predictive efficacy of 
the models. Decision curve analysis (DCA) was 
used to evaluate the clinical applicability of 
both models. All tests were two-sided, with a 
significance level set at α=0.05.

Results

Comparison of multi-dimensional indicators 
between training set and validation set

A total of 318 BC patients were randomly divid-
ed into a training set (228 cases) and a valida-
tion set (90 cases) at a ratio of 7:3. No signifi-
cant differences were observed between the 
two sets in terms of multidimensional indica-
tors, including age, menstrual status, lesion 
location, preoperative T stage, histopathologi-
cal subtype, ER status, PR status, HER-2 posi-
tivity, Ki-67 level, tumor shape and margin, 
internal enhancement pattern, TIC type, inva-
sion of surrounding tissues, axillary lymph 
nodes, multifocality/multicentricity, peritumor-
al edema, ADC, molecular subtype, absolute 
neutrophil count, absolute lymphocyte count, 
PLT, NLR, PLR, SII (all P>0.05, Table 1).

General clinical data of the patients

Among the 318 BC patients included, the age 
range was 33-79 years. The low TIL group com-
prised 156 patients aged 33-78 years, with an 
average age of (53.01±9.65) years. The high 
TIL group included 162 patients aged 35-79 
years, with an average of 54.09 (± 9.07) years. 
Significant differences were observed between 
the high and low TIL groups in terms of Ki-67 
index, internal enhancement pattern, multifo-
cality/multicentricity, ADC value, and NLR (all 
P<0.05, Table 2).

Univariate and multivariate Logistic regression 
analysis

Univariate Logistic regression analysis showed 
that Ki-67 index, internal enhancement pat-

terns, multifocality/multicentricity, ADC value, 
NLR and SII were significantly associated with 
TIL levels in BC patients (P<0.05). According to 
the postoperative pathological results, TIL level 
was used as the dependent variable (0=low 
level, 1=high level), and variables with P<0.05 
in univariate analysis were further included in  
a multivariate Logistic regression model. The 
results showed that Ki-67 index, internal en- 
hancement patterns, multifocality/multicentric-
ity, ADC value, and NLR were independently 
associated with high TIL levels in BC patients 
(P<0.05, Table 3).

Construction of a multivariate Logistic regres-
sion model for high TIL levels in BC patients 
based on multi-dimensional indicators

Based on the results of the multivariate Logistic 
regression analysis, a predictive model for high 
TIL levels in BC patients was constructed and 
visualized. The model incorporated Ki-67 index, 
internal enhancement characteristics, multifo-
cality/multicentricity, ADC value, and NLR. The 
total score was mapped to a predicted probabil-
ity of high TIL level in BC patients, as shown in 
Figure 1.

Validation of the Logistic regression model for 
predicting high TIL levels in BC patients

The performance of the Logistic regression 
model was evaluated using the ROC curve and 
calibration curve in both the training and valida-
tion sets. In the training set, the Logistic regres-
sion model achieved an AUC of 0.742 (95% CI: 
0.678-0.805), with a sensitivity and specificity 
of 74.40% and 64.90%, respectively. In the vali-
dation set, the AUC was 0.674 (95% CI: 0.562-
0.785), with a sensitivity and specificity of 
51.10% and 82.20%, respectively (Figure 2). 
The calibration curves showed good agreement 
between the predicted probabilities and ob- 
served incidence of high TIL levels in both train-
ing and validation sets (Figure 3).

Construction of the GBM model for predicting 
high TIL levels in BC patients based on multi-
dimensional indicators

Variables identified as significant in multivari-
ate regression analysis were incorporated into 
the GBM model. The shrinkage rate was set to 
0.005, and the initial number of boosting itera-
tions (n. trees) was set to 5,000. A 10-fold 
cross-validation approach was used to deter-
mine the optimal number of trees. The mini-
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Table 1. Comparison of multi-dimensional indicators between the training set and validation set
Index Training set (n=228) Verification set (n=90) t/χ2/Z P
Age (years) 53.62±9.44 53.40±9.20 0.191 0.849
Menstrual status [n (%)] 1.538 0.215
    Premenopausal 99 (43.42) 46 (51.11)
    Postmenopausal 129 (56.58) 44 (48.89)
Location of lesion [n (%)] 0.172 0.679
    Left 97 (42.54) 36 (40.00)
    Right 131 (57.46) 54 (60.00)
Histopathological subtype [n (%)] 1.898 0.168
    Invasive carcinoma 190 (83.33) 69 (76.67)
    Other 38 (16.67) 21 (23.33)
Preoperative T staging [n (%)] 2.184 0.535
    T1 51 (22.37) 14 (15.56)
    T2 91 (39.91) 37 (41.11)
    T3 71 (31.14) 31 (34.44)
    T4 15 (6.58) 8 (8.89)
ER [n (%)] 0.070 0.792
    Negative 59 (25.88) 22 (24.44)
    Positive 169 (74.12) 68 (75.56)
PR [n (%)] 0.589 0.443
    Negative 66 (28.95) 30 (33.33)
    Positive 162 (71.05) 60 (66.67)
HER2 [n (%)] 0.154 0.694
    Negative 157 (68.86) 64 (71.11)
    Positive 71 (31.14) 26 (28.89)
Ki-67 [n (%)] 0.106 0.744
    <14% 31 (13.60) 11 (12.22)
    ≥14% 197 (86.40) 79 (87.78)
Tumor shape [n (%)] 0.081 0.776
    Round/oval 67 (29.39) 25 (27.78)
    Irregular 161 (70.61) 65 (72.22)
Tumor margin [n (%)] 0.757 0.384
    Smooth 14 (6.14) 8 (8.89)
    Burr/Irregular 214 (93.86) 82 (91.11)
Internal strengthening characteristics [n (%)] 0.762 0.683
    Homogeneous strengthening 92 (40.35) 37 (41.11)
    Uneven strengthening 128 (56.14) 48 (53.33)
    Ring strengthening 8 (3.51) 5 (5.56)
TIC curve [n (%)] 0.235 0.889
    Type I 24 (10.53) 9 (1.00)
    Type II 178 (78.07) 69 (76.67)
    Type III 26 (11.40) 12 (13.33)
Invasion of surrounding tissue [n (%)] 0.860 0.354
    No 183 (80.26) 68 (75.56)
    Yes 45 (19.74) 22 (24.44)
Axillary lymph nodes [n (%)] 0.029 0.865
    Negative 104 (45.61) 42 (46.67)
    Positive 124 (54.39) 48 (53.33)
Multifocal/multicenter [n (%)] 2.439 0.118
    No 97 (42.54) 43 (47.78)
    Yes 131 (57.46) 47 (52.22)
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Peritumoral edema [n (%)] 0.367 0.544
    No 113 (49.56) 48 (53.33)
    Yes 115 (50.44) 42 (46.67)
ADC value 907.34±160.90 917.76±158.23 0.523 0.602
Molecular subtypes [n (%)] 0.053 0.817
    Lumina type 140 (61.40) 54 (60.00)
    Non-Lumina type 88 (38.60) 36 (40.00)
Neutrophil absolute value (×109/L) 4.15±1.31 4.19±1.10 0.304 0.761
Lymphocyte absolute value (×109/L) 1.20±0.37 1.23±0.41 0.638 0.524
Platelet count (×109/L) 226.25±64.81 218.11±72.94 0.972 0.332
NLR 3.51 (2.45, 4.96) 3.57 (2.54, 3.99) 0.145 0.885
PLR 189.72 (141.20, 249.46) 182.01 (123.29, 250.59) 1.023 0.306
SII 743.02 (490.11, 1123.28) 727.31 (480.75, 1037.70) 0.621 0.534
Note: TILs, Tumor infiltrating lymphocytes; ER, Estrogen receptor; PR, progesterone receptor; HER-2, human epidermal growth factor receptor 
2; TIC, Time-intensity curve; ADC, Apparent diffusion coefficient; NLR, Neutrophil-to-Lymphocyte Ratio; PLR, Platelet-to-Lymphocyte Ratio; SII, 
Systemic Immune-Inflammatory Index.

Table 2. Comparison of clinical data between the high and low TIL groups
Index High TIL group (n=162) Low TIL group (n=156) t/χ2/Z P
Age (years) 54.09±9.07 53.01±9.65 1.035 0.302
Menstrual status [n (%)] 0.001 0.976
    Premenopausal 74 (45.68) 71 (45.51)
    Postmenopausal 88 (54.32) 85 (54.49)
Location of lesion [n (%)] 0.261 0.610
    Left 70 (43.21) 63 (40.38)
    Right 92 (56.79) 93 (59.62)
Histopathological subtype [n (%)] 0.314 0.575
    Invasive carcinoma 130 (70.25) 129 (82.69)
    Other 32 (19.75) 27 (17.31)
Preoperative T staging [n (%)] 0.359 0.950
    T1 35 (21.60) 30 (19.23)
    T2 64 (39.51) 64 (41.03)
    T3 52 (32.10) 50 (32.05)
    T4 116.79 12 (7.69)
ER [n (%)] 0.340 0.560
    Negative 39 (24.07) 42 (26.92)
    Positive 123 (75.93) 114 (73.07)
PR [n (%)]
    Negative 51 (31.48) 45 (28.85)
    Positive 111 (68.52) 111 (71.15)
HER2 [n (%)] 1.157 0.282
    Negative 117 (72.22) 104 (66.67)
    Positive 45 (27.78) 52 (33.33)
Ki-67 [n (%)] 9.691 0.002
    <14% 12 (7.41) 30 (19.23)
    ≥14% 150 (92.59) 126 (80.77)
Tumor shape [n (%)] 0.001 0.974
    Round/oval 47 (29.01) 45 (28.85)
    Irregular 115 (70.98) 111 (71.15)
Tumor margin [n (%)] 0.285 0.593
    Smooth 10 (6.17) 12 (7.69)
    Burr/Irregular 152 (93.83) 144 (92.31)
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Internal strengthening characteristics [n (%)] 7.840 0.021
    Homogeneous strengthening 102 (62.96) 75 (48.08)
    Uneven strengthening 54 (33.33) 74 (47.44)
    Ring strengthening 6 (3.70) 7 (4.49)
TIC curve [n (%)] 3.015 0.221
    Type I 15 (9.26) 18 (11.54)
    Type II 132 (81.48) 115 (73.72)
    Type III 15 (9.26) 23 (14.74)
Invasion of surrounding tissue [n (%)] 0.344 0.558
    No 130 (80.25) 121 (77.56)
    Yes 32 (19.75) 35 (22.44)
Axillary lymph nodes [n (%)] 1.465 0.26
    Negative 69 (42.59) 77 (47.53)
    Positive 93 (57.40) 79 (48.77)
Multifocal/multicenter [n (%)] 6.883 0.009
    No 77 (47.53) 97 (62.18)
    Yes 85 (52.47) 59 (37.82)
Peritumoral edema [n (%)] 0.052 0.819
    No 81 (50.00) 80 (51.28)
    Yes 81 (50.00) 76 (47.72)
ADC value 949.95±162.73 869.11±146.55 4.649 <0.001
Molecular subtypes [n (%)] 1.234 0.267
    Lumina type 94 (58.02) 100 (64.10)
    Non-Lumina type 68 (41.98) 56 (35.90)
Neutrophil absolute value (×109/L) 4.27±1.47 4.04±9.66 1.644 0.101
Lymphocyte absolute value (×109/L) 1.18±0.37 1.25±0.39 1.650 0.100
Platelet count (×109/L) 222.31±63.54 225.63±70.96 0.440 0.660
NLR 1.18±0.37 1.25±0.39 4.075 <0.001
PLR 192.33 (141.85, 267.69) 177.12 (137.18, 237.00) -1.251 0.224
SII 741.18 (465.26, 1332.49) 735.74 (522.33, 950.61) -1.000 0.317
Note: TILs, Tumor infiltrating lymphocytes; ER, Estrogen receptor; PR, progesterone receptor; HER-2, human epidermal growth factor receptor 
2; TIC, Time-intensity curve; ADC, Apparent diffusion coefficient; NLR, Neutrophil-to-Lymphocyte Ratio; PLR, Platelet-to-Lymphocyte Ratio; SII, 
Systemic Immune-Inflammatory Index.

mum generalization error was achieved when 
n.trees =1035 (Figure 4A). L2 regularization 
was added by default, implemented by adding 
the squared sum of model parameters to the 
loss function to prevent overfitting. The relative 
importance of each clinical feature obtained by 
GBM was NLR, ADC, Ki-67 index, multifocality/
multicentricity, and internal reinforcement pat-
tern, in descending order (Figure 4B).

Validation of the GBM model for predicting 
high TIL levels in BC patients based on multi-
dimensional indicators

The ROC curve and calibration curve were gen-
erated to assess the performance of the GBM 
model in both the training and the validation 
sets. In the training set, the GBM model 
achieved an ACU of 0.859 (95% CI: 0.810-

0.908), with sensitivity and specificity of 
74.40% and 85.60%, respectively. In the valida-
tion set, the AUC was 0.683 (95% CI: 0.573-
0.794), and the sensitivity and specificity were 
48.90% and 80.00%, respectively (Figure 5). 
The calibration curves showed that the predict-
ed probabilities of the GBM model closely 
matched the actual incidence of high TIL levels 
in both datasets, indicating good calibration 
and predictive consistency of the GBM model 
(Figure 6).

Comparison of prediction efficiency between 
the GBM model and Logistic regression model

Delong test results showed that the ACU of 
GBM model in the training set was significantly 
higher than that of the Logistic regression 
model (Z=-2.456, P=0.014). In the validation 



Construction of a breast cancer TILs scale level assessment model

5593	 Am J Transl Res 2025;17(7):5586-5601

Table 3. Univariate and multivariate Logistic regression analysis for high TIL levels

Variable
Single factor analysis multiple-factor analysis

OR (95% CI) P OR (95% CI) P
Age 1.031 (0.989-1.037) 0.301 - -
Menstrual status 0.993 (0.639-1.545) 0.976 - -
Location of lesion 0.890 (0.570-1.391) 0.610 - -
Histopathological subtype 0.575 (0.482-1.499) 0.850 - -
Preoperative T staging 0.946 (0.733-1.221) 0.670 - -
ER status 1.162 (0.701-1.925) 0.560 - -
PR status 0.882 (0.546-1.425) 0.609 - -
HER2 status 0.769 (0.477-1.241) 0.283 - -
Ki-67 index 2.976 (1.463-6.054) 0.003 3.127 (1.446-6.761) 0.004
Mass shape 0.992 (0.611-1.611) 0.974 - -
Mass edge 1.267 (0.531-3.022) 0.594 - -
Internal strengthening characteristics 1.569 (1.052-2.340) 0.027 1.651 (1.069-2.550) 0.024
TIC curve 0.866 (0.543-1.381) 0.546 - -
Invasion of surrounding tissue 0.851 (0.496-1.460) 0.558 - -
Axillary lymph nodes 1.314 (0.844-2.044) 0.226 - -
Multifocal/multicenter 1.815 (1.161-2.838) 0.009 1.836 (1.122-3.004) 0.016
Peritumoral edema 1.053 (0.678-1.634) 0.819 - -
Tumor length 0.924 (0.798-1.071) 0.296 - -
ADC value 1.003 (1.002-1.005) <0.001 1.003 (1.001-1.005) <0.001
Molecular subtypes 0.774 (0.493-1.217) 0.267 - -
Neutrophils 1.160 (0.971-1.385) 0.102 - -
Lymphocytes 0.614 (0.343-1.099) 0.101 - -
PLT 0.999 (0.996-1.003) 0.659 - -
NLR 1.252 (1.117-1.404) <0.001 1.329 (1.098-1.610) 0.004
PLR 1.001 (0.999-1.003) 0.448 - -
SII 1.000 (1.000-1.001) 0.020 1.000 (0.999-1.000) 0.429
Note: TILs, Tumor infiltrating lymphocytes; ER, Estrogen receptor; PR, progesterone receptor; HER-2, human epidermal growth 
factor receptor 2; TIC, Time-intensity curve; ADC, Apparent diffusion coefficient; NLR, Neutrophil-to-Lymphocyte Ratio; PLR, 
Platelet-to-Lymphocyte Ratio; SII, Systemic Immune-Inflammatory Index.

set, however, there was no significant differ-
ence in ACU between the two models (Z=-
0.061, P=0.951) (Table 4).

Clinical applicability of the GBM model for pre-
dicting high TIL levels in BC

DCA analyses of the GBM model and multivari-
ate Logistic regression model are shown in 
Figures 7, 8. In the training set, the GBM model 
demonstrated a higher net benefit than the 
Logistic regression model across most thresh-
old probabilities, indicating superior clinical util-
ity. Although both models showed reduced net 
benefit at high-risk thresholds, the GBM model 
exhibited a slower decline in net benefit, sug-
gesting greater stability when stricter risk clas-
sification is required. Moreover, the training 
and validation set curves of the GBM model 

were more closely aligned, indicating better 
generalization capability and more consistent 
performance on new data. These findings sug-
gest that the GBM model is more suitable for 
clinical application and offers broader practical 
utility than the Logistic regression model.

External validation and clinical implementation 
of the GBM model

Among the 120 patients in the external valida-
tion set, there were 58 patients with low TIL 
levels and 62 with high TIL levels. The GBM 
model was applied using the five previously 
identified predictors: Ki-67 index, internal 
enhancement pattern, multifocality/multicen-
tricity, ADC value, and NLR. The ROC curve 
yielded an AUC of 0.784 (95% CI: 0.703-0.865), 
indicating strong discriminatory power of the 
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Figure 1. Construction of a multivariate Logistic regression model for predicting high TIL levels in breast cancer 
patients. ADC, Apparent diffusion coefficient; NLR, Neutrophil-to-Lymphocyte ratio.

Figure 2. ROC curves for Logistic regression model in predicting high TIL levels in BC patients. A. Training set; B. 
Validation set; ROC, Receiver operating characteristic; TILs, Tumor-infiltrating lymphocytes; BC, Breast cancer.

GBM model (Figure 9A). The calibration curve 
demonstrated good agreement between pre-
dicted and observed probabilities (Figure 9B). 
The decision curve showed that the model pro-
vided consistent net clinical benefit (Figure 9C).

Discussion

Tumor-infiltrating lymphocytes (TILs) are a sub-
set of lymphocytes predominantly composed of 
T cells, including CD4 + T lymphocytes, CD8 + T 
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Figure 3. Calibration curves for Logistic regression model in predicting high TIL levels in BC patients. A. Training set; 
B. Validation set; TILs, Tumor-infiltrating lymphocytes; BC, Breast cancer.

Figure 4. GBM model optimization and variable contribution analysis in predicting TIL levels. A. The graph of itera-
tion times and error rate; B. The relative importance of ranking of variables in the GBM model; ADC, Apparent diffu-
sion coefficient; NLR, Neutrophil-to-Lymphocyte ratio; GBM, Gradient Boosting machine.

lymphocytes, and regulatory T lymphocytes. 
These immune cells are particularly abundant 
in TNBC and HER-2 positive BCs. TILs have 
been recognized as independent prognostic 
biomarkers associated with favorable progno-
sis and are increasingly being integrated into 
diagnostic practice [25]. TILs reflect the im- 
mune landscape of the TME and play a key  
role in modulating anti-tumor immunity. They 
have shown utility in guiding personalized im- 
munotherapy, monitoring therapeutic respons-

es, and predicting clinical prognosis. Previous 
studies indicate that evaluating TIL levels helps 
identify BC patients who may be more respon-
sive to immune modulation and neoadjuvant 
chemotherapy, enabling timely adjustments to 
treatment strategies and promoting individual-
ized therapy [13, 26-28].

This study found statistically significant differ-
ences in the Ki-67 index, internal enhance- 
ment characteristics, multifocality/multicen-
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Figure 5. ROC curves for GBM model in predicting high TIL levels in BC patients. A. training set; B. Validation 
set; ROC, Receiver operating characteristic; TILs, Tumor-infiltrating lymphocytes; BC, Breast cancer; GBM, Gradient 
Boosting machine.

Figure 6. Calibration curves for the GBM model in predicting high TIL levels in BC patients. A. Training set; B. Valida-
tion set; TILs, Tumor-infiltrating lymphocytes; BC, Breast cancer; GBM, Gradient Boosting machine.

Table 4. Comparison of predictive efficiency between the GBM 
model and Logistic regression model

Indicators
GBM model Logistic regression model

Training set Validation set Training set Validation set
AUC 0.859 0.683 0.724 0.674
Specificity 0.856 0.800 0.649 0.822
Sensitivity 0.744 0.489 0.774 0.511
Accuracy 0.767 0.589 0.658 0.578
Note: AUC, Area under the curve; GBM, Gradient Boosting machine.

tricity, ADC value, and NLR 
between the high and low TIL 
groups. The observed positive cor-
relation between high Ki-67 
expression and TIL level is consis-
tent with its role in tumor cell  
proliferation. Elevated Ki-67 may 
enhance tumor antigen presenta-
tion, activate immune responses, 
and promote T cell infiltration. This 
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Figure 7. Decision curve analysis for the Logistic regression model in predicting high TIL levels in BC patients. A. 
Training set; B. Validation set; TILs, Tumor-infiltrating lymphocytes; BC, Breast cancer.

Figure 8. Decision curve analysis for the GBM model in predicting high TIL levels in BC patients. A. Training set; B. 
Validation set; TILs, Tumor-infiltrating lymphocytes; BC, Breast cancer; GBM, Gradient Boosting machine.

indicates that highly proliferative tumors can 
trigger stronger immune surveillance, thereby 
facilitating TIL aggregation. Celebi et al. [29] 
and Ku et al. [30] reported that lesions with 
high TIL levels often exhibited more homoge-
neous internal enhancement patterns, which  
is consistent with our findings. Biologically, this 
may relate to the reduced collagen fibers con-
tent in TIL-rich tumors, which permits more  
uniform contrast agent distribution. Collagen 
fibers can hinder the migration of immune cells, 

and their density is negatively correlated with 
TILs infiltration, thereby linking imaging fea-
tures to tumor immunophenotype [31, 32]. 
Contrary to a previous report linking solitary 
lesions to high TILs in TNBC [30], our study 
revealed that multifocal/multicentric tumors 
were more frequently associated with elevated 
TILs. This discrepancy may stem from differ-
ences in molecular subtypes across cohorts. 
Multifocal lesions may exhibit increased immu-
nogenic heterogeneity, potentially stimulating 
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systemic immune activation and promoting 
widespread TIL recruitment.

High TILs levels were also associated with 
increased ADC values, which reflect water mol-
ecule diffusion within the TME. Compared with 
tumor cells, TILs possess higher cytoplasmic 
fluidity and stronger water molecule diffusion 
ability, contributing to elevated ADC measure-
ments. Variability in mean ADC values in the 
literature [29, 33] may result from differences 
in ROI location, scanning parameters, and 
tumor cell density. The negative correlation 
between NLR and TIL levels underscores the 
effect of systemic inflammation on local antitu-
mor immunity. Neutrophils inhibit TIL infiltration 
by promoting the Treg cell differentiation and 
inducing CD8 + T cell apoptosis [34-36]. As  
an easy-to-obtain biomarker, NLR serves as a 

bridge between systemic inflammation and 
tumor immune status, providing clinical value 
in predicting immune-related outcomes.

In this study, Ki-67 index, internal enhance-
ment features, multifocality/multicentricity, 
ADC value, and NLR were included as predic-
tors in both the GBM and Logistic regression 
models. However, the models differ markedly in 
feature utilization. The GBM sorts the predic-
tors by importance based on iterative residual 
learning, capturing nonlinear interactions (NLR 
> ADC > Ki-67 > multifocality > internal en- 
hancement features) [37]; however, Logistic 
regression relies on a linear hypothesis, provid-
ing interpretable odds ratios, but potentially 
underestimating the complex relationship, 
which explains its relatively low predictive per-
formance [38].

Figure 9. External verification of the GBM mod-
el. A. ROC curve for the GBM model in external 
validation set; B. Calibration curve for the GBM 
model in external validation set; C. Decision 
curve analysis for the GBM model in external 
validation set; ROC, Receiver operating charac-
teristic; GBM, Gradient Boosting machine.
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This study demonstrated that the GBM model 
outperformed the Logistic regression model in 
the training set (AUC: 0.859 vs. 0.724), showing 
stronger multidimensional data analysis capa-
bilities. In the validation set, the two models 
showed comparable performance (AUC: 0.683 
vs 0.674). Decision curve analysis showed that 
the GBM model provided a higher net benefit 
across most threshold probabilities, especially 
in the training set, and it is more stable in the 
validation set, suggesting that it has higher 
clinical utility across a variety of clinical scenar-
ios. In addition, the application of the GBM 
model to an external validation cohort demon-
strated an accuracy of 83.33% in identifying 
patients with high TIL levels, indicating strong 
predictive performance and potential for clini-
cal application.

This study’s retrospective design and single-
center data introduces selection bias and 
restricts generalizability. Additionally, the rela-
tively small sample size may compromise sta-
tistical power. Future research should prioritize 
multicenter, prospective studies with larger, 
diverse cohorts. Incorporating emerging bio-
markers (e.g., immune checkpoint molecules) 
and multi-omics data may further optimize pre-
dictive accuracy and enhance the clinical appli-
cability of TIL-based prognostic models in 
breast cancer.

Conclusion

In summary, Ki-67 index, internal enhance- 
ment characteristics, multifocality/multicen-
tricity, ADC value, and NLR are significantly 
associated with high TIL levels in breast cancer. 
Based on these multi-dimensional indicators, 
the GBM model demonstrate good predictive 
efficacy and clinical practicability, offering a 
valuable tool for prognosis evaluation and facil-
itating individualized treatment of BC patients.
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