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Abstract: Objective: HCV infection is frequently asymptomatic, with current diagnosis relying mainly on costly and 
less accessible HCV RNA testing. While HCV-Ab and biochemical markers exhibit suboptimal diagnostic perfor-
mance, whether machine learning can enhance their accuracy remains unclear. Methods: This study is a retrospec-
tive study, which included data from 179 patients whose HCV-Ab levels were greater than 1.00 S/CO to explore 
the relationship between HCV-Ab, biochemical indicators, and HCV infection. Univariate logistic regression and re-
stricted cubic splines (RCS) were employed to explore these associations. Machine learning integrated HCV-Ab and 
biochemical indicators to predict early HCV infection (undiagnosed chronic cases), with validation conducted using 
receiver operating characteristic curve (ROC) analysis. The machine learning approach randomly divided study par-
ticipants into training and test sets at a 5:5 ratio, with the training set being used for variable selection and model 
construction. Results: After full adjustment, TP showed no significant association with HCV infection. Restricted 
cubic spline (RCS) analysis revealed nonlinear relationships between HCV-Ab, ALT, AST, mAST, GGT, A/G and HCV 
infection. HCV-Ab exhibited an inflection point at 11.17 (below: OR = 1.04 per unit increase; above: no association). 
Similar threshold patterns were observed for ALT, AST, mAST and GGT. The integrated HCV-Ab and biochemical mark-
er model achieved excellent predictive performance (AUC = 0.977). Conclusion: TP exhibited a linear association 
with HCV infection, whereas HCV-Ab, ALT, AST, mAST and GGT showed nonlinear associations with distinct threshold 
effects. Early prediction of HCV infection using these indicators represents a cost-effective strategy.
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Introduction

Hepatitis C virus (HCV), a single-stranded RNA 
virus of the Flaviviridae family, primarily tar- 
gets hepatocytes and leads to both acute and 
chronic hepatitis [1, 2]. Globally, approximately 
58 million individuals are chronically infected 
with HCV, with approximately 399,000 deaths 
annually attributed to HCV-related complica-
tions such as cirrhosis and hepatocellular  
carcinoma (HCC) [3-6]. The primary modes of 
transmission include blood exposure (e.g., 
transfusion, needle sharing, unsafe medical 
procedures), vertical mother-to-child transmis-
sion, and sexual contact. High-risk populations 
include intravenous drug users, recipients of 
unscreened blood products, and healthcare 
workers exposed to blood. Undiagnosed early 
HCV infections frequently progress to chronic 
hepatitis (55%-85% of acute cases), subse-
quently leading to hepatic fibrosis, cirrhosis, 

and HCC [7-9]. Studies indicate that 15%-30% 
of chronic HCV patients develop cirrhosis within 
two decades, with an annual progression rate 
of 1%-5% to HCC [10-12]. HCV infection is also 
associated with extrahepatic manifestations, 
including metabolic abnormalities, cardiovas-
cular diseases, and lymphoma [13-17]. The 
introduction of direct-acting antivirals (DAAs) 
has significantly improved treatment outcomes, 
achieving cure rates exceeding 95% [18, 19]. 
The gold standard for HCV diagnosis is the 
detection of HCV-RNA [20], which confirms ac- 
tive infection and quantifies viral load. However 
it exhibits inherent limitations [21]: 1) High 
intrinsic test cost: The cost of HCV RNA test 
reagents and specialized equipment (e.g., PCR 
machines) is substantially higher than that of 
HCV antibody tests or routine biochemical 
assays. In resource-limited settings, the cost 
per test can pose a significant economic barri-
er. 2) Infrastructure and personnel costs: RNA 
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testing generally requires specialized molecu-
lar biology laboratory facilities (e.g., strict con-
tainment, specialized equipment, stable power/
cold chain) and relies on trained technical per-
sonnel. Establishing and maintaining such lab-
oratories is expensive. 3) Accessibility challeng-
es: Molecular diagnostics laboratories are 
predominantly concentrated in urban centers 
or large tertiary hospitals, resulting in seve- 
rely limited accessibility in remote, rural, or 
resource-poor areas [22]. In contrast, HCV anti-
body (HCV-Ab) and biochemical indicators 
assays are cost-effective and widely available 
in primary care facilities [23]. HCV-Ab refers to 
antibody produced by activated immune cells 
in response to HCV infection. This antibody per-
sists in the human body and is typically detect-
ed in individuals who have achieved viral clear-
ance (either through treatment or spontaneous 
resolution) as well as those with chronic active 
infections. The HCV-Ab test offers significant 
advantages: low cost, operational simplicity, 
rapid results, and high accessibility. The hepati-
tis C virus primarily infects hepatocytes, induc-
ing hepatic injury and subsequent liver dysfunc-
tion [24]. Markedly elevated levels of bioche- 
mical indicators may indicate active liver injury 
and, combined with other factors, can heighten 
suspicion of active infection or disease activity. 
The combined utilization of serological HCV-Ab 
and biochemical detection may enhance diag-
nostic accuracy and improve clinical evaluation 
of HCV infection status. This study analyzed 
biochemical parameters and HCV-RNA results 
from 179 patients with HCV-Ab levels greater 
than 1.00 S/CO to investigate the dynamic 
changes in HCV-Ab and biochemical profiles. 
Utilizing machine learning techniques, we eval-
uated the predictive performance of combining 
HCV-Ab with biochemical indicators for early 
diagnosis of HCV.

Methods

Data collection and processing

This is a retrospective study. The primary data 
were collected from patients whose HCV-Ab 
level was greater than 1.00 S/CO, at Shidong 
Hospital Affiliated to University of Shanghai for 
Science and Technology between 2019 and 
2024, with all data obtained from medical 
records. The Ethics Committee of Shanghai 
Shidong Hospital approved the study protocol 
(Ethics approval report ID: 2025-031-01). For 

all participants, biochemical indicators data 
from the first visit were screened and used as 
features for model construction. Patients with 
other hepatitis infections or liver/kidney impair-
ment due to other etiologies were excluded. 
Detection of HCV-RNA is the gold standard for 
the diagnosis of HCV infection.

Specimen collection and laboratory testing

Venous blood samples were collected using 
sterile techniques. For serum samples, a stan-
dard serum separator tube without anticoagu-
lants was utilized, allowing the blood to clot at 
room temperature for 30 minutes prior to cen-
trifugation. The samples were then centrifuged 
at 3,500 RPM for 10 minutes to separate the 
serum.

The Abbott Alinity i diagnostic kit (America) was 
employed for quantitative detection of HCV 
antibody in human serum using the chemilumi-
nescent microparticle immunoassay (CMIA) 
method according to the manufacturer’s 
instructions. For HCV-RNA detection, the in 
vitro nucleic acid amplification kit (Sansure 
Biotech Inc., Changsha, China) was utilized, 
with all procedures strictly adhering to the man-
ufacturer’s protocols. Alanine Aminotransferase 
(ALT), Aspartate Aminotransferase (AST), mito-
chondrial aspartate aminotransferase isoen-
zyme (mAST), Alkaline Phosphatase (ALP), 
Gamma-Glutamyl Transferase (GGT), Total 
Bilirubin (TB), Conjugated Bilirubin (CB), Total 
Protein (TP), Albumin (ALB), Albumin-to-Globulin 
ratio (A/G), Blood Urea Nitrogen (BUN), 
Creatinine (Cr), Uric Acid (UA), Glomerular 
Filtration Rate (GFR), and Glucose (GLU) were 
quantified using a clinical chemistry analyzer 
(Beckman5800 Chemistry System). All the 
reagents were provided by the respective man-
ufacturers as part of pre-packaged kits, ensur-
ing consistency and reliability across tests. All 
tests were performed in accordance with rigor-
ous quality control protocols.

Study methods

First, trend analysis of multivariate logistic 
regression was used to assess the association 
between HCV-Ab, biochemical indicators and 
HCV infection. TP was introduced into the logis-
tic regression model as a continuous variable, 
and the results were expressed as odds ratio 
(OR) and 95% confidence interval (95% CI). 
Three models were constructed by adjusting for 
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different confounding variables. In model 1 was 
unadjusted for variables. In model 2, confound-
ers including gender and age were adjusted. 
Model 3 was further adjusted for HCV-Ab, ALT, 
AST, mAST, GGT, A/G. To further explore the 
potential nonlinear relationship between HCV-
Ab, biochemical indicators and HCV infection, 
restricted cubic spline (RCS) regression analy-
ses were performed. Likelihood ratio tests were 
used to detect nonlinearity. The threshold 
effect of HCV-Ab and biochemical indicators on 
HCV infection risk was further analyzed by a 
two-stage linear regression model.

Machine learning algorithms to construct HCV 
infection prediction model

In this study, multiple machine learning meth-
ods were used to investigate the application 
and predictive value of HCV-Ab and biochemi-
cal indicators in the diagnosis of HCV infection. 
The study participants were randomly divided 
into a train set and a test set in a ratio of 5:5. 
The train set was used to screen the variables 
and construct the model. The test set was used 
to evaluate the performance of the final model. 
The diagnostic performance of each model was 
evaluated by calculating the area under the 
curve (AUC) value. The optimal model was 
selected based on the AUC value to plot the 
receiver operating characteristic curve (ROC) 
[25].

Statistical analysis

Continuous variables with non-normal distribu-
tions were assessed using the Mann-Whitney U 
test and expressed as medians (interquartile 
range [Q1, Q3]). Categorical variables were 
compared using the chi-square test and report-
ed as counts (percentages). All statistical anal-
yses were performed using R software (version 
4.4.0), and statistical significance was defined 
as P < 0.05.

Results

Baseline clinical characteristics of participants

This study included a total of 179 participants, 
with 130 cases (72.63%) in the HCV control 
group and 49 cases (27.37%) in the HCV dis-
ease group. Statistically significant differences 
(P < 0.05) were observed between the two 
groups in Age, HCV-Ab, ALT, AST, mAST, GGT, TP, 
A/G ratio, and Gender; whereas no significant 

differences (P > 0.05) were found in ALP, TB, 
CB, ALB, BUN, Cr, UA, GFR, or GLU (Table 1).

A linear relationship between TP and the risk 
of HCV infection

Three models were constructed by adjusting for 
different confounding variables to evaluate the 
associations between TP with the risk of HCV 
infection. After adjusting for all confounding 
variables, in the final model, the relationship 
between TP (OR = 1.05, 95% CI: 0.98-1.13, P = 
0.149) and HCV infection was not significant. 
However, the p-value showed a trend toward 
significance (Table 2).

A nonlinear relationship and threshold ef-
fect were observed between HCV-Ab, partial 
biochemical indicators, and the risk of HCV 
infection

Comparative analysis was performed of HCV-
Ab and biochemical indicators between the 
HCV Control group and Disease group (Figure 
1A-F). To further ensure the robustness of the 
results, the potential nonlinear relationship 
between HCV-Ab, partial biochemical indicators 
and the risk of HCV infection was examined. In 
the RCS regression model, after adjusting for 
all confounding factors, significant nonlinear 
associations were observed between HCV-Ab, 
ALT, AST, mAST, GGT, A/G and HCV infection 
(nonlinear P < 0.05) (Figure 2A-F).

In Table 3, further analysis revealed a threshold 
effect in the association between HCV-Ab and 
the risk of HCV infection (P for likelihood ratio 
test < 0.001), with an inflection point at 11.17. 
When HCV-Ab were below 11.17, a positive cor-
relation exists between HCV-Ab and the risk of 
HCV infection (OR = 2.04, 95% CI: 1.34-3.10, P 
< 0.001). Each unit increase was associated 
with a 1.04-fold increase in the risk of HCV 
infection. However, when HCV-Ab exceeded 
11.17, no significant association with the risk of 
HCV infection was observed (OR = 0.77, 95% CI: 
0.59-1.01, P = 0.057). Additionally, a threshold 
effect was identified for ALT (P for likelihood 
ratio test = 0.017) with an inflection point at 
54.00, and for AST (P for likelihood ratio test = 
0.007) with an inflection point at 39.00, and  
for mAST (P for likelihood ratio test = 0.005) 
with an inflection point at 7.00. Overall, a posi-
tive correlation was observed between GGT 
and HCV infection (OR = 1.00, 95% CI: 1.00-
1.01, P = 0.026). A threshold effect was identi-
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Table 1. Clinical characteristics
Variables Total (n = 179) Control (n = 130) Disease (n = 49) Statistic P
Age, M (Q1, Q3) 63.00 (55.50, 69.00) 64.50 (56.25, 69.75) 60.00 (54.00, 64.00) Z = -2.22 0.026
HCV-Ab, M (Q1, Q3) 5.56 (1.54, 14.18) 2.27 (1.31, 8.27) 13.84 (11.85, 15.45) Z = -7.03 < .001
ALT, M (Q1, Q3) 21.00 (14.50, 50.00) 18.00 (13.00, 25.75) 70.00 (48.00, 135.00) Z = -7.75 < .001
AST, M (Q1, Q3) 26.00 (19.00, 47.00) 22.00 (18.00, 28.00) 68.00 (37.00, 99.00) Z = -7.55 < .001
mAST, M (Q1, Q3) 3.00 (2.70, 5.25) 3.00 (2.40, 4.00) 5.00 (3.00, 8.20) Z = -3.84 < .001
ALP, M (Q1, Q3) 82.00 (68.50, 100.00) 82.00 (68.50, 102.75) 82.00 (69.00, 98.00) Z = -0.26 0.797
GGT, M (Q1, Q3) 30.50 (21.00, 63.00) 30.00 (18.00, 46.75) 44.00 (30.50, 103.00) Z = -3.80 < .001
TB, M (Q1, Q3) 14.00 (10.90, 17.30) 14.00 (11.20, 16.45) 14.00 (10.20, 19.00) Z = -0.75 0.454
CB, M (Q1, Q3) 2.80 (2.30, 3.90) 2.80 (2.23, 3.50) 2.80 (2.60, 4.90) Z = -1.53 0.127
TP, M (Q1, Q3) 69.00 (64.55, 73.40) 69.00 (63.62, 72.72) 70.40 (65.90, 75.00) Z = -2.32 0.020
ALB, M (Q1, Q3) 39.30 (35.75, 41.95) 39.30 (35.70, 42.18) 39.20 (36.10, 40.70) Z = -0.51 0.611
A/G, M (Q1, Q3) 1.33 (1.18, 1.50) 1.33 (1.19, 1.55) 1.26 (1.16, 1.33) Z = -2.44 0.015
BUN, M (Q1, Q3) 5.35 (4.60, 6.95) 5.35 (4.48, 6.88) 5.35 (4.80, 7.30) Z = -0.50 0.619
Cr, M (Q1, Q3) 68.60 (58.10, 89.45) 68.60 (58.05, 88.20) 68.60 (58.30, 91.00) Z = -0.02 0.987
UA, M (Q1, Q3) 339.30 (270.00, 399.65) 339.30 (269.50, 395.70) 339.30 (287.60, 415.50) Z = -0.43 0.669
GFR, M (Q1, Q3) 97.80 (74.25, 107.30) 97.80 (73.77, 107.12) 97.80 (78.70, 111.40) Z = -0.63 0.528
GLU, M (Q1, Q3) 5.36 (4.99, 6.08) 5.36 (4.97, 5.96) 5.36 (5.16, 6.26) Z = -1.20 0.230
Gender, n (%) Χ2 = 5.65 0.017
    Female 88 (49.16) 71 (54.62) 17 (34.69)
    Male 91 (50.84) 59 (45.38) 32 (65.31)
Z, Mann-Whitney test, χ2, Chi-square test; M (Q1, Q3), Median (1st Quartile, 3st Quartile); n (%), numbers (percentages); HCV-Ab, hepatitis C 
virus antibody; ALT, alanine aminotransferase; AST, aspartate aminotransferase; mAST, mitochondrial aspartate aminotransferase isoenzyme; 
ALP, alkaline phosphatase; GGT, gamma-glutamyl transferase; TB, total bilirubin; CB, conjugated bilirubin; TP, total protein; ALB, albumin; A/G, 
albumin-to-globulin ratio; BUN, blood urea nitrogen; Cr, creatinine; UA, uric acid; GFR, glomerular filtration rate; GLU, glucose.

Table 2. The relationship between TP and the risk of HCV infection

Variables
Model 1 Model 2 Model 3

OR (95% CI) P OR (95% CI) P OR (95% CI) P
TP 1.06 (1.01-1.11) 0.030 1.06 (1.01-1.11) 0.032 1.05 (0.98-1.13) 0.149
TP (median)
    1 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)
    2 2.07 (1.03-4.15) 0.042 2.23 (1.06-4.69) 0.035 1.79 (0.58-5.52) 0.314
P for trend 0.042 0.035 0.314
Model 1: Crude, Model 2: Adjust: gender, age, Model 3: Adjust: gender, age, HCV-Ab, ALT, AST, mAST, GGT, AG. OR, Odds Ratio; 
CI, Confidence Interval; TP, total protein; HCV-Ab, hepatitis C virus antibody; ALT, alanine aminotransferase; AST, aspartate ami-
notransferase; mAST, mitochondrial aspartate aminotransferase isoenzyme; GGT, gamma-glutamyl transferase; A/G, albumin-
to-globulin ratio.

fied for GGT (P for likelihood ratio test = 0.017). 
However, no significant association was fo- 
und when GGT was below or above 28.00. 

Prediction of HCV infection risk by ALT, AST 
and HCV-Ab changes

A total of 179 samples were randomly divided 
into train and test sets in a 5:5 ratio. No sta- 
tistically significant differences were observed 
between the two groups. The model developed 
with Gradient Boosting Machine (GBM) demon-
strated the best performance in predicting the 

risk of HCV infection, achieving an AUC of 0.997 
in the train set, 0.953 in the test set and 0.977 
for the total samples (Figure 3A-C). This perfor-
mance significantly outperformed that of indi-
vidual indicators, suggesting that the scoring 
model can effectively identify the risk of devel-
oping HCV infection during early infection.

Discussion

This study established a Gradient Boosting 
Machine (GBM)-based predictive model inte-
grating serological and biochemical indicators 
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Figure 1. Comparative analysis of HCV-Ab and biochemical indicators between HCV Control group and Disease 
group. *P < 0.05; ***P < 0.001. A. HCV-Ab; B. ALT; C. AST; D. mAST; E. GGT; F. A/G. HCV-Ab, hepatitis C antibody; 
ALT, alanine aminotransferase; AST, aspartate aminotransferase; mAST, mitochondrial aspartate aminotransferase 
isoenzyme; GGT, gamma-glutamyl transferase; A/G, albumin-to-globulin ratio.

Figure 2. Restricted cubic spline analyses the association of HCV-Ab and biochemical indicators (A. HCV-Ab; B. ALT; 
C. AST; D. mAST; E. GGT; F. A/G) with HCV infection. HCV-Ab, hepatitis C antibody; ALT, alanine aminotransferase; AST, 
aspartate aminotransferase; mAST, mitochondrial aspartate aminotransferase isoenzyme; GGT, gamma-glutamyl 
transferase; A/G, albumin-to-globulin ratio.
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Table 3. The threshold effect of HCV-Ab and biochemical indicators on HCV infection was analyzed 
using a two-stage phased regression model
Variables Models Adjusted OR (95% CI) P
HCV-Ab (S/CO) Model 1 Fitting model by standard linear regression 1.30 (1.20-1.42) < .001

Model 2 Fitting model by two-piecewise linear regression
Inflection point 11.17
    < 11.17 2.04 (1.34-3.10) < .001
    ≥ 11.17 0.77 (0.59-1.01) 0.057
P for likelihood test < .001

ALT (U/L) Model 1 Fitting model by standard linear regression 1.04 (1.03-1.06) < .001
Model 2 Fitting model by two-piecewise linear regression
Inflection point 54.00
    < 54.00 1.09 (1.04-1.14) < .001
    ≥ 54.00 1.02 (1.00-1.04) 0.112
P for likelihood test 0.017

AST (U/L) Model 1 Fitting model by standard linear regression 1.05 (1.03-1.07) < .001
Model 2 Fitting model by two-piecewise linear regression
Inflection point 39.00
    < 39.00 1.16 (1.05-1.28) 0.004
    ≥ 39.00 1.02 (1.00-1.04) 0.086
P for likelihood test 0.007

mAST (U/L) Model 1 Fitting model by standard linear regression 1.06 (1.01-1.11) 0.016
Model 2 Fitting model by two-piecewise linear regression
Inflection point 7.00
    < 7.00 1.56 (1.14-2.13) 0.006
    ≥ 7.00 1.00 (0.93-1.07) 0.983
P for likelihood test 0.005

GGT (U/L) Model 1 Fitting model by standard linear regression 1.00 (1.00-1.01) 0.026
Model 2 Fitting model by two-piecewise linear regression
Inflection point 28.00
    < 28.00 1.14 (0.99-1.30) 0.071
    ≥ 28.00 1.00 (1.00-1.01) 0.290
P for likelihood test 0.017

OR, odds ratio; CI, confidence interval; HCV-Ab, hepatitis C antibody; ALT, alanine aminotransferase; AST, aspartate aminotrans-
ferase; mAST, mitochondrial aspartate aminotransferase isoenzyme; GGT, gamma-glutamyl transferase.

using clinical data from 179 patients with high 
HCV-Ab titers (S/CO > 1.00). The multi-parame-
ter model demonstrated superior diagnostic 
accuracy compared to single-marker approach-
es (AUC = 0.977), offering new insights for opti-
mizing early HCV screening strategies.

As the cornerstone of HCV screening, HCV-Ab 
testing provides rapid and cost-effective popu-
lation-level surveillance. However, its limita-
tions are notable: 1) The prolonged serocon- 
version window (2-6 months) may delay early 
diagnosis; 2) 15%-30% of virologically cured 
patients maintain persistent antibodies, com-

plicating differentiation between active and 
resolved infections [22, 26]; 3) F false-positive 
results may occur due to rheumatoid factor 
interference or immunosuppressive conditions 
[27, 28]. Our threshold effect analysis revealed 
a nonlinear relationship between HCV-Ab titers 
and infection probability. At HCV-Ab < 11.17 S/
CO, each unit increase correlated with 30% 
elevated infection risk (OR = 1.3, 95% CI: 1.20-
1.42, P < 0.001), whereas no significant corre-
lation was observed above this threshold. This 
phenomenon aligns with antigen-antibody com-
plex dynamics: subthreshold titers (< 11.17 S/
CO) potentially indicate insufficient neutralizing 
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capacity, allowing viral replication, whereas 
suprathreshold levels (> 11.17 S/CO) may rep-
resent either effective immune containment or 
chronic infection states - a phenomenon analo-
gous to “antigen trap” mechanism observed in 
HIV affinity maturation [29, 30].

Chronic HCV infection induces progressive he- 
patic injury through inflammation-fibrosis cas-
cades, as evidenced by perturbations in serum 
biomarkers including TP, ALB, ALT, AST, mAST, 
ALP, GGT, TB, and CB [31-34]. Our threshold 
analysis identified nonlinear associations for 
liver enzymes: ALT < 54 U/L (OR = 1.04, P < 
0.001), AST < 39 U/L (OR = 1.05, P < 0.001), 
and mAST < 7 U/L (OR = 1.06, P = 0.016) 
showed positive correlations with infection risk, 
with diminishing effects beyond these cutoffs. 
This may reflect progression from early to late 
liver injury [35-37]. While GGT showed statisti-
cal association (P = 0.026), its nonspecific ele-
vation in alcoholic liver disease and cholestatic 
conditions limits diagnostic specificity. TP 
showed linear association in unadjusted mod-
els (P = 0.030), but significance attenuated 
after multivariable adjustment (Model 3: P = 
0.149), likely confounded by compensatory 
hepatic synthesis mechanisms.

Conventional linear models inadequately cap-
ture complex biomarker interactions. Our GBM-
based machine learning model demonstrated 
robust performance across training, testing, 
and pooled datasets, outperforming conven-
tional methods through automated feature 
engineering and nonlinear relationship mo- 
deling.

Several limitations should be acknowledged. 
First, sample size constraints necessitate mul-
ticenter validation for generalizability. Second, 
exclusion of emerging markers like HCV core 
antigen (HCV-cAg), detectable within 7-10 days 
post-infection, could address HCV-Ab’s window 
period limitations [38, 39]. Future studies 
should explore “HCV-Ab + ALT + HCV-cAg” tri-
age protocols integrated with deep learning 
algorithms for dynamic prediction. Third, the 
inclusion criterion of selecting patients with 
HCV-Ab > 1.00 S/CO may introduce potential 
selection bias. Although this threshold facili-
tates the identification of suspected infections 
with definitive serological evidence, it may skew 
the results toward reflecting clinical character-
istics of patients with elevated HCV-Ab levels, 
potentially underrepresenting populations with 
borderline antibody values or those in early 
seroconversion phases. This limitation could 
compromise the applicability of our conclu-
sions to broader hepatitis C virus-infected pop-
ulations, particularly in clinical scenarios involv-
ing equivocal serological status. Lastly, all 
sample data were derived from a single-center 
cohort. Despite rigorous standardization of 
data collection protocols, the generalizability of 
findings may be constrained by regional homo-
geneity in healthcare practices, demographic 
profiles, and diagnostic-therapeutic expertise. 
To enhance external validity and elucidate the 
mechanistic associations between HCV-Ab 
dynamics and clinical outcomes, future investi-
gations should employ multi-center, large-scale 
designs incorporating patients with diverse 
antibody levels and geographical distributions. 

Figure 3. Machine learning algorithms to construct HCV infection prediction models. A. The ROC curves of HCV-Ab, 
ALT and AST (GBM) model and the HCV infection prediction model in the train group. B. The ROC curves of HCV-Ab, 
ALT and AST (GBM) model and the HCV infection prediction model in the test group. C. The ROC curves of HCV-Ab, 
ALT and AST (GBM) model and the HCV infection prediction model in the total group.
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Such efforts will enable systematic validation 
of our observations while advancing under-
standing of HCV serological evolution in rela-
tion to disease progression.

This study proposes two optimization path- 
ways for resource-limited settings: 1) A step-
wise “HCV-Ab screening → liver function retest-
ing” cascade to reduce unnecessary HCV-RNA 
testing; 2) Portable GBM model deployment  
for real-time risk assessment in primary care. 
Furthermore, patients with mild ALT elevation 
(40-80 U/L) and HCV-Ab positivity should pr- 
ioritize antiviral therapy to mitigate fibrosis 
progression.
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