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Abstract: Diabetic retinopathy (DR), a leading cause of global vision impairment, represents one of the most preva-
lent microvascular complications of diabetes. Numerous studies have confirmed that inflammatory processes and 
aberrant angiogenesis constitute pivotal pathological mechanisms in DR. Elevated levels of pro-inflammatory me-
diators - including cytokines, chemokines, and adhesion molecules - have been consistently detected in the se-
rum, ocular fluids (aqueous humor and vitreous), retinal tissue, and tear film of DR patients, forming an intricate 
molecular network that drives disease progression. Importantly, modulation of these inflammatory components 
demonstrates potential to attenuate both vascular abnormalities and neurodegeneration in DR. This mechanistic 
understanding positions inflammation as a promising therapeutic target, highlighting the need for further investiga-
tion into anti-inflammatory strategies for DR management.
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Introduction

Diabetic retinopathy (DR), a prevalent micro-
vascular complication of diabetes mellitus 
(DM), affects nearly 40% of diabetic patients 
and is the primary cause of blindness and visu-
al impairment among adults aged under 50 
years worldwide [1]. The global burden of DR is 
escalating in parallel with the rising prevalence 
of DM, with epidemiological projections esti-
mating 129.84 million affected adults by 2030, 
potentially reaching 160.50 million by 2045  
[2, 3]. Disease progression correlates strongly 
with diabetes duration, suboptimal glycemic 
control, concurrent hypertension, dyslipidemia, 
and inflammatory activation [4]. Clinically, DR 
manifests initially as non-proliferative diabetic 
retinopathy (NPDR), characterized primarily by 
retinal microaneurysms, which may progress to 
proliferative diabetic retinopathy (PDR), devel-
oping hard exudates, cotton-wool spots, patho-
logical neovascularization, and retinal hemor-
rhages [5].

In the context of hyperglycemia, retinal microg-
lial cells undergo pathological activation and 

secrete a wide range of pro-inflammatory cyto-
kines, including tumor necrosis factor-α (TNF-
α), interleukin-1beta (IL-1β), interleukin-3 (IL-3), 
interleukin-6 (IL-6), along with other inflamma-
tory mediators such as vascular endothelial 
growth factor (VEGF), reactive oxygen species, 
glutamate, matrix metalloproteinases (MMPs), 
and nitric oxide (NO). This inflammatory casca- 
de orchestrates multiple pathogenic processes 
through: (1) upregulation of adhesion mole-
cules, (2) induction of apoptotic pathways, (3) 
facilitation of leukocyte infiltration, and (4) dis-
ruption of blood-retinal barrier (BRB) [6]. A sub-
stantial body of research has established the 
synergistic interplay between inflammatory and 
angiogenic pathways in DR pathogenesis [7-11]. 
Variations in the levels of various pro-inflamma-
tory and angiogenic mediators have been de- 
tected in biological compartments such as 
serum, ocular fluids (aqueous humor and vitre-
ous), retinal tissue, and tear film of DR patients. 
Importantly, targeted modulation of these me- 
diators demonstrates therapeutic potential to 
mitigate both vascular abnormalities and neu-
rodegeneration in DR [12-15], positioning in- 
flammatory pathways as promising intervention 
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targets. This review systematically examines 
the mechanistic contributions of inflammation 
to DR progression and evaluates emerging an- 
ti-inflammatory strategies with translational 
potential.

Inflammatory mechanisms in DR

Inflammation serves as a central pathogenic 
driver in DR, with inflammatory responses per-
sisting throughout all disease stages. These 
processes fundamentally contribute to the two 
hallmark pathological features of DR-mediated 
visual impairment in DM: increased vascular 
permeability and pathological neovasculariza-
tion, both in the retina [16-18]. DM induces the 
local or systemic upregulation of numerous 
inflammatory molecules implicated in DR pro-
gression, such as chemokines, cytokines, tran-
scription factors, growth factors, and vascular 
adhesion molecules (VCAM-1) [19-21]. These 
elevated inflammatory mediators promote leu-
kocyte activation, endothelial adhesion, and 
subsequent capillary sequestration [22, 23], 
leading to capillary occlusion, retinal ischemia, 
endothelial cell dysfunction, and BRB break-
down. Characteristic clinical manifestations in- 
clude retinal edema, intraretinal hemorrhages, 
hard exudation, and microaneurysm formation 
[24, 25]. Concurrently, activated retinal glial 
cells amplify local inflammation through the se- 
cretion of pro-inflammatory mediators and the 
recruitment of immune cells to inflammatory 
foci [26, 27].

Increasing evidence suggests that retinal neu-
rodegeneration serves as a significant patho-
physiological mechanism in DR [28]. Retinal 
glial cells, including astrocytes, Müller cells, 
and microglial cells, play crucial roles in provid-
ing structural support and preserving retinal 
homeostasis [29, 30]. Importantly, dysfunction 
of these cells contributes significantly to the  
initiation and progression of retinal inflamma-
tion during early DR [31]. Chronic hyperglyce-
mia potently activates retinal microglia [32]. In 
the early stages of DR, this activation initiates a 
cascade of neurodegenerative events, includ-
ing neuronal apoptosis and progressive thin-
ning of the nerve fiber layer, ultimately leading 
to measurable visual dysfunction and potential 
vision loss [33].

Inflammatory cytokines pathways in DR

Hyperglycemia induces retinal inflammation ac- 
companied by elevated production and release 

of multiple inflammatory mediators [34]. This 
inflammatory milieu stimulates a cascade of 
pro-inflammatory factors, including chemo-
kines, inflammatory cytokines, and other relat-
ed molecules [35], which collectively contribute 
to leukocyte stasis, cellular apoptosis, and reti-
nal capillary leakage (Table 1). The key patho-
logical cascades in DR development are illus-
trated in Figure 1.

Inflammatory cytokines

Elevated levels of macrophage-derived IL-1β 
are consistently observed in both serum and 
vitreous samples from DR patients. Mechani- 
stically, IL-1β synergizes with TNF-α to: (1) up- 
regulate endothelial adhesion molecules via 
NF-κB-mediated transcription, (2) enhance IL-6 
and interleukin-8 (IL-8) production, (3) activate 
caspase-1-dependent inflammatory pathways 
[36]. Additionally, IL-1β promotes: (1) accumula-
tion of ROS through inflammatory cell recruit-
ment, leading to mitochondrial dysfunction and 
retinal cell apoptosis [37], as well as (2) patho-
logical angiogenesis via the mitogen-activated 
protein kinase (MAPK) cascade, promoting DR 
progression [38].

TNF-α, a pleiotropic cytokine, mediates multi-
ple pathological processes in DR. First, it initi-
ates leukocyte-endothelial adhesion and reti-
nal vascular inflammation. Second, TNF-α ac- 
tivates NF-κB signaling pathways [39]. Third, 
TNF-α contributes to BRB disruption (demon-
strated by TNF-α/epidermal growth factor re- 
ceptor axis inhibition in diabetic mouse mod-
els) [40]. Additionally, TNF-α induces retinal mi- 
crovascular cell loss [41].

Other inflammatory factors, such as IL-6 and 
IL-8, have been found to have significant eleva-
tion in the serum, vitreous, and aqueous humor, 
with concentrations correlating with DR severi-
ty [42, 43]. IL-6 plays significant pathological 
roles. It activates retinal glial cells, induces 
TNF-α secretion, and initiates early BRB break-
down [44]. IL-6 and IL-8 stimulate VEGF produc-
tion in fibroblasts and monocytes, thereby pro-
moting inflammation-associated neovasculari- 
zation and diabetic macular edema (DME) pro-
gression [45, 46].

Adhesion molecules and integrins

The upregulation of adhesion molecules consti-
tutes a critical step in DR pathogenesis. Key 
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Table 1. Inflammatory cytokines involved in DR
Category Mediator Mechanism Stage of DR Involved Therapy References
Inflammatory Cytokines

IL-1β
Increases ICAM-1 expression, induces 
reactive oxygen species formation, iNOS 
expression, NF-κB, MAPK activation

Increased expression in NPDR and 
correlated with the severity of DR 

Anakinra, Canakinumab, Gevokizumab [36-38]

TNF-α

Mediates leukocyte adhesion, activates 
NF-κB

Increased expression in PDR and  
correlated with the severity of DR

Infliximab, Adalimumab, Golimumab,
Triamcinolone acetonide,
Fluocinolone,
Dexamethasone

[39-41]

IL-6

Increases vascular permeability, and 
disrupts the BRB

Increased expression in PDR, DME Tocilizumab,
Triamcinolone acetonide,
Fluocinolone,
Dexamethasone

[45, 46]

IL-8 Promotes VEGF expression, induces 
angiogenesis

Increased expression in PDR, DME Risuteganib [47]

Adhesion Molecules
ICAM-1

Increases leukocyte adhesion, endothelial  
cell damage, capillary non-perfusion

Increased expression in NPDR and 
correlated with the severity of DR

Triamcinolone acetonide,
Fluocinolone,
Dexamethasone

[49-51]

VCAM-1
Increases leukocyte adhesion and stasis,  
promotes inflammatory factor release

Increased expression in NPDR and 
correlated with the severity of DR 

Triamcinolone acetonide,
Fluocinolone,
Dexamethasone

[49, 50]

Growth Factors

VEGF

Increases vascular permeability and  
neovascularization

Increased expression in PDR, DME Ranibizumab,
Aflibercept,
Bevacizumab,
Fariximab

[52-55]

PIGF Promotes angiogenesis Increased expression in PDR Faricimab, Conbercept, Aflibercept,  
Roveredimab, TB-403

[56-58]

TGF-β Regulates cell growth, differentiation, 
proliferation, and apoptosis

Increased expression in PDR Faricimab, Aflibercept, Ranibizumab, 
Ozurdex®, Iluvien®

[59, 60]

Chemotactic Factors
MCP-1/CCL-2

Increases VEGF expression, enhances 
endothelial cell adhesion, promotes 
inflammatory damage

Increased expression in PDR Ozurdex®, Iluvien®, Aflibercept, Faricimab [61, 63]

CXCL10 Immune stimulation Increased expression in PDR Ozurdex®, Iluvien®,
Baricitinib, Faricimab

[60, 62, 63]

Others iNOS Oxidative stress, cytotoxicity Increased expression in PDR α-lipoic acid, Ozurdex®, dimethyl  
fumarate, Aflibercept

[64, 65]

COX-2 Promotes neovascularization Increased expression in DR Diclofenac, Bromfenac, Celecoxib, Yutiq, 
Iluvien

[66, 67]

MMP-9 Oxidative stress, promotes angiogenesis Increased expression in DR Ranibizumab, Aflibercept, Faricimab [68]
Ang-2 Promotes angiogenesis Increased expression in PDR Faricimab [69]

Abbreviations: DR, diabetic retinopathy; IL-1β, interleukin-1beta; ICAM-1, intercellular adhesion molecule-1; iNOS, inducible nitric oxide synthase; NF-κB, nuclear factor κB; MAPK, mitogen-activated protein 
kinase; NPDR, non-proliferative diabetic retinopathy; TNF-α, tumor necrosis factor-α; PDR, proliferative diabetic retinopathy; IL-6, interleukin-6; BRB, blood-retinal barrier; DME, diabetic macular edema; IL-8, 
interleukin-8; VEGF, vascular endothelial growth factor; VCAM-1, vascular adhesion molecule-1; PIGF, placental growth factor; TGF-β, transforming growth factor-β; MCP-1/CCL-2, monocyte chemoattractant 
protein-1; CXCL10, interferon-Induced Protein 10; COX-2, cyclooxygenase-2; MMP-9, matrix Metalloproteinase-9; Ang-2, angiopoietin-2.
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molecules include intercellular adhesion mole-
cule-1 (ICAM-1) and VCAM-1, induced by hyper-
glycemia and oxidative stress during early DR. 
The elevated expression of these two mole-
cules mediates leukocyte-endothelial interac-
tions through integrins and facilitates multi-
step leukocyte recruitment: migration, aggre- 
gation, and adhesion, resulting in increased re- 
tinal capillary permeability and stimulated reti-
nal neovascularization [47, 48]. Capillary occlu-
sion can trigger the release of toxic substances 
(including nitric oxide synthase [NOS]) and in- 
flammatory factors (e.g., IL-1, TNF-α), which 
exacerbate retinal ischemia and further stimu-
late ICAM-1 synthesis, forming a vicious cycle 
that accelerates DR progression [49].

Growth factors

VEGF serves as a potent inducer of retinal vas-
cular permeability and angiogenesis, playing a 
crucial role in neovascularization in DR [50]. 
Under conditions of elevated glucose levels, 
oxidative stress, hemodynamic changes, and 
inflammatory mediators, VEGF expression is 
tightly regulated. VEGF enhances capillary per-
meability by phosphorylating tight junction pro-
teins, leading to increased central subfield 
thickness, DME, and neovascularization [16]. 
Inflammatory mediators involved in DR patho-
genesis can induce microvascular abnormali-
ties, expand the avascular zone in the central 
fovea, and exacerbate macular ischemia [51]. 

Figure 1. The mechanisms of pathological cascade of DR. Abbreviations: NF-κB, nuclear factor κB; MAPK, mitogen-
activated protein kinase; PI3K, phosphoinositide 3-kinase; IL-1β, interleukin-1beta; TNF-α, tumor necrosis factor-α; 
IL-6, interleukin-6; VEGF, vascular endothelial growth factor; PlGF, placental growth factor; ICAM-1, intercellular ad-
hesion molecule-1; VCAM-1, vascular adhesion molecule-1.
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These mediators further enhance VEGF expres-
sion through the upregulation of ICAM-1 in en- 
dothelial cells, which exacerbates the release 
of cytokines and promotes white blood cell sta-
sis, thereby amplifying the inflammatory res- 
ponse. Additionally, VEGF, as a pro-inflammato-
ry molecule, can stimulate the expression of 
various inflammatory cytokines such as mono-
cyte chemoattractant protein-1 (MCP-1), mac-
rophage inflammatory protein-1α, and IL-8. 
Specific inhibition of VEGF has been shown to 
reduce the levels of ICAM-1, TNF-α, and NF-κB 
in diabetic mice, which alleviates retinal leu-
kostasis, and mitigates disruption of the BRB 
[52].

Placental growth factor (PlGF), a member of the 
VEGF family, serves as a potent pro-angiogenic 
factor and plays a crucial role in modulating the 
inflammatory response. It achieves this by stim-
ulating tissue factor production and promoting 
the growth, chemotaxis, and survival of mono-
cyte/macrophage through binding to VEGF re- 
ceptor-1 [20]. Clinical studies have demonstrat-
ed elevated levels of PlGF in the vitreous humor 
of PDR patients [53]. Conversely, the absence 
of PlGF in diabetic mice has been shown to pre-
vent BRB disruption and inhibit retinal cell 
apoptosis [54].

Prolonged hyperglycemia in diabetic patients 
induces abnormal secretion of transforming 
growth factor-β (TGF-β) by retinal endothelial 
cells and macrophages. Elevated levels of 
TGF-β in the bloodstream then stimulate the 
migration of retinal pigment epithelial cells, fi- 
broblasts, and glial cells into the vitreous humor 
and subretinal space, thereby promoting the 
development of PDR [55]. Moreover, the fragile 
nature of retinal neovascularization, which is 
prone to rupture and leakage, enables platelets 
and macrophages from the bloodstream to in- 
filtrate the vitreous humor and retina. This in- 
filtration triggers the release of substantial 
amounts of TGF-β, creating a vicious cycle that 
accelerates the formation and progression of 
PDR [56].

Chemotactic factors

In inflammatory conditions, chemotactic fac-
tors such as Monocyte Chemoattractant Pro- 
tein-1 (MCP-1, also known as CCL-2) and In- 
terferon-Induced Protein 10 (CXCL10) are ex- 
pressed at elevated levels in the vitreous 

humor of PDR patients. Furthermore, the con-
centrations of these factors are positively cor-
related with the DR severity [57, 58]. 

MCP-1, through signaling pathways such as 
phosphoinositide 3-kinase (PI3K) and MAPK, 
upregulates the expression of NO and VEGF, 
thereby promoting neovascularization in the 
retina. Additionally, inflammatory factors such 
as IL-1β, TNF-α, INF-γ, and platelet-derived gr- 
owth factor (PDGF) can induce and positively 
regulate the expression of MCP-1. When acting 
in concert, these factors contribute to inflam-
matory damage. MCP-1 can activate adhesion 
molecules, strengthen the adhesion between 
vascular endothelial cells, and trigger retinal 
inflammatory responses [59]. CXCL10 plays a 
crucial role in the development, migration, and 
adhesion of T cells, and it can also activate 
monocytes and natural killer cells, contributing 
to the onset and progression of various autoim-
mune disorders [60]. These chemotactic fac-
tors further promote the activation and recruit-
ment of white blood cells, leading to the leakage 
of fluid and neutrophils from blood vessels into 
retinal tissues. 

Other inflammatory mediators

Inducible nitric oxide synthase (iNOS) and cyclo-
oxygenase-2 (COX-2) play significant roles in  
the inflammatory response during the progres-
sion of DR [61]. iNOS catalyzes the production 
of NO, which, under normal physiological con- 
ditions, is essential for regulating vasodilation 
and inhibiting platelet aggregation. However, 
under high glucose conditions, the overexpres-
sion of iNOS leads to excessive NO production. 
The reaction between NO and superoxide 
anions generates peroxynitrite, a potent oxi-
dant that induces oxidative stress, impairing 
retinal cell function and triggering apoptosis 
[62]. Furthermore, NO enhances vascular per-
meability and promotes neovascularization 
through the activation of the cyclic guanosine 
monophosphate signaling pathway, thereby 
contributing to the pathological processes of 
DR [63]. 

COX-2, as a key enzyme in the inflammatory 
response, triggers the release of the pro-inflam-
matory cytokine prostaglandin E2 in the early 
phases of DR. This, in turn, leads to increased 
VEGF expression and promotes the formation 
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of neovascularization in the retina [64]. Re- 
search by Wu et al. [65] has shown that salidro-
side can directly bind to COX-2, inhibiting its 
expression and thereby mitigating the inflam-
matory response in ultraviolet-induced mouse 
epidermal JB6Cl41 cells and human skin ke- 
ratinocytes.

Matrix metalloproteinase-9 (MMP-9) plays a 
dual role in DR progression by degrading extra-
cellular matrix components and inducing oxi- 
dative stress under hyperglycemic conditions. 
Additionally, MMP-9 interaction with CD44 trig-
gers TGF-β release, which contributes to neo-
vascularization in PDR [66]. The balance be- 
tween the angiopoietin (Ang) family members 
(Ang-1 and Ang-2) and the Ang/tyrosine kinase 
receptor 2 system determines vascular forma-
tion and stability. Clinical evidence demon-
strates significantly elevated serum Ang-2 lev-
els in PDR patients compared to NPDR cases. 
This Ang-2 upregulation drives the formation  
of immature and leak-prone neovessels, exac-
erbating retinal edema and inflammatory re- 
sponses [67].

Role of inflammatory cells in DR

Retinal cell dysfunction may exacerbate inflam-
mation in the early phases of DR. Key patho-
logical changes, including microglial activation, 
Müller cell proliferation, retinal pigment epithe-
lium secretion, endothelial cell proliferation, 
and pericyte loss, are associated with BRB 
breakdown and DME progression [68, 69]. The 
involvement of specific inflammatory cells in  
DR pathogenesis is shown in Table 2.

Leukocytes

Leukocyte adhesion and aggregation to the 
vascular endothelium represent critical early 
events in retinal inflammation, contributing to 
microcirculatory dysfunction and BRB break-
down in DR [70]. This process is mediated by 
mutual recognition between endothelial cells 
and leukocyte surface adhesion molecules. Un- 
der inflammatory conditions, VEGF and ICAM-1 
expression in retinal endothelial cells is upregu-
lated. ICAM-1 binds to its receptors, facilitating 
leukocyte transendothelial migration and sub-
sequent adhesion. VEGF can induce the expres-
sion of endothelial NOS, which further pro-
motes leukocyte adhesion.

Macrophages

Several studies suggest that macrophages are 
a primary driving force in PDR pathogenesis 
[71, 72]. In the early stages of DR, macro-
phages can polarize into M1 phenotype, exac-
erbating retinal vascular endothelial damage  
by secreting inflammatory factors. This increas-
es vascular permeability, disrupts the BRB,  
and leads to retinal leakage, hemorrhage, mi- 
croaneurysm formation, and other pathological 
changes such as vascular occlusion [73]. In the 
late stages of DR, M2 macrophages become 
progressively activated, inducing chemotaxis 
and fibrosis through the secretion of leukotri-
enes and fibronectin. They also influence cell 
proliferation by synthesizing VEGF and PDGF, 
promoting neovascularization and fibrovascular 
membrane formation [74]. Studies have shown 
that both in vitro and in vivo, human monocytes 
and macrophages are activated, with elevated 
levels of CD11c and iNOS in macrophages 
treated with high glucose, as well as in circulat-
ing monocytes from DR patients [75]. Addi- 
tionally, activated macrophages release exces-
sive inflammatory factors, including TNF-α, 
IL-1β, IL-6, and IL-12, through the NF-κB signal-
ing pathway. However, their phagocytic function 
is impaired, suggesting that macrophage dys-
function may exacerbate DR inflammation [76, 
77].

Astrocytes

Astrocytes are the primary source of VEGF and 
inflammatory factors in the retina [78]. In DR, 
retinal astrocytes are closely associated with 
retinal blood vessels and play a crucial role in 
maintaining the BRB [79]. Additionally, astro-
cytes contribute to the inflammatory response 
by producing pro-inflammatory cytokines such 
as IL-1β, TNF-α, and iNOS, which exacerbate 
damage to the retinal neurovascular unit and 
promote neuroinflammation [80].

Müller cells

Müller cells, the primary glial cells of the retina, 
provide support and nourishment to retinal 
neurons. They play a crucial role in maintaining 
retinal integrity and are involved in various 
pathological processes [81]. In DR, the expres-
sion of glial fibrillary acidic protein (GFAP) is 
increased [82], and the secretion of pro-inflam-
matory mediators such as IL-1β, IL-6, IL-8, VEGF, 
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Table 2. The role of inflammatory cells in DR
Category Mediator Mechanism Stage of DR Involved Therapy References
Leukocyte

VEGF/ICAM-1
adhesion, aggregation, and sedimentation causing BRB damage in early DR Yutiq, Iluvien, Trivaris, Triesence, Ozurdex, Aflibercept, 

Faricimab, Ranibizumab
[70]

Macrophage
M1/M2 type

Early destruction of BRB, late promotion of  
neovascularization and fibrovascular membrane 
formation, exacerbation of DR inflammation

Increased expression in NPDR and  
correlated with the severity of DR

Yutiq, Iluvien, Ozurdex, INCB-8765, PLX3397, 
BLZ945, Pioglitazone, Glycyrrhizin

[73, 74]

Astrocyte
VEGF

Increases vascular permeability and  
neovascularization

Increased expression in PDR, DME Ozurdex®, Iluvien®, Aflibercept, Faricimab [78, 79]

Müller cells
GFAP/VEGF/ICAM-1

It is the main component of retinal astrocytes,  
providing support and nutrition for retinal neurons

Participate in the inflammatory process 
of DR

Aflibercept, Faricimab, Ranibizumab, Ozurdex®, 
Iluvien®, N-acetylcysteine, Epalrestat

[81-85]

Abbreviations: DR, diabetic retinopathy; VEGF, vascular endothelial growth factor; ICAM-1, intercellular adhesion molecule-1; BRB, blood-retinal barrier; NPDR, non-proliferative diabetic retinopathy; GFAP, glial fibrillary acidic protein; DME, 
diabetic macular edema.
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and ICAM-1 is elevated. This suggests that, dur-
ing the progression of diabetes, Müller cell pro-
liferation and reactive gliosis contribute to the 
inflammatory response [83-85].

Therapeutic approaches for DR inflammation

Given the critical role of inflammation in the 
pathogenesis of DR, targeting or inhibiting in- 
flammation is considered a potential treatment 
strategy. Glucocorticoids exhibit potent anti-
inflammatory effects, by suppressing the ex- 
pression of various inflammatory mediators, 
reducing retinal edema, and alleviating inflam-
matory responses. Local application of gluco-
corticoids can effectively treat vision-threaten-
ing DR [86]. Studies [87] have demonstrated 
that long-acting water-soluble steroid dexa-
methasone reduces VEGF expression. Further 
research indicates that dexamethasone reduc-
es VEGF levels by inhibiting p38 MAPK activity, 
extracellular signal-regulated kinase activity 
and MMP-9 expression, thereby reducing neo-
vascularization [88].

Anti-VEGF therapy has emerged as a novel  
and widely adopted approach in clinical prac-
tice in recent years. Currently available anti-
VEGF drugs include Ranibizumab, Bevacizumab, 
Conbercept, and Aflibercept, with Conbercept 
injections as the primary treatment. Conber- 
cept, a VEGF multi-target recombinant fusion 
protein, effectively blocks the VEGF receptor 
signaling pathway, thereby reducing retinal 
edema, promoting the absorption of hemor-
rhages, decreasing retinal vascular permeabi- 
lity, alleviating inner retinal hypoxia and isch-
emia, and reducing retinal nerve fiber layer 
thickness. These effects collectively inhibit 
neovascularization and retinal microvascular 
leakage, facilitating visual recovery and enhanc-
ing treatment efficacy [89, 90]. Study have 
demonstrated that 20 weeks of Conbercept 
intervention in diabetic mice inhibits the NF-κB 
signaling pathway, reduces the expression of 
ICAM-1, IL-1β, IL-6, and TNF-α, and improves 
PDR [91].

Nonsteroidal anti-inflammatory drugs achieve 
their anti-inflammatory effects by inhibiting 
COX activity and reducing the formation of pros-
taglandins. Sodium bromfenac, as a new gen-
eration NSAID, is highly effective and safe for 
anti-inflammatory and analgesic purposes, pri-
marily targeting COX-2 [92]. In a preliminary 

study, local application of Sodium bromfenac 
significantly reduced central foveal retinal thi- 
ckness in DME patients, although it did not sig-
nificantly improve vision [93]. Nepafenac is  
a prodrug that inhibits COX-1 and COX-2 activi- 
ty through its active metabolite Amfenac [94]. 
Animal experiments have shown that topical 
Nepafenac significantly inhibits pro-inflamma-
tory cytokine prostaglandin E2 content in cor-
neal tissues, improves corneal edema symp-
toms, and decreases corneal neovasculariza- 
tion [95].

Moreover, numerous new anti-inflammatory 
targets are being developed to address key 
molecules in the inflammatory pathway, such 
as TNF-α, IL-1β, and IL-6, representing an em- 
erging area of research in DR treatment. TNF-α 
inhibitors, including Infliximab, Adalimumab, 
and Golimumab [96], have demonstrated some 
degree of improvement in vision and retinal 
edema in patients [97]. Canakinumab, an IL-1β 
inhibitor, reduces DME and stabilizes the condi-
tion, aiding in the treatment of PDR without 
affecting neovascular formation [98]. IL-6 in- 
hibitors such as Siltuximab, Sirukumab, Oloki- 
zumab, and Clazakizumab can globally block 
IL-6 signal transduction [99].

Conclusion and future perspectives

DR represents a major microvascular complica-
tion of diabetes, characterized by complex 
inflammatory pathogenesis involving multiple 
interrelated pathways rather than isolated fac-
tors. This review elucidates the mechanistic 
roles of inflammatory cells, cytokines, and 
associated signaling pathways in DR progres-
sion, highlighting that targeted modulation of 
intra- and intercellular inflammatory signaling 
may offer promising therapeutic strategies. 
While substantial advances have been achieved 
in understanding inflammatory mechanisms in 
DR, current research remains constrained by 
several limitations. Most therapeutic studies 
rely predominantly on animal models and in 
vitro systems, with a notable paucity of large-
scale clinical trials to validate long-term effica-
cy and safety in human populations. In the 
future, the mechanism of action of multi-target 
inflammatory factors should be further eluci-
dated, and research into anti-inflammatory 
mechanisms should be enhanced. Additionally, 
the development of new formulations for the 
anti-inflammatory treatment of DR is critical for 
advancing clinical treatment options.
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