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Abstract: Purpose: To evaluate the diagnostic performance of a model combining gray-scale ultrasound (US) ra-
diomic features and clinical data in distinguishing benign from malignant breast masses classified as Breast Im-
aging Reporting and Data System (BI-RADS) category 4. Methods: In this retrospective study, 149 women with 
pathologically confirmed breast masses were included and randomly divided into a training cohort (n=104) and a 
validation cohort (n=45). A total of 1,046 radiomic features were extracted from US images. Feature selection was 
performed using Pearson correlation analysis followed by least absolute shrinkage and selection operator (LASSO) 
regression. Three K-nearest neighbor (KNN) classifiers were developed: a clinical model, an ultrasound radiomics 
(USR) model, and a combined clinical-USR model. Model performance was assessed using accuracy, sensitivity, 
specificity, and the area under the receiver operating characteristic curve (AUC). Results: Seven radiomic features 
and two clinical variables were selected for model construction. In the training cohort, the combined clinical-USR 
model achieved an AUC of 0.927, with an accuracy of 89.0%, sensitivity of 88.9%, and specificity of 89.8%. In the 
validation cohort, the AUC of 0.826, with an accuracy of 80.0%, sensitivity of 83.3%, and specificity of 66.7%. 
The standalone USR model yielded AUCs of 0.902 and 0.883 in the training and validation cohorts, respectively, 
while the clinical model showed lower AUCs of 0.876 and 0.794. Decision curve analysis (DCA) indicated that the 
combined model provided a greater net clinical benefit than the clinical model alone. Conclusion: The integration 
of ultrasound radiomic features with clinical data improves diagnostic performance in differentiating benign from 
malignant BI-RADS 4 breast masses. The combined model holds potential for aiding clinical decision-making but 
requires further validation in larger, independent datasets.
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Introduction

Breast cancer remains the most commonly 
diagnosed malignant tumor among women 
worldwide and is a leading cause of cancer-
related deaths, posing a significant challenge 
to public health [1]. Timely and accurate diag-
nosis is critical for improving patient progno- 
sis, and imaging plays a pivotal role in the  
clinical management of breast cancer, includ-
ing screening, diagnosis, staging, treatment 
planning, and monitoring therapeutic response 
[2].

Among the various imaging modalities, ultra-
sound (US) is widely utilized due to its real-time 
imaging capabilities, lack of ionizing radiation, 
affordability, and accessibility - especially in re- 
source-limited settings [3-5]. It is particularly 
valuable for evaluating palpable breast abnor-
malities, guiding biopsies, and characterizing 
masses in dense breast tissue where mam-
mography may be less effective.

To standardize breast imaging interpretation 
and improve communication among healthcare 
providers, the American College of Radiology 
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(ACR) developed the Breast Imaging Reporting 
and Data System (BI-RADS). The BI-RADS ultra-
sound lexicon classifies breast lesions based 
on specific sonographic features. Category 4 
lesions are considered “suspicious for malig-
nancy”, with a broad malignancy probability 
ranging from 2% to 95%. To refine risk stratifi-
cation and guide clinical management, BI-RADS 
4 is further divided into three subcategories: 4A 
(low suspicion, 2%-10%), 4B (moderate suspi-
cion, 10%-50%), and 4C (high suspicion, 50%-
95%) [6]. Despite this stratification, BI-RADS 4 
lesions typically require tissue sampling, which 
often results in a high number of unnecessary 
biopsies, particularly for lesions in the lower-
risk subcategories.

Accurate BI-RADS classification relies heavily 
on the radiologist’s subjective interpretation  
of morphological features, which may vary de- 
pending on individual experience and training. 
Studies have shown considerable inter-observ-
er variability in BI-RADS assessments, particu-
larly within category 4 [7-11]. Additionally, the 
substantial overlap in ultrasound characteris-
tics between benign and malignant masses  
further complicates accurate differentiation. 
Although clinical factors-such as patient age, 
lesion palpability, and personal or family history 
of breast cancer, can aid in risk assessment, 
these are not consistently incorporated into 
routine ultrasound evaluations.

Recent advancements in medical imaging an- 
alysis have introduced radiomics as a power- 
ful approach to extract high-dimensional quan-
titative features from standard medical imag-
es. These features capture tissue characteris-
tics - such as heterogeneity, texture, and mo- 
rphology - that are often imperceptible to the 
human eye but may be indicative of malignan- 
cy [12]. The integration of radiomics with ma- 
chine learning has shown promising results in 
various oncologic imaging applications. How- 
ever, its application in ultrasound imaging, 
especially for evaluating BI-RADS 4 breast 
lesions, remains relatively underexplored. Gi- 
ven the need for more objective and reproduc-
ible diagnostic tools, this study aims to de- 
velop and evaluate machine learning models 
that integrate grayscale ultrasound-based ra- 
diomic features with clinical data to differenti-
ate between benign and malignant BI-RADS 
category 4 breast masses. The ultimate goal is 
to improve diagnostic accuracy, reduce unnec-
essary biopsies, and support more personal-
ized patient care.

Materials and methods

Study design and patient selection

This retrospective study was approved by the 
Ethics Committee of the Affiliated People’s 
Hospital of Jiangsu University (Approval No. 
SQK-20230061-W). Owing to the retrospective 
nature of the study, the requirement for written 
informed consent was waived.

Between September 2021 and April 2022, 149 
consecutive female patients who underwent 
ultrasound-guided core needle biopsy (US-CNB) 
or surgical excision for breast masses were 
evaluated. All patients had undergone stan-
dardized preoperative breast ultrasound (US) 
examinations. After applying specific eligibility 
criteria, a total of 149 breast lesions from 149 
women were included in the final analysis. The 
patients’ ages ranged from 23 to 77 years, with 
a mean of 53.75±11.98 years.

Inclusion criteria were: (1) solid or predominant-
ly solid breast masses confirmed by US; (2) 
availability of complete clinical, imaging, and 
pathological data; and (3) no prior treatment, 
such as chemotherapy or radiotherapy, before 
the imaging evaluation. Exclusion criteria in- 
cluded: (1) purely cystic lesions; (2) incomplete 
imaging or pathological data; and (3) poor im- 
age quality unsuitable for accurate assess- 
ment.

Ultrasound acquisition and BI-RADS classifica-
tion

All US examinations were performed using a 
Mindray 7s Imagine ultrasound system (Mindray 
Medical, Shenzhen, China) equipped with a 
5-14 MHz linear-array transducer. Two radiolo-
gists, each with 5 to 15 years of experience  
in breast ultrasound, conducted the examina-
tions. They had access to the patients’ clinical 
information at the time of scanning.

During the examinations, Patients were posi-
tioned supine with arms raised to ensure full 
exposure of breast tissue. Both transverse and 
longitudinal images of each lesion were ac- 
quired. For each lesion, Sonographic features 
evaluated included echogenicity, shape, orien-
tation, margins, posterior acoustic features, 
presence of calcifications, vascularity, and tis-
sue elasticity. A representative high-quality 
image with minimal artifacts and without mea- 
surable markers were selected for further 
analysis.
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The BI-RADS system developed by the American 
College of Radiology (ACR) standardizes termi-
nology, reporting formats, examination tech-
niques, and diagnostic procedures of breast 
imaging to facilitate clinical decision-making 
and interprofessional communication. BI-RADS 
has been widely adopted in clinical breast ultra-
sound practice in China. Lesions exhibiting 
three or more suspicious features - such as 
irregular shape, non-parallel orientation, non-
circumscribed margin, posterior shadowing, a 
hyperechoic halo, surrounding tissue distor-
tion, microcalcifications (less than 0.5 mm), or 
intralesional vascularity - were categorized as 
BI-RADS 5. Lesions with a regular shape, a cir-
cumscribed margin, and parallel orientation 
were categorized as BI-RADS 3. Lesions not 
clearly fitting either category were assigned to 
BI-RADS subcategories 4A, 4B, or 4C, based on 
the degree and number of suspicious features.

Image segmentation and radiomic feature 
extraction

For each lesion, a representative US image was 
selected, and the region of interest (ROI) was 
manually delineated along the lesion boundary 
using ITK-SNAP software (version 3.8.0; http://
www.itksnap.org). ROI segmentation was inde-
pendently performed by two radiologists with 
15 and 10 years of experience, respectively. 
Discrepancies were resolved by consensus to 
ensure consistency.

A total of 1,046 quantitative radiomic features 
were extracted from each ROI using the open-
source Pyradiomics package (version 2.2.0; 
https://github.com/Radiomics/pyradiomics). 
Extracted features included first-order statis-
tics, shape-based descriptors, and a range of 
texture features derived from gray-level co-
occurrence, run-length, size zone, dependence, 
and neighborhood graytone difference matri-
ces. Additionally, wavelet-transformed versions 
of each feature category were computed to 
capture multi-scale texture characteristics.

Feature selection and model construction

To reduce dimensionality and prevent overfit-
ting, radiomic features were first normalized 
using a robust scaler. Features with high redun-
dancy (Pearson correlation coefficients > 0.80) 
were removed, prioritizing retention of original, 
low-order features. Feature selection was then 
performed using least absolute shrinkage and 
selection operator (LASSO) regression with 

10-fold cross-validation to identify the most 
predictive features.

A k-nearest neighbor (KNN) classifier was 
trained using the selected radiomic features to 
build the Ultrasound Radiomics (USR) model. 
The diagnostic performance of this model was 
evaluated on both training and validation data-
sets based on receiver operating characteristic 
(ROC) curve analysis, sensitivity, specificity, 
accuracy, positive predictive value (PPV), and 
negative predictive value (NPV).

In addition to the USR model, a Clinical Model 
was developed using statistically significant 
clinical variables and conventional sonographic 
features identified through univariate analysis. 
Finally, a combined Clinical-USR Model was 
constructed by integrating clinical data, imag-
ing characteristics, and selected radiomic fea-
tures. All models were built using the same 
KNN classification algorithm, and their perfor-
mances were compared in both training and 
validation cohorts to evaluate the added diag-
nostic value of incorporating radiomics data.

Statistical analysis

The Kolmogorov-Smirnov test was used to 
assess the normality of all continuous vari-
ables, and the F-test was applied to evaluate 
the homogeneity of variance. All continuous va- 
riables included in this study met the assump-
tions for normality and homogeneity of vari-
ance. Continuous variables were expressed as 
mean ± standard deviation (SD), and between-
group differences were analyzed using the 
independent samples t-test. Categorical vari-
ables were presented as frequency and per-
centages, with group comparisons performed 
using the Chi-square test. Univariate logistic 
regression analysis was conducted to identify 
potential risk factors. Variables with a P value 
<0.05 in the univariate analysis were included 
in the multivariate logistic regression mode to 
determine independent risk factors. Receiver 
operating characteristic (ROC) curve analysis 
and the area under the curve (AUC) were used 
to assess the discriminatory ability of the 
model. In addition, a calibration curve was used 
to assess agreement between predicted and 
observed outcomes, and decision curve analy-
sis (DCA) was performed to evaluate the clinical 
value of the predictive model. All statistical 
analyses were performed using Python (version 
3.7), IBM SPSS Statistics for Windows (version 
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26.0; IBM Corp., Armonk, NY, USA), and the 
scikit-learn library (version 1.2). A P value <0.05 
was considered statistically significant.

Results

Patient characteristics and cohort allocation

A total of 149 female patients were enrolled in 
this study, comprising 71 individuals with histo-

pathologically confirmed benign breast lesions 
and 78 with malignant lesions. The overall 
mean age was 53.75±11.98 years, ranging 
from 23 to 77 years (Table 1). Patients were 
randomly assigned to either a training cohort 
(n=104) or a validation cohort (n=45) using 
stratified random sampling to maintain a bal-
anced distribution of benign and malignant 
cases across both groups.

Table 1. Patient characteristics of the training and validation cohorts
Characteristic Training Cohort (104) Validation Cohort (45) P value X2/t
Age, mean ± SD (year) 52.75±11.32 55.48±13.00 0.000* -8.528
Tumor size (mm) 25.23±11.99 30.99±18.06 0.06 -10.515
Menopause history 0.709 0.14
    Menopause 52 24
    Premenopausal 52 21
Tumor location 0.444 0.586
    Left breast 53 26
    Right breast 51 19
Tumor position 0.06 5.628
    Outer upper quadrant 93 35
    Outer lower quadrant 8 4
    Inner upper quadrant 3 6
    Inner lower quadrant 0 0
Internal echo 0.734 0.693
    Hypoecho 98 43
    Hyper echo 1 0
    Iso echo 0 0
    Mixed echo 5 2
Tumor margin 0.842 0.04
    Circumscribed 49 22
    Not circumscribed 55 23
Tumor shape 0.527 0.401
    Regular 45 22
    Irregular 59 23
Orientation way 0.023 5.197
    Parallel orientation 95 35
    Not Parallel orientation 9 10
Tumor inner calcification 0.409 2.892
    Microcalcification 26 15
    Coarse calcification 11 7
    Mixed calcification 1 1
    Without calcification 66 22
Tumor vascularization 0.102 4.569
    Without 42 10
    A few 26 15
    Abundant 36 20
Strain elastography 0.065 3.403
    Soft 80 28
    Hard 24 17
*: It means the P value is less than 0.05.
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Baseline clinical and imaging features were 
compared between the benign and malignant 
groups. Statistically significant differences 
were observed in patient age, the presence of 
internal calcifications, and strain elastography 
results (P<0.05 for all). These variables were 
considered relevant and included in the devel-
opment of the Clinical Model (Table 2).

Performance of the clinical prediction model

The Clinical Model was developed using three 
variables - age, internal calcification, and strain 
elastography - that showed significant differ-
ences between benign and malignant lesions. 
Feature selection was performed using LASSO 
regression to reduce dimensionality and avoid 

Table 2. Patient characteristics of the benign and malignant breast masses
Characteristic Benign (n=71) Malignant (n=78) P value X2/t
Age, mean ± SD (year) 46.37±11.49 54.81±11.70 0.000* -4.437
Tumor size (mm) 17.42±12.37 23.06±9.81 0.002* -3.097
Menopause history 0.001* 11.234
    menopause 26 50
    premenopausal 45 28
Tumor location 0.656 0.199
    left breast 39 40
    right breast 32 38
Tumor position 0.640 0.891
    outer upper quadrant 61 68
    outer lower quadrant 7 5
    inner upper quadrant 3 5
    inner lower quadrant 0 0
Internal echo 0.794 0.068
    hypoecho 68 74
    hyperecho 0 0
    isoecho 0 0
    mixed echo 3 4
Tumor margin 0.000* 12.238
    circumscribed 44 26
    non-circumscribed 27 52
Tumor shape 0.018* 5.643
    regular 19 9
    irregular 52 69
Orientation way 0.339 0.916
    Parallel orientation 60 70
    Not Parallel orientation 11 8
Tumor inner calcification 0.000* 39.079
    Microcalcification 7 34
    Coarse calcification 17 1
    Mixed calcification 2 0
    Without calcification 45 43
Tumor vascularization 0.063 5.527
    Without 27 25
    A few 24 17
    Abundant 20 36
Strain elastography 0.000* 51.137
    Soft 69 32
    Hard 2 46
*: It means the P value is less than 0.05.
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Figure 1. Feature selection process for the clinical model. This figure illus-
trates the dimensionality reduction process for clinical variables in the train-
ing cohort. Following statistical analysis and feature selection, three clinical 
features with significant discriminative power in distinguishing benign from 
malignant breast lesions were retained for model construction.

Figure 2. Receiver operating characteristic (ROC) curves for the clinical mod-
el. ROC curves for both the training and validation cohorts are presented 
to evaluate the diagnostic performance of the Clinical model. The curves 
reflect the model’s ability to differentiate between benign and malignant le-
sions based on selected clinical features. The AUC was 0.88 in the training 
cohort and 0.79 in the validation cohort.

Construction and evaluation 
of the USR model

From the initial set of 1,046 
radiomic features extracted 
from ultrasound images, 15 
were selected via LASSO re- 
gression based on the training 
dataset. These features were 
used to build the USR Model 
using a KNN classifier (Figure 
3). The USR Model demon-
strated strong diagnostic per-
formance, achieving an AUC  
of 0.902 in the training cohort. 
In the validation cohort, the 
model maintained excellent 
performance, with an AUC of 
0.883 (Figure 4), suggesting 
robust generalizability of the 
radiomics-based approach.

Development and perfor-
mance of the combined 
clinical-USR model

To evaluate the added value  
of integrating clinical and 
radiomic data, a combined 
Clinical-USR Model was devel-
oped. This model incorporated 
the three clinical variables 
along with the selected ra- 
diomic features. Redundant 
features were eliminated us- 
ing Pearson correlation coeffi-
cient analysis, and LASSO 
regression with cross-valida-
tion was applied to finalize fea-
ture selection (Figure 5). A 
total of 15 combined features 
were used to construct the 
model.

The final predictive model  
was developed using the KNN 
classifier (Figure 6). In the 

overfitting (Figure 1). The model was trained 
using the KNN algorithm. In the training cohort, 
the Clinical Model achieved an AUC of 0.876, 
indicating good discrimination between benign 
and malignant lesions. In the validation cohort, 
the model demonstrated acceptable perfor-
mance with an AUC of 0.794 (Figure 2).

training cohort, the Clinical-USR Model achi- 
eved the highest AUC of 0.927, with a sensiti- 
vity of 0.889 and specificity of 0.898. In the 
validation cohort, the model retained good per-
formance, achieving an AUC of 0.826, with sen-
sitivity and specificity of 0.833 and 0.667, 
respectively.
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Comparative analysis of the model perfor-
mance

A comparative analysis of the three models - 
Clinical, USR, and Clinical-USR - was conducted 
to evaluate diagnostic performance (Table 3).

• In the training cohort, the Clinical-USR Model 
showed the highest AUC (0.927), followed by 

invasive imaging modalities, grayscale ultra-
sound remains a first-line tool for screening and 
diagnosing breast lesions due to its accessibil-
ity, cost-effectiveness, and real-time capabili-
ties [13, 14]. However, conventional ultrasound 
interpretation remains largely qualitative and 
subjective, relying heavily on radiologists’ expe-
rience and visual assessment based on the 
ACR BI-RADS-US lexicon.

Figure 3. Feature selection process for the ultrasound radiomics (USR) mod-
el. This figure depicts the feature selection process for radiomic features 
extracted from grayscale ultrasound images in the training cohort. Out of 
1,046 initially extracted features, 15 were selected using Pearson correla-
tion analysis followed by LASSO regression for input into the USR model.

Figure 4. Receiver operating characteristic (ROC) curves for the USR model. 
ROC curves for the training and validation cohorts are shown to assess the 
diagnostic performance of the USR model. The curves demonstrate strong 
discriminatory power of the selected radiomic features in classifying BI-
RADS 4 breast lesions. The AUC was 0.90 in the training cohort and 0.88 in 
the validation cohort.

the USR Model (0.902) and 
the Clinical Model (0.876).

• In the validation cohort, the 
USR Model achieved the high-
est AUC (0.883), outperform-
ing the Clinical-USR (0.826) 
and Clinical Models (0.794).

• Although the Clinical-USR 
Model showed slightly lower 
performance than the USR 
Model in the validation cohort, 
it exhibited improved sensitiv-
ity over the Clinical Model.

Consistent classification thre- 
sholds were used across co- 
horts: 0.800 for the Clinical 
Model, and 0.600 for both the 
USR and Clinical-USR Models.

Decision curve analysis (DCA) 
demonstrated that the Clini- 
cal-USR model provided a gre- 
ater net benefit compared to 
clinical model across thresh-
old probabilities ranging from 
20% to 45%. The maximum 
net benefit (0.28) was obser- 
ved at a threshold probabili- 
ty of 30%, suggesting that  
the Clinical-USR model would 
offer a clinically meaningful 
improvement in decision-mak-
ing over the Clinical Model 
alone.

Discussion

In recent years, advance-
ments in ultrasound imaging 
technology - including higher-
resolution probes and impro- 
ved imaging techniques - have 
significantly enhanced the 
early detection and diagnosis 
of breast cancer. Among non-
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The BI-RADS 4 category presents a particular 
diagnostic challenge due to its broad range of 
malignancy probability (5-90%) [15], leading  
to high variability in diagnostic outcomes. In  
our study, 48% of BI-RADS 4 lesions were ulti-
mately diagnosed as benign based on patholo-
gy, highlighting the limitations of visual assess-
ment and the potential for both overtreatment 
and delayed diagnosis. False-negative cases - 
where malignant tumors with subtle ultrasound 
features are misclassified - may delay timely 

med the Clinical model (AUCs: 0.876 and 0.794, 
respectively). These findings suggest that inte-
grating clinical information with radiomic data 
yields a more robust predictive framework than 
either data type alone.

Importantly, the Clinical-USR model surpassed 
the diagnostic accuracy typically reported for 
experienced sonographers (AUC range: 0.71-
0.79) [20-22], and provided more precise risk 
stratification than the BI-RADS-US lexicon al- 

Figure 5. Feature selection process for the combined clinical-USR model. 
This figure illustrates the integration and feature selection process for the 
combined model, incorporating both clinical and radiomic variables. A total 
of 15 features - comprising 3 clinical and 12 radiomic features - were re-
tained in the training cohort following comprehensive selection procedures 
to construct the integrated model.

Figure 6. Receiver operating characteristic (ROC) curves for the combined 
clinical-USR model. ROC curves for the training and validation cohorts dem-
onstrate the enhanced diagnostic performance of the combined Clinical-
USR Model. The integrated model outperformed the individual Clinical or 
USR models, highlighting its potential clinical value in differentiating benign 
from malignant BI-RADS 4 lesions. The AUC was 0.93 in the training cohort 
and 0.83 in the validation cohort.

treatment, while False-posi- 
tive cases can result in unnec-
essary biopsies and increased 
psychological burden. These 
challenges underscore the 
need for adjunctive, objective 
tools to improve the risk strati-
fication of BI-RADS 4 lesions.

Radiomics enables the extrac-
tion of high-throughput, quan-
titative features from medical 
images, capturing tissue char-
acteristics that are often im- 
perceptible to the human eye. 
This approach has shown pro- 
mise in various malignancies 
and may aid in clinical de- 
cision-making [16-19]. More- 
over, combining radiomics wi- 
th multi-omic approaches - 
such as radiogenomics - could 
further enhance predictive 
models. In this study, we pro-
posed a novel diagnostic me- 
thod that combines ultra-
sound radiomics features with 
clinical data to improve the 
diagnostic efficiency of breast 
lesions. The model was de- 
veloped using a machine 
learning pipeline based on 
K-nearest neighbors (KNN) 
algorithm, with feature selec-
tion via Pearson correlation 
coefficient filtering and LASSO 
regression.

The Clinical-USR model dem-
onstrated strong discrimina-
tory power, achieving an AUC 
of 0.927 in the training cohort 
and 0.826 in the validation 
cohort. Notably, it outperfor- 
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one. Our results are comparable to, or slightly 
better than those from prior studies using 
mammography or MRI-based radiomics [23-
26], and align with recent ultrasound-based 
machine learning studies [27-29]. Variations  
in reported AUC values across studies likely 
reflect differences in sample sizes, lesion char-
acteristics, and imaging protocols. Notably, 
many previous works have evaluated clinical or 
radiomic features in isolation [30, 31], whereas 
our integrated approach addresses a method-
ological gap and offers a more clinically appli-
cable diagnostic tool.

For less experienced sonographers, this model 
could assist in decision-making by providing 
objective, data-driven malignancy risk predic-
tions, which would be especially valuable in 
resource-limited settings where variability in 
expertise may affect BI-RADS classification. 
For more experienced practitioners, the model 
serves as a valuable complement, enabling 
deeper quantitative analysis and data-infor- 
med risk stratification in challenging or atypical 
cases. Successful implementation will require 
explainable AI tools, seamless integration into 
clinical platforms, and validation of real-world 
impact through prospective clinical trials. How- 
ever, integration into fast-paced clinical work-
flows and achieving real-time diagnostic perfor-
mance remain ongoing challenges.

Despite the promising results, our study has 
several limitations. First, it was a retrospective, 
single-center study with a relatively small sam-
ple size, which may limit generalizability. Se- 
cond, potential selection bias cannot be ex- 
cluded, as only patients undergoing core biopsy 
or surgical excision were included. Third, our 
radiomic analysis was based limited to gray-
scale ultrasound images. Future studies should 
explore the incorporation of additional modali-
ties, such as Doppler or elastography, and con-
duct multi-center external validation to enhan- 
ce model robustness and clinical applicability.

Conclusions

In conclusion, we developed a Clinical-USR 
model that integrates clinical characteristics 
and ultrasound-based radiomic features for the 
differential diagnosis of benign and malignant 
breast lesions. The model demonstrated strong 
predictive performance and outperformed  
traditional clinical assessment and BI-RADS-
based assessment classification alone. This 
approach may serve as a valuable adjunct to 
conventional ultrasound evaluation, particular-
ly in the risk stratification of BI-RADS 4 lesions, 
potentially reducing unnecessary biopsies and 
improve the early detection of breast cancer.
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