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Abstract: Objective: To identify critical risk factors distinguishing severe hypertriglyceridemia-associated acute pan-
creatitis (SAP-HTG) from its non-severe form (N-SAP-HTG). Machine learning techniques were used to develop pre-
dictive models and compare them to conventional scoring systems, aiming to enhance early diagnosis and risk 
stratification of SAP-HTG. Methods: A retrospective analysis was conducted on 514 patients with acute pancreatitis 
admitted to HanZhong Central Hospital between August 2018 and June 2024, including 90 SAP-HTG and 424 
N-SAP-HTG cases. Key baseline characteristics, scoring indices (APACHE II, Ranson), and laboratory data (fasting 
blood glucose (FBG), triglycerides (TG), C-reactive protein (CRP)) were collected. LASSO regression was used to 
identify key predictors, and multivariate logistic regression was applied to assess their associations. Four predictive 
models - logistic regression, random forest (RF), support vector machine (SVM), and XGBoost - were developed. 
Model performance was evaluated using the confusion matrix, receiver operating characteristic (ROC) curves, area 
under the curve (AUC), and SHAP analysis, with comparisons to APACHE II and Ranson scores. Statistical analyses 
were conducted with SPSS 26.0 and R 4.3.3. Results: Nine predictors were identified: age, diabetes history, FBG, 
TyG index, amylase (AMY), TG, total cholesterol (TC), CRP, and Ca2+. CRP (OR = 8.787, P < 0.001) and TG (OR = 7.548, 
P < 0.001) were significant risk factors, whereas Ca2+ and age were protective (OR = 0.258 and 0.290, respectively). 
Among the models, XGBoost and RF achieved the highest discriminatory power, with AUCs of 0.959 and 0.955, 
surpassing logistic regression (0.924), SVM (0.926), and traditional scoring systems (P < 0.002). SHAP analysis 
revealed CRP, TG, and TyG index as the most influential factors. Conclusion: Machine learning models effectively 
identified SAP-HTG risk factors, with XGBoost showing superior performance over conventional scoring systems. 
These models provide a valuable tool for early diagnosis and risk stratification of SAP-HTG in clinical settings.
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Introduction

Hypertriglyceridemia-associated acute pancre-
atitis (HTG-AP) is a distinct subtype of acute 
pancreatitis (AP) with a rising global incidence, 
particularly among individuals with obesity,  
diabetes, and high-fat dietary habits [1]. 
Studies show that HTG-AP is more prevalent in 
patients with obesity and diabetes and is asso-
ciated with more severe clinical outcomes [2]. 
Characterized by elevated serum triglyceride 
(TG) levels, HTG-AP can progress to severe 
acute pancreatitis with hypertriglyceridemia 
(SAP-HTG), which is associated with systemic 
inflammation, multiorgan dysfunction, and in- 

creased mortality rate [3]. Hang et al. [4] dem-
onstrated that elevated TG levels, driven by dys-
regulated lipid metabolism and genetic factors, 
increase the risk of AP, emphasizing the com-
plex pathophysiological mechanism involved. 
Compared to non-severe HTG-AP (N-SAP-HTG), 
SAP-HTG presents distinct clinical and meta-
bolic features, including abnormal lipid metabo-
lism, excessive inflammatory responses, and 
pancreatic tissue injury [5].

Early identification of high-risk factors for SAP-
HTG is critical for timely intervention and 
improved patient outcomes. However, the het-
erogeneity and rapid progression of SAP-HTG 
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limit the accuracy and specificity of conven- 
tional diagnostic and prognostic approaches, 
underscoring the need for a precise and per-
sonalized predictive tool.

Traditional clinical scoring systems for AP sever-
ity, such as the Acute Physiology and Chronic 
Health Evaluation II (APACHE II) and the Ranson 
score, primarily rely on physiological data and 
laboratory indices, providing only a general esti-
mate of disease severity [6-8]. However, these 
systems are not fully applicable to SAP-HTG, as 
they fail to account for the disease-specific fea-
tures such as elevated TG levels, metabolic dis-
turbances, and inflammatory markers. More- 
over, their reliance on linear assumptions limits 
the ability to capture the complex risk land-
scape of SAP-HTG, resulting in suboptimal pre-
diction accuracy [9]. Recent evidence further 
indicates that conventional treatment and 
prognostic methods are often insufficient for 
HTG-AP, highlighting the need for more accu-
rate diagnostic tools [10].

To address this gap, predictive models tailored 
specifically to SAP-HTG are required, integrat-
ing diverse clinical, biochemical, and hemato-
logic data. Machine learning (ML) techniques 
have shown substantial potential in disease 
prediction and risk assessment by handling 
high-dimensional data, uncovering nonlinear 
relationships, and improving model accuracy. A 
review by Lu et al. [11] emphasized the close 
association between elevated TG levels, in- 
flammatory markers, and HTG-AP severity and 
recurrence risk, supporting the need for multi-
dimensional feature integration. By leveraging 
ML methods, it is possible to identify critical 
predictive variables, thereby enhancing early 
diagnostic accuracy and facilitating personal-
ized clinical management of SAP-HTG.

This study systematically analyzed the clinical, 
biochemical, and hematologic characteristics 
of patients with SAP-HTG and N-SAP-HTG. Least 
absolute shrinkage and selection operator 
(LASSO) regression was used to identify key 
risk factors, followed by the application of vari-
ous ML techniques, including logistic regres-
sion, random forest (RF), support vector ma- 
chine (SVM), and extreme gradient boosting 
(XGBoost), to build high-precision predictive 
models. Notably, this study innovatively in- 
tegrated multidimensional predictors with 
SHapley Additive exPlanations (SHAP) analysis, 

enabling quantitative evaluation of the relative 
contribution of variables such as CRP and TG. 
Additionally, model performances were com-
pared to traditional scoring systems (APACHE II 
and Ranson). Our findings lay the groundwork 
for future research in precision medicine.

Materials and methods

Sample size calculation

The sample size was estimated according to 
the reported incidence of SAP-HTG ranging 
from 10.4% to 23.9%, as noted by Lu et al. [11]. 
The formula used was: N = Z2 × [P × (1 - P)]/E2, 
where Z = 1.96 (95% confidence level) and E = 
0.05 (margin of error). When P = 0.104, the 
required sample size was approximately 143; 
when P = 0.239, it increased to around 280. 
Therefore, the required sample size ranged 
from 143 to 280 to ensure adequate statisti- 
cal power at a 95% confidence level and 5% 
margin of error.

General data

A retrospective analysis was conducted on 514 
patients diagnosed with AP who were admitted 
to HanZhong Central Hospital between August 
2018 and June 2024. Among them, 90 cases 
were diagnosed with HTG-AP and 424 cases 
with non-HTG-AP. The study protocol was 
reviewed and approved by the Medical Ethics 
Committee of HanZhong Central Hospital.

Inclusion and exclusion criteria

Inclusion criteria: Diagnosis of HTG-AP based 
on clinical symptoms, elevated AMY or lipase 
levels (≥ 3 times the upper limit of normal), and 
imaging evidence of pancreatitis (e.g., CT or 
MRI) [12]; serum TG ≥ 11.3 mmol/L, or TG 
between 5.65-11.3 mmol/L with concurrent 
lipemic serum. Patients aged between 18 and 
70 years, of any sex; Availability of complete 
clinical data at admission, including baseline 
characteristics, biochemical, and hematologic 
data.

Exclusion criteria: AP due to other causes (e.g., 
gallstones, alcoholic pancreatitis, autoimmune 
pancreatitis); severe comorbidities, such as 
advanced malignancy, end-stage hepatic or 
renal failure, or acute myocardial infarction; 
pregnancy or lactation; prior lipid-lowering ther-
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apy or plasma exchange before admission, 
which might have altered serum TG levels.

Clinical data collection

Patient data were obtained from the hospital’s 
electronic medical record. The clinical charac-
teristics, scoring indices, biochemical, and 
hematologic data of patients with SAP-HTG  
and N-SAP-HTG were analyzed and compared. 
Baseline characteristics included age, sex, 
body mass index (BMI), smoking history, alco-
hol consumption, dietary fat intake, and comor-
bidities (hypertension, diabetes, fatty liver). 
Clinical scoring indices included APACHE II and 
the Ranson criteria. Biochemical and hemato-
logic data encompaased fasting blood glucose 
(FBG), triglyceride-glucose (TyG) index, amylase 
(AMY), TG, total cholesterol (TC), high-density 
lipoprotein cholesterol (HDLC), low-density lipo-
protein cholesterol (LDLC), gamma-glutamyl 
transferase (GGT), red blood cell count (RBC), 
hemoglobin (Hb), hematocrit (Hct), monocyte 
count (MON), white blood cell count (WBC), 
platelet count (PLT), C-reactive protein (CRP), 
sodium (Na+), calcium (Ca2+), blood urea nitro-
gen (BUN), creatinine (Cr), uric acid (UA), and 
glomerular filtration rate (GFR).

Machine learning

Four supervised machine learning models - 
logistic regression, random forest (RF), support 
vector machine (SVM), and extreme gradient 
boosting (XGBoost) - were constructed to pre-
dict the risk of SAP-HTG. Data preprocessing 
included median imputation for missing values 
and factor encoding of categorical variables. 
The target variable was defined as a binary 
classification task (SAP-HTG = 1, N-SAP-HTG = 
0), and a fixed random seed (2025) was used to 
ensure reproducibility. Feature selection was 
conducted using LASSO regression on the glm-
net package, identifying nine key predictors: 
age, diabetes history, FBG, TyG index, AMY, TG, 
TC, CRP, and Ca2+. For the RF and SVM models, 
recursive feature elimination (RFE) with 10-fold 
cross-validation was applied to optimize predic-
tor subsets. The RF model was built using the 
randomForest package with mtry set to the 
square root of the number of predictors; The 
optimal number of trees (228) was determined 
by minimizing the out-of-bag (OOB) error. The 
SVM model, constructed from the svmRadial 
method in the caret package, used a radial 

basis function (RBF) kernel. Key hyperparame-
ters (C and σ) were automatically tuned  
through internal cross-validation grid search. 
The XGBoost model was implemented using 
the xgboost package with the following param-
eters: booster = “gbtree”, objective = “binary: 
logistic”, eta = 0.1, max_depth = 3, subsample 
= 1, and colsample_bytree = 1. The model  
was trained for 10 boosting rounds and evalu-
ated using log-loss. Model performance was 
assessed using confusion matrices, receiver 
operating characteristic (ROC) curves, and  
area under the curve (AUC), with DeLong’s test 
used to compare predictive power against tra-
ditional scoring systems (APACHE II and 
Ranson). All implementation was conducted in 
R using the caret, randomForest, xgboost, and 
pROC packages.

SHAP (Shapley Additive Explanations) analysis

To enhance the interpretability of the XGBoost 
model in distinguishing SAP-HTG from N-SAP-
HTG, we applied SHAP analysis using the 
SHAPforxgboost package in R. SHAP is a  
game-theoretic approach that quantifies the 
contribution of each feature to model predic-
tions by calculating the average marginal effect 
across all possible feature combinations. In 
this study, SHAP values were computed for all 
key predictors to assess their relative effect on 
disease severity classification. Feature impor-
tance was visualized using SHAP beeswarm 
plots (global importance), waterfall plots (indi-
vidual prediction explanations), and depen-
dence plots (feature interactions). These analy-
ses provided critical insight into the non-linear 
and interactive effects of predictors and clari-
fied their role in stratifying patients by disease 
severity.

Scoring system definitions and comparative 
rationale

The APACHE II and Ranson scoring systems are 
widely used to assess the severity of acute pan-
creatitis [13, 14]. APACHE II incorporates acute 
physiologic data, age, and chronic health sta-
tus, with scores ranging from 0 to 71; higher 
scores indicate greater severity and mortality 
risk. The Ranson score incorporates clinical 
and laboratory indicators assessed at admis-
sion and after 48 hours, with a maximum score 
of 11. Higher Ranson scores predict worse out-
comes. Both systems are well-established for 



Machine learning model for severe hypertriglyceridemia-associated acute pancreatitis

6781	 Am J Transl Res 2025;17(9):6778-6794

risk stratification and treatment guidance in 
clinical practice.

In this study, APACHE II and Ranson scores 
were used as benchmark references for evalu-
ating the predictive performance of ML models. 
By comparing AUC values and predictive accu-
racy, we aimed to determine whether ML-based 
approaches could outperform traditional scor-
ing systems in identifying patients at risk of 
SAP-HTG. This comparison provides a clinically 
relevant framework for interpreting the utility 
and advantages of ML models in real-world 
settings.

Outcome measures

Primary outcomes included identification of key 
risk factors for SAP-HTG, evaluation of model 
predictive performance (logistic regression, RF, 
SVM, XGBoost), analysis of variable contribu-
tions, and comparison of ML models with tradi-
tional scoring systems.

Secondary outcomes included comparison of 
baseline characteristics, scoring indices, and 
laboratory findings between SAP-HTG and 
N-SAP-HTG patients, determination of optimal 
cut-off values for continuous variables, and 
validation of model accuracy and consistency.

Statistical analysis

Statistical analysis was performed using  
SPSS 26.0 and R version 4.3.3. Continuous 
variables were tested for normality using the 
Kolmogorov-Smirnov test. Normally distributed 
variables were expressed as mean ± standard 
deviation (SD) and compared using indepen-
dent sample t-tests. Non-normally distributed 
data were presented as median (P50) and 
interquartile range (IQR) and compared using 
Mann-Whitney U tests. Categorical data were 
expressed as percentages and compared using 
the chi-square (χ2) test.

LASSO regression for feature selection was 
performed using the glmnet package. Uni- 
variable and multivariable logistic regression 
analyses (stats package) were applied to evalu-
ate independent risk factors. ML models, 
including SVM (caret package), RF (randomFor-
est package), and XGBoost (xgboost package) 
were evaluated using confusion matrices 
(caret), ROC curves, and AUCs (pROC package). 
The DeLong test was used to compare AUCs 

between ML models and traditional scoring 
systems. 

SHAP analysis using the SHAPforxgboost pack-
age was conducted to quantify variable contri-
butions and explore feature interactions. All 
statistical tests were two-sided, and P < 0.05 
was considered significant.

Results

Comparison of patient characteristics between 
SAP-HTG and N-SAP-HTG groups

Comparison of baseline characteristics be- 
tween the SAP-HTG and N-SAP-HTG groups 
revealed significant differences in age (P < 
0.001) and history of diabetes (P < 0.001). 
Patients with SAP-HTG were younger and had  
a higher prevalence of diabetes. No significant 
differences were found between the two groups 
in terms of sex, BMI, smoking history, alcohol 
consumption, high-fat diet, history of hyperten-
sion, or fatty liver (P > 0.05) (Table 1).

Comparison of scoring indices between SAP-
HTG and N-SAP-HTG groups

Both APACHE II (P < 0.001) and RANSON scores 
(P < 0.001) were significantly higher in the SAP-
HTG group compared to N-SAP-HTG group, indi-
cating greater disease severe in the SAP-HTG 
group (Table 2).

Comparison of biochemical and hematological 
indicators

Significant differences were observed in FBG, 
TyG index, AMY, TG, TC, CRP, and serum Ca2+ (P 
< 0.001). Patients with SAP-HTG exhibited  
higher values for all parameters except Ca2+, 
which was lower. No significant differences 
were found in other indicators, including HDLC, 
LDLC, GGT, RBC, Hb, Hct, MON, WBC, PLT, Na+, 
BUN, Cr, UA, and GFR (P > 0.05) (Table 3).

LASSO regression analysis of characteristic 
variables in SAP-HTG patients

Nine variables (age, diabetes history, FBG, TyG 
index, AMY, TG, TC, CRP, Ca2+) were entered into 
the LASSO regression analysis. Both the 1- 
standard error (1 se = 0.022) and minimum 
(min = 0.003) criteria retained all nine vari-
ables. Among them, CRP, TG, TyG index, AMY, 
and FBG showed the strongest associations 
with SAP-HTG, whereas Ca2+ and age were neg-
atively correlated (Figure 1).
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Univariate and multivariate regression analysis 
of characteristic variables

Univariate analysis showed that FBG, TyG index, 
AMY, TG, TC, CRP, and diabetes history were 
significant risk factors for SAP-HTG, with CRP, 
TG, and AMY having the highest odds ratios 
(ORs). Conversely, Ca2+ and age were protective 
factors. Multivariate analysis confirmed that 
CRP (OR = 8.787), TG (OR = 7.548), TyG index 
(OR = 5.689), AMY (OR = 3.662), FBG (OR = 

3.339), TC (OR = 2.873), and diabetes history 
(OR = 2.541) were independent risk factors for 
SAP-HTG, while Ca2+ (OR = 0.258) and age (OR 
= 0.290) were protective factors (Table 4).

Performance analysis of three machine learn-
ing models

To optimize predictive performance, three 
machine learning models - RF, SVM, and 
XGBoost - were systematically tuned and evalu-

Table 1. Comparison of baseline characteristics between SAP-HTG and N-SAP-HTG patients
Variable Total SAP-HTG (n = 90) N-SAP-HTG (n = 424) Statistic P value
Age 12.499 < 0.001
    ≥ 45 years 264 (51.36%) 31 (34.44%) 233 (54.95%)
    < 45 years 250 (48.64%) 59 (65.56%) 191 (45.05%)
Gender 0.110 0.740
    Male 322 (62.65%) 55 (61.11%) 267 (62.97%)
    Female 192 (37.35%) 35 (38.89%) 157 (37.03%)
BMI 0.565 0.452
    ≥ 25 kg/m2 315 (61.28%) 52 (57.78%) 263 (62.03%)
    < 25 kg/m2 199 (38.72%) 38 (42.22%) 161 (37.97%)
Smoking history 1.806 0.179
    Yes 301 (58.56%) 47 (52.22%) 254 (59.91%)
    No 213 (41.44%) 43 (47.78%) 170 (40.09%)
Alcohol consumption history 0.185 0.667
    Yes 239 (46.50%) 40 (44.44%) 199 (46.93%)
    No 275 (53.50%) 50 (55.56%) 225 (53.07%)
High-fat diet 1.034 0.309
    Yes 272 (52.92%) 52 (57.78%) 220 (51.89%)
    No 242 (47.08%) 38 (42.22%) 204 (48.11%)
Hypertension history 3.378 0.066
    Yes 105 (20.43%) 12 (13.33%) 93 (21.93%)
    No 409 (79.57%) 78 (86.67%) 331 (78.07%)
Diabetes history 10.963 < 0.001
    Yes 233 (45.33%) 55 (61.11%) 178 (41.98%)
    No 281 (54.67%) 35 (38.89%) 246 (58.02%)
Fatty liver 0.605 0.437
    Yes 310 (60.31%) 51 (56.67%) 259 (61.08%)
    No 204 (39.69%) 39 (43.33%) 165 (38.92%)
Note: SAP-HTG: Severe Acute Pancreatitis with Hypertriglyceridemia, N-SAP-HTG: Non-Severe Acute Pancreatitis with Hypertri-
glyceridemia, BMI: Body Mass Index.

Table 2. Comparison of APACHE II and Ranson scores between SAP-HTG and N-SAP-HTG patients
Variable Total SAP-HTG (n = 90) N-SAP-HTG (n = 424) Statistic P value
APACHE II 3.00 (2.00) 6.00 (4.00) 3.00 (2.00) 12.105 < 0.001
RANSON 1.00 (1.00) 2.00 (4.00) 0.00 (1.00) 12.136 < 0.001
Note: SAP-HTG: Severe Acute Pancreatitis with Hypertriglyceridemia, N-SAP-HTG: Non-Severe Acute Pancreatitis with Hypertri-
glyceridemia, APACHE II: Acute Physiology and Chronic Health Evaluation II, RANSON: Ranson Criteria.
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ated. For the RF model, the out-of-bag (OOB) 
error steadily declined as the number of trees 
increased, achieving optimal performance at 
228 trees, beyond which the error stabilized, 
indicating model convergence and stability 
(Figure 2A). For the SVM model, recursive fea-
ture elimination (RFE) selected the most infor-
mative predictor subset, with the error rate 
decreasing as feature count increased, reach-
ing a minimum of 0.107 with eight features, 
underscoring the effectiveness of RFE in 
enhancing generalizability (Figure 2B). For the 
XGBoost model, logarithmic loss (log-loss) con-
sistently decreased across 10 boosting itera-
tions, reflecting improved calibration and 
reduced classification uncertainty, consistent 
with the principle of progressive optimization in 
gradient boosting (Figure 2C). These tuning 
procedures ensured each model was trained 
optimally, enhancing reliability in distinguishing 
SAP-HTG from N-SAP-HTG.

Confusion matrix evaluation of SAP-HTG pre-
dictive models

Confusion matrix analysis demonstrated over-
all accuracies of 88.91% for logistic regression, 
92.02% for RF, 90.47% for SVM, and 91.63% 
for XGBoost. Among the models, RF achieved 
the highest accuracy, followed by XGBoost  
and SVM. Logistic regression had the lowest 
accuracy, with a notably higher false-positive 
rate. RF and XGBoost exhibited more balanced 
sensitivity and specificity, supporting their 
greater reliability in distinguishing SAP-HTG 
from N-SAP-HTG (Figure 3).

ROC curve analysis of predictive models

ROC curve analysis showed the following AUC 
values: Logistic Regression (0.924), RF (0.955), 
SVM (0.926), and XGBoost (0.959). XGBoost 
and RF demonstrated the highest predictive 

Table 3. Comparison of biochemical and hematologic data between SAP-HTG and N-SAP-HTG patients
Variable Total SAP-HTG (n = 90) N-SAP-HTG (n = 424) Statistic P value
FBG (mmol/L) 8.46±2.37 9.47±2.01 8.24±2.39 4.543 < 0.001
TyGindex 3.72±0.44 3.95±0.40 3.68±0.43 5.584 < 0.001
AMY (U/L) 327.00 (397.50) 601.50 (547.25) 292.00 (344.50) 7.283 < 0.001
TG (mmol/L) 10.16 (9.34) 12.09 (5.27) 9.09 (9.96) 4.283 <0.001
TC (mmol/L) 5.89±1.66 6.67±1.61 5.72±1.63 5.027 < 0.001
HDLC (mmol/L) 0.83 (0.80) 0.90 (0.74) 0.81 (0.81) 0.936 0.349
LDLC (mmol/L) 1.22 (1.09) 1.18 (1.25) 1.23 (1.06) 0.630 0.529
GGT (U/L) 30.90 (35.98) 33.35 (46.12) 29.60 (33.57) 1.229 0.219
RBC (×10^12/L) 4.92±0.77 4.88±0.76 4.93±0.77 0.523 0.601
Hb (g/L) 141.00±10.14 141.81±9.80 140.83±10.21 0.832 0.406
Hct (%) 40.26±2.39 40.16±2.91 40.28±2.27 0.438 0.662
MON (×10^9/L) 0.35 (0.25) 0.34 (0.30) 0.36 (0.26) 0.322 0.747
WBC (×10^9/L) 9.77 (3.09) 10.02 (4.52) 9.75 (2.84) 0.938 0.348
PLT (×10^9/L) 151.81±25.29 148.54±27.04 152.50±24.89 1.349 0.178
CRP (mg/L) 47.59±18.67 62.93±28.32 44.34±13.92 5.974 < 0.001
Na+ (mmol/L) 135.45±5.54 135.61±5.37 135.42±5.58 0.302 0.763
Ca2+ (mmol/L) 2.13±0.32 1.98±0.31 2.16±0.31 4.985 < 0.001
BUN (μmol/L) 10.48±1.96 10.37±1.79 10.50±2.00 0.573 0.567
Cr (μmol/L) 45.01±15.13 45.31±14.65 44.95±15.25 0.208 0.835
UA (μmol/L) 369.70±114.43 370.54±118.53 369.53±113.68 0.076 0.939
GFR (mL/min) 105.02±15.37 104.96±16.60 105.03±15.12 0.036 0.971
Note: FBG: Fasting Blood Glucose, TyGindex: TriglycerideGlucose Index, AMY: Amylase, TG: Triglycerides, TC: Total Choles-
terol, HDLC: HighDensity Lipoprotein Cholesterol, LDLC: LowDensity Lipoprotein Cholesterol, ApoA1: Apolipoprotein A1, ApoB: 
Apolipoprotein B, LP: Lipoprotein, ALB: Albumin, ALT: Alanine Aminotransferase, AST: Aspartate Aminotransferase, CK: Creatine 
Kinase, GGT: GammaGlutamyl Transferase, DBil: Direct Bilirubin, IBil: Indirect Bilirubin, RBC: Red Blood Cells, Hb: Hemoglobin, 
Hct: Hematocrit, MON: Monocytes, WBC: White Blood Cells, NE: Neutrophil Percentage, PLT: Platelets, CRP: CReactive Protein, 
PCT: Procalcitonin, Na+: Sodium, Ca2+: Calcium, BUN: Blood Urea Nitrogen, Cr: Creatinine, UA: Uric Acid, GFR: Glomerular Filtra-
tion Rate.
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capabilities, followed by SVM, with logistic 
regression performing least well. Pairwise com-
parisons using DeLong’s test revealed signifi-
cant differences between logistic regression 
and RF (P < 0.001), logistic regression and 
XGBoost (P < 0.001), RF and SVM (P = 0.003), 
and SVM and XGBoost (P < 0.001). No signifi-
cant differences were observed between RF 
and XGBoost (P = 0.58) or between logistic 

regression and SVM (P = 0.816). The details 
are shown in Figure 4.

SHAP analysis and feature contribution evalu-
ation

SHAP analysis of the XGBoost model revealed 
that CRP, TG, and TyG index had the highest 
SHAP values, indicating strong positive contri-
butions to SAP-HTG prediction. In contrast, Ca2+ 

Figure 1. LASSO regression analysis of predictive variables for SAP-HTG. A. LASSO Variable Trace Plot: Shows the 
trajectory of each variable’s coefficient as the penalty parameter (λ) changes, illustrating the variable selection pro-
cess under different regularization strengths. B. LASSO Coefficient Selection Plot: Displays the predictive variables 
identified by LASSO regression and their corresponding coefficients, indicating each variable’s importance in pre-
dicting SAP-HTG. Note: SAP-HTG: Severe Acute Pancreatitis with Hypertriglyceridemia, FBG: Fasting Blood Glucose, 
TyGindex: Triglyceride-Glucose Index, AMY: Amylase, TG: Triglyceride, TC: Total Cholesterol, CRP: C-Reactive Protein, 
Ca2+: Calcium, LASSO: Least Absolute Shrinkage and Selection Operator.
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and age were associated with negative SHAP 
values, suggesting protective effects (Figure 
5A). Waterfall plots of representative cases 
(patients 12, 26, and 38) revealed that predic-
tions for patients 12 and 26 were primarily 
influenced by CRP and TG, whereas the predic-
tion for patient 38 was affected by old age and 
high AMY, with Ca2+ showing a notable protec-
tive effect (Figure 5B-D).

SHAP dependence plot analysis

The SHAP dependence plots illustrated that 
CRP, TG, and TyG index exhibited increasing 
SHAP values with higher feature levels, rein-
forcing their strong positive contributions to 
SAP-HTG risk. AMY and FBG also contributed 

positively but with smaller SHAP gradients. 
Conversely, Ca2+ and age displayed decreasing 
SHAP values as their values increased, reinforc-
ing their protective roles. A history of diabetes 
was also associated with a positive contribu-
tion, particularly in patients with a history of 
diabetes (Figure 6).

Comparative ROC analysis of predictive mod-
els with conventional scoring systems

When compared to traditional scoring syste- 
ms, the XGBoost achieved the highest AUC 
(0.959), followed by APACHE II (0.893) and 
RANSON (0.878). Statistically significant differ-
ences in AUC were found between XGBoost and 
APACHE II (P = 0.002) and between XGBoost 

Table 4. Univariate and multivariate regression analysis of SAP-HTG risk factors

Characteristic Total (N)
Univariate analysis Multivariate analysis

OR (95% CI) P value OR (95% CI) P value
FBG 514
    < 8.05 297 Reference Reference
    ≥ 8.05 217 3.834 (2.187-6.720) < 0.001 3.339 (1.608-6.936) 0.001
TyG index 514
    < 3.645 283 Reference Reference
    ≥ 3.645 231 4.758 (2.683-8.438) < 0.001 5.689 (2.643-12.243) < 0.001
AMY 514
    < 443 184 Reference Reference
    ≥ 443 330 5.147 (3.156-8.397) < 0.001 3.662 (1.909-7.027) < 0.001
TG 514
    < 8.81 297 Reference Reference
    ≥ 8.81 217 6.084 (3.218-11.503) < 0.001 7.548 (3.295-17.288) < 0.001
TC 514
    < 6.145 226 Reference Reference
    ≥ 6.145 288 2.929 (1.819-4.716) < 0.001 2.873 (1.482-5.570) 0.002
CRP 514
    < 57.35 122 Reference Reference
    ≥ 57.35 392 6.920 (4.237-11.303) < 0.001 8.787 (4.454-17.337) < 0.001
Ca2+ 514
    < 2.085 286 Reference Reference
    ≥ 2.085 228 0.328 (0.203-0.530) < 0.001 0.258 (0.133-0.500) < 0.001
Age 514
    < 45 264 Reference Reference
    ≥ 45 250 0.431 (0.268-0.693) < 0.001 0.290 (0.148-0.565) < 0.001
History of diabetes 514
    No 233 Reference Reference
    Yes 281 2.172 (1.363-3.460) 0.001 2.541 (1.335-4.838) 0.005
Note: SAP-HTG: Severe Acute Pancreatitis with Hypertriglyceridemia, N-SAP-HTG: Non-Severe Acute Pancreatitis with Hyper-
triglyceridemia, FBG: Fasting Blood Glucose, TyGindex: Triglyceride-Glucose Index, AMY: Amylase, TG: Triglyceride, TC: Total 
Cholesterol, CRP: C-Reactive Protein, Ca2+: Calcium, OR: Odds Ratio, CI: Confidence Interval.
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Figure 2. Model optimization analysis for SAP-HTG prediction. A. Error Rate vs. Number of Trees in the RF Model. B. Error Rate vs. Number of Features in the SVM 
Model. C. Log Loss vs. Number of Iterations in the XGBoost Model. Note: SAP-HTG: Severe Acute Pancreatitis with Hypertriglyceridemia, RF: Random Forest, SVM: 
Support Vector Machine, XGBoost: Extreme Gradient Boosting, MIN error: Minimum Error.
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and RANSON (P < 0.001). No significant differ-
ence was found between APACHE II and 
RANSON (P = 0.567) (Figure 7).

Discussion

Severe hypertriglyceridemia-associated acute 
pancreatitis (SAP-HTG) has garnered increas- 
ing attention due to its rapid progression and 
high mortality. Its incidence is rising in parallel 
with the growing prevalence of obesity, diabe-
tes, and high-fat diets. SAP-HTG demonstrates 
more severe inflammatory responses and met-
abolic disturbances compared to N-SAP-HTG, 
highlighting a critical need for early identifica-

tion of high-risk patients [15]. Traditional scor-
ing systems, including APACHE II and Ranson 
scores, exhibit limited predictive capacity as 
they fail to integrate lipid metabolism and 
inflammatory markers. In contrast, ML tech-
niques enable the recognition of nonlinear rela-
tionships and allow the construction of high-
precision predictive models [15].

In this study, key risk factors were selected 
through LASSO regression, and predictive mod-
els were developed using logistic regression, 
RF, SVM, and XGBoost algorithms. Among 
them, XGBoost demonstrated the best perfor-
mance (AUC = 0.959), significantly outperform-

Figure 3. Confusion matrices of SAP-HTG prediction models. A. Logistic Regression Confusion Matrix. B. RF Confu-
sion Matrix. C. SVM Confusion Matrix. D. XGBoost Confusion Matrix. Note: SAP-HTG: Severe Acute Pancreatitis with 
Hypertriglyceridemia, RF: Random Forest, SVM: Support Vector Machine, XGBoost: Extreme Gradient Boosting.
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ing APACHE II (AUC = 0.893) and Ranson (AUC 
= 0.878). SHAP analysis further identified CRP, 
TG, and TyG index as core predictors, providing 
valuable tools for early diagnosis and risk strat-
ification. These findings help address current 
limitations in SAP-HTG prediction and support 
the advancement of precision medication.

LASSO regression identified seven critical risk 
factors (CRP, TG, TyG index, AMY, FBG, TC, and 
diabetes history) and two protective factors 
(age and Ca) for SAP-HTG. These factors dem-
onstrate strong associations with the disease’s 
underlying pathophysiology and offer important 
clinical guidance. CRP (OR = 8.787), as an 
inflammatory marker, reflects intense syste- 
mic inflammatory responses in SAP-HTG. This 
response is likely mediated by proinflammatory 
cytokines such as IL-6 and TNF-α, which exac-
erbate pancreatic necrosis and contribute to 
multi-organ damage. Literature indicates that 
CRP correlates with HTG-AP severity and recur-
rence risk [11], suggesting that close CRP  
monitoring may provide a reliable measure of 
inflammatory status and guide timely anti-
inflammatory or supportive interventions, in- 
cluding fluid resuscitation.

TG (OR = 7.548) represents a hallmark feature 
of SAP-HTG, inducing microcirculatory dysfunc-

tion through chylomicron deposition and free 
fatty acid (FFA) toxicity, directly damaging aci-
nar cells and amplifying inflammation via the 
TLR4 pathway. Tan et al. [16] documented sig-
nificantly higher TG levels in HTG-AP patients, 
emphasizing the urgency of lipid-lowering inter-
ventions. TG-derived non-esterified fatty acids 
(NEFA) have been linked to multiple organ fail-
ure, supporting the necessity of rapid TG reduc-
tion [17]. Clinically, insulin infusion and plasma-
pheresis are effective strategies, and Zhou et 
al. [18] reported improved outcomes with insu-
lin combined with low-molecular-weight heparin 
(LMWH).

TyG index (OR = 5.689) reflects insulin resis-
tance, which may aggravate disease progres-
sion by promoting lipolysis, increasing FFA lev-
els, and triggering oxidative stress. Wang et al. 
[19] demonstrated significant correlations be- 
tween TyG index and SAP-HTG severity. When 
combined with systemic immune-inflammation 
index (SII) and nutritional risk index (NRI), the 
model achieved an AUC of 0.705, highlighting 
the importance of comprehensive glucose and 
metabolic syndrome management.

AMY (OR = 3.662) and FBG (OR = 3.339) reflect 
enzymatic and glucose metabolic disturbanc-
es. These abnormalities likely result from local 

Figure 4. Performances of vari-
ous predictive models for SAP-HTG 
analyzed using ROC curve and De-
long test. A. Logistic regression. B. 
RF. C. SVM. D. XGBoost. E. Delong 
test results. Note: SAP-HTG: Severe 
Acute Pancreatitis with Hypertriglyc-
eridemia, RF: Random Forest, SVM: 
Support Vector Machine, XGBoost: 
Extreme Gradient Boosting, AUC: 
Area Under the Curve.
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Figure 5. SHAP waterfall analysis of SAP-HTG prediction model. A. SHAP beeswarm plot of feature variables. B-D. SHAP waterfall force plots for samples 12, 26, 
and 38. Note: SAP-HTG: Severe Acute Pancreatitis with Hypertriglyceridemia, CRP: C-Reactive Protein, TG: Triglyceride, TyGindex: Triglyceride-Glucose Index, AMY: 
Amylase, FBG: Fasting Blood Glucose, Ca2+: Calcium, XGBoost: Extreme Gradient Boosting, SHAP: Shapley Additive Explanations.
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pancreatic inflammation and stress hyperglyce-
mia triggered by TG elevation. Literature has 
confirmed FBG as an independent risk factor 
for SAP-HTG [20], supporting the role of insulin 
therapy and nutritional support in manage-
ment. TC (OR = 2.873) and diabetes history (OR 
= 2.541) indicate long-term lipid metabolic dis-
orders and metabolic syndrome, which predis-
pose the pancreas to TG-induced injury. Ding  
et al. [21] identified diabetes history as a pre-
dictor of HTG-AP recurrence, emphasizing the 
importance of chronic metabolic control. Shafiq 
et al. [22] found that HTG-AP patients exhibit 
higher BMI and increased clinical severity, fur-
ther supporting a need for comprehensive met-
abolic syndrome management.

These risk factors may act synergistically to 
exacerbate disease severity. For example, TG 
and CRP may establish a vicious cycle of inflam-
mation and lipotoxicity. Literature supports 
insulin infusion as an effective strategy for rap-
idly lowering TG and improving HTG-AP progno-
sis [1]. Clinically, CRP and TG should be priori-
tized for monitoring, in combination with TyG 
index and FBG, to guide comprehensive strate-
gies including lipid-lowering, anti-inflammatory, 
and glycemic control measures aimed at reduc-
ing the risk of SAP-HTG onset and progression.

Serum Ca2+ (OR = 0.258, ≥ 2.085 mmol/L as a 
protective factor) and age (OR = 0.290, ≥ 45 
years as a protective factor) demonstrated neg-

Figure 6. SHAP dependence plots for SAP-HTG prediction model. A. SHAP dependence plot: CRP vs. TG. B. SHAP 
dependence plot: TG vs. Ca2+. C. SHAP dependence plot: AMY vs. Diabetes. D. SHAP dependence plot: Ca2+ vs. TG. 
E. SHAP dependence plot: TyG Index vs. AMY. F. SHAP dependence plot: FBG vs. TG. G. SHAP dependence plot: 
Age vs. Ca2+. H. SHAP dependence plot: TC vs. CRP. I. SHAP dependence plot: Diabetes vs. AMY. Note: SAP-HTG: 
Severe Acute Pancreatitis with Hypertriglyceridemia, CRP: C-Reactive Protein, TG: Triglyceride, TyGindex: Triglyceride-
Glucose Index, AMY: Amylase, FBG: Fasting Blood Glucose, TC: Total Cholesterol, Ca2+: Calcium, XGBoost: Extreme 
Gradient Boosting, SHAP: Shapley Additive Explanations.
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ative associations with SAP-HTG severity, offer-
ing valuable clinical insights. Low Ca2+ levels 
may result from fat saponification due to pan-
creatic necrosis, inflammation-induced hypoal-
buminemia, or multi-organ dysfunction (e.g., 
renal impairment), and is typically associated 
with more severe pancreatic injury and system-
ic inflammation. Dong et al. [23] identified low 
Ca2+ as an independent predictor for SAP-HTG, 
with an AUC of 0.957 when incorporated into 
the model. Conversely, maintaining higher 
serum calcium may alleviate pancreatic dam-

age by stabilizing cellular membranes, sup-
pressing proinflammatory cytokines such as 
IL-1β, and supporting cardiovascular and neu-
rological function. Clinically, regular calcium 
monitoring and timely supplementation may 
improve prognosis.

Interestingly, patients aged ≥ 45 years demon-
strated a protective effect, possibly due to 
decreased metabolic rates or adaptive chang-
es associated with chronic diseases, which 
reduce rapid accumulation of TG and FFAs. 

Figure 7. Performances of machine learning predictive models for SAP-HTG analyzed using ROC curve and Delong 
test. A. XGBoost; B. APACHE II; C. RANSON; D. Delong test results. Note: SAP-HTG: Severe Acute Pancreatitis with 
Hypertriglyceridemia, XGBoost: Extreme Gradient Boosting, APACHE II: Acute Physiology and Chronic Health Evalua-
tion II, RANSON: Ranson Criteria, AUC: Area Under the Curve.
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Previous studies reported that patients < 40 
years have a higher HTG-AP recurrence risk 
[21], supporting that younger individuals may 
be more susceptible due to active metabolism, 
obesity, or genetic predisposition. Similarly, 
Cao et al. [24] observed higher ICU admission 
rates in younger patients, reinforcing the need 
for early screening and timely intervention. 
Both univariate and multivariate analyses in 
this study confirmed the independent protec-
tive role of age. Genetic predisposition has also 
been implicated in younger patients [25], sup-
porting a need for future studies exploring 
genetic susceptibility markers. 

The protective effects of Ca2+ and age may 
reflect their roles in modulating inflammation 
and maintaining metabolic homeostasis. For 
example, high Ca2+ may inhibit proinflammatory 
cytokine release, whereas older patients may 
exhibit attenuated inflammatory responses due 
to metabolic adaptation. These findings under-
score the importance of targeted early screen-
ing and intervention in younger patients and 
close monitoring of Ca2+ levels, to mitigate SAP-
HTG complications.

All four ML models (logistic regression, RF, 
SVM, XGBoost) demonstrated strong predictive 
performance for SAP-HTG. XGBoost (AUC = 
0.959) and RF (AUC = 0.955) outperformed 
logistic regression (AUC = 0.924), SVM (AUC = 
0.926), and traditional scores (APACHE II: 
0.893; Ranson: 0.878). DeLong test confirmed 
the superiority of XGBoost and RF, emphasiz- 
ing their strength in capturing complex nonlin-
ear relationships and multidimensional feature 
interactions. RF, using 228 trees, achieved 
92.02% accuracy with balanced sensitivity and 
specificity, while XGBoost, optimized through 
gradient boosting (eta = 1, max_depth = 3), 
showed stable log-loss reduction and the high-
est AUC, highlighting its clinical potential.

Literature has demonstrated the predictive util-
ity of CT- and serum marker-based models 
incorporating Ca2+ and CRP, achieving high 
accuracy (AUC = 0.930) in SAP-HTG [23], con-
sistent with the advantages observed in our  
ML models. Compared to APACHE II and Ran- 
son scores, ML models integrate SAP-HTG-
specific features such as TG and TyG index, 
thereby providing enhanced predictive power. 
Wang et al. [19] reported an AUC of 0.705  

for a model combining SII, NRI, and TyG index, 
supporting the effectiveness of multi-feature 
integration approaches. In our study, confusion 
matrix analysis revealed that RF and XGBoost 
demonstrated fewer false positives than logis-
tic regression, achieving better classification 
balance.

SHAP analysis enhanced interpretability th- 
rough summary and waterfall plots, revealing 
CRP, TG, and TyG index as dominant contribu-
tors, particularly in high-value ranges. This 
highlights the synergistic effects of inflamma-
tion and dyslipidemia. For instance, predictions 
in samples 12 and 26 were driven by high CRP 
and TG levels, while sample 38 was influenced 
by age and AMY, with Ca2+ exerting a protective 
effect. SHAP dependence plots illustrated 
strong positive impacts of CRP and TG at high 
levels, suggesting shared pathologic pathways 
in SAP-HTG progression. AMY and diabetes his-
tory interactions reflected complex relation-
ships between pancreatic injury and metabolic 
disorders.

Negative contributions of Ca2+ and age further 
support their protective roles, possibly due to 
metabolic stability and disease tolerance. 
Literature supports that insulin infusion can 
rapidly reduce TG and improve outcomes in 
HTG-AP [26, 27], aligning with SHAP findings on 
TG. Wang et al. [28] reported that rapid TG 
reduction did not significantly shorten the dura-
tion of organ failure, suggesting that SHAP can 
aid in prioritizing treatment timing. Clinically, 
SHAP provides a basis for monitoring priorities 
- focus should be on dynamic changes in CRP 
and TG to guide lipid-lowering and anti-inflam-
matory therapy, while closely monitoring low 
Ca2+ patients for deterioration risk. These find-
ings offer precise tools for early diagnosis and 
individualized treatment of SAP-HTG, address-
ing traditional score limitations and advancing 
precision medicine.

Nevertheless, several limitations should be 
acknowledged. First, this was a single-center 
retrospective study, raising the possibility of 
sampling bias. Second, data were static and 
lacked longitudinal dynamics. Future research 
should include multicenter cohorts for external 
validation, integrate dynamic clinical and  
laboratory data, and incorporate imaging fea-
tures, genetic markers, and development of 
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XGBoost-based CDSS to evaluate their effect 
on reducing mortality and improving outcomes. 
Finally, emerging techniques such as deep 
learning should also be explored to further  
optimize SAP-HTG prediction and treatment 
approaches.

Conclusion

This study identified nine key risk factors for 
SAP-HTG using LASSO regression and con-
structed several machine learning models. 
Among them, the XGBoost model achieved the 
highest predictive performance. These findings 
provide a reliable and interpretable tool for 
early diagnosis and individualized risk stratifi-
cation of SAP-HTG, thus advancing precision 
medicine. 
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