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Abstract: Objective: To identify critical risk factors distinguishing severe hypertriglyceridemia-associated acute pan-
creatitis (SAP-HTG) from its non-severe form (N-SAP-HTG). Machine learning techniques were used to develop pre-
dictive models and compare them to conventional scoring systems, aiming to enhance early diagnosis and risk
stratification of SAP-HTG. Methods: A retrospective analysis was conducted on 514 patients with acute pancreatitis
admitted to HanZhong Central Hospital between August 2018 and June 2024, including 90 SAP-HTG and 424
N-SAP-HTG cases. Key baseline characteristics, scoring indices (APACHE Il, Ranson), and laboratory data (fasting
blood glucose (FBQG), triglycerides (TG), C-reactive protein (CRP)) were collected. LASSO regression was used to
identify key predictors, and multivariate logistic regression was applied to assess their associations. Four predictive
models - logistic regression, random forest (RF), support vector machine (SVM), and XGBoost - were developed.
Model performance was evaluated using the confusion matrix, receiver operating characteristic (ROC) curves, area
under the curve (AUC), and SHAP analysis, with comparisons to APACHE Il and Ranson scores. Statistical analyses
were conducted with SPSS 26.0 and R 4.3.3. Results: Nine predictors were identified: age, diabetes history, FBG,
TyG index, amylase (AMY), TG, total cholesterol (TC), CRP, and Ca?*. CRP (OR = 8.787, P < 0.001) and TG (OR = 7.548,
P < 0.001) were significant risk factors, whereas Ca?* and age were protective (OR = 0.258 and 0.290, respectively).
Among the models, XGBoost and RF achieved the highest discriminatory power, with AUCs of 0.959 and 0.955,
surpassing logistic regression (0.924), SVM (0.926), and traditional scoring systems (P < 0.002). SHAP analysis
revealed CRP, TG, and TyG index as the most influential factors. Conclusion: Machine learning models effectively
identified SAP-HTG risk factors, with XGBoost showing superior performance over conventional scoring systems.
These models provide a valuable tool for early diagnosis and risk stratification of SAP-HTG in clinical settings.

Keywords: Severe hypertriglyceridemia-associated acute pancreatitis, machine learning, LASSO regression,
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Introduction creased mortality rate [3]. Hang et al. [4] dem-
onstrated that elevated TG levels, driven by dys-
regulated lipid metabolism and genetic factors,
increase the risk of AP, emphasizing the com-
plex pathophysiological mechanism involved.
Compared to non-severe HTG-AP (N-SAP-HTG),

SAP-HTG presents distinct clinical and meta-

Hypertriglyceridemia-associated acute pancre-
atitis (HTG-AP) is a distinct subtype of acute
pancreatitis (AP) with a rising global incidence,
particularly among individuals with obesity,
diabetes, and high-fat dietary habits [1].

Studies show that HTG-AP is more prevalent in
patients with obesity and diabetes and is asso-
ciated with more severe clinical outcomes [2].
Characterized by elevated serum triglyceride
(TG) levels, HTG-AP can progress to severe
acute pancreatitis with hypertriglyceridemia
(SAP-HTG), which is associated with systemic
inflammation, multiorgan dysfunction, and in-

bolic features, including abnormal lipid metabo-
lism, excessive inflammatory responses, and
pancreatic tissue injury [5].

Early identification of high-risk factors for SAP-
HTG is critical for timely intervention and
improved patient outcomes. However, the het-
erogeneity and rapid progression of SAP-HTG
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limit the accuracy and specificity of conven-
tional diagnostic and prognostic approaches,
underscoring the need for a precise and per-
sonalized predictive tool.

Traditional clinical scoring systems for AP sever-
ity, such as the Acute Physiology and Chronic
Health Evaluation Il (APACHE Il) and the Ranson
score, primarily rely on physiological data and
laboratory indices, providing only a general esti-
mate of disease severity [6-8]. However, these
systems are not fully applicable to SAP-HTG, as
they fail to account for the disease-specific fea-
tures such as elevated TG levels, metabolic dis-
turbances, and inflammatory markers. More-
over, their reliance on linear assumptions limits
the ability to capture the complex risk land-
scape of SAP-HTG, resulting in suboptimal pre-
diction accuracy [9]. Recent evidence further
indicates that conventional treatment and
prognostic methods are often insufficient for
HTG-AP, highlighting the need for more accu-
rate diagnostic tools [10].

To address this gap, predictive models tailored
specifically to SAP-HTG are required, integrat-
ing diverse clinical, biochemical, and hemato-
logic data. Machine learning (ML) techniques
have shown substantial potential in disease
prediction and risk assessment by handling
high-dimensional data, uncovering nonlinear
relationships, and improving model accuracy. A
review by Lu et al. [11] emphasized the close
association between elevated TG levels, in-
flammatory markers, and HTG-AP severity and
recurrence risk, supporting the need for multi-
dimensional feature integration. By leveraging
ML methods, it is possible to identify critical
predictive variables, thereby enhancing early
diagnostic accuracy and facilitating personal-
ized clinical management of SAP-HTG.

This study systematically analyzed the clinical,
biochemical, and hematologic characteristics
of patients with SAP-HTG and N-SAP-HTG. Least
absolute shrinkage and selection operator
(LASSO) regression was used to identify key
risk factors, followed by the application of vari-
ous ML techniques, including logistic regres-
sion, random forest (RF), support vector ma-
chine (SVM), and extreme gradient boosting
(XGBoost), to build high-precision predictive
models. Notably, this study innovatively in-
tegrated multidimensional predictors with
SHapley Additive exPlanations (SHAP) analysis,
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enabling quantitative evaluation of the relative
contribution of variables such as CRP and TG.
Additionally, model performances were com-
pared to traditional scoring systems (APACHE I
and Ranson). Our findings lay the groundwork
for future research in precision medicine.

Materials and methods
Sample size calculation

The sample size was estimated according to
the reported incidence of SAP-HTG ranging
from 10.4% to 23.9%, as noted by Lu et al. [11].
The formula used was: N = Z2 x [P x (1 - P)]/E?,
where Z = 1.96 (95% confidence level) and E =
0.05 (margin of error). When P = 0.104, the
required sample size was approximately 143;
when P = 0.239, it increased to around 280.
Therefore, the required sample size ranged
from 143 to 280 to ensure adequate statisti-
cal power at a 95% confidence level and 5%
margin of error.

General data

A retrospective analysis was conducted on 514
patients diagnosed with AP who were admitted
to HanZhong Central Hospital between August
2018 and June 2024. Among them, 90 cases
were diagnosed with HTG-AP and 424 cases
with non-HTG-AP. The study protocol was
reviewed and approved by the Medical Ethics
Committee of HanZhong Central Hospital.

Inclusion and exclusion criteria

Inclusion criteria: Diagnosis of HTG-AP based
on clinical symptoms, elevated AMY or lipase
levels (= 3 times the upper limit of normal), and
imaging evidence of pancreatitis (e.g., CT or
MRI) [12]; serum TG = 11.3 mmol/L, or TG
between 5.65-11.3 mmol/L with concurrent
lipemic serum. Patients aged between 18 and
70 years, of any sex; Availability of complete
clinical data at admission, including baseline
characteristics, biochemical, and hematologic
data.

Exclusion criteria: AP due to other causes (e.g.,
gallstones, alcoholic pancreatitis, autoimmune
pancreatitis); severe comorbidities, such as
advanced malignancy, end-stage hepatic or
renal failure, or acute myocardial infarction;
pregnancy or lactation; prior lipid-lowering ther-
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apy or plasma exchange before admission,
which might have altered serum TG levels.

Clinical data collection

Patient data were obtained from the hospital’s
electronic medical record. The clinical charac-
teristics, scoring indices, biochemical, and
hematologic data of patients with SAP-HTG
and N-SAP-HTG were analyzed and compared.
Baseline characteristics included age, sex,
body mass index (BMI), smoking history, alco-
hol consumption, dietary fat intake, and comor-
bidities (hypertension, diabetes, fatty liver).
Clinical scoring indices included APACHE Il and
the Ranson criteria. Biochemical and hemato-
logic data encompaased fasting blood glucose
(FBG), triglyceride-glucose (TyG) index, amylase
(AMY), TG, total cholesterol (TC), high-density
lipoprotein cholesterol (HDLC), low-density lipo-
protein cholesterol (LDLC), gamma-glutamyl
transferase (GGT), red blood cell count (RBC),
hemoglobin (Hb), hematocrit (Hct), monocyte
count (MON), white blood cell count (WBC),
platelet count (PLT), C-reactive protein (CRP),
sodium (Na*), calcium (Ca?*), blood urea nitro-
gen (BUN), creatinine (Cr), uric acid (UA), and
glomerular filtration rate (GFR).

Machine learning

Four supervised machine learning models -
logistic regression, random forest (RF), support
vector machine (SVM), and extreme gradient
boosting (XGBoost) - were constructed to pre-
dict the risk of SAP-HTG. Data preprocessing
included median imputation for missing values
and factor encoding of categorical variables.
The target variable was defined as a binary
classification task (SAP-HTG = 1, N-SAP-HTG =
0), and a fixed random seed (2025) was used to
ensure reproducibility. Feature selection was
conducted using LASSO regression on the gim-
net package, identifying nine key predictors:
age, diabetes history, FBG, TyG index, AMY, TG,
TC, CRP, and Ca?*. For the RF and SVM models,
recursive feature elimination (RFE) with 10-fold
cross-validation was applied to optimize predic-
tor subsets. The RF model was built using the
randomForest package with mtry set to the
square root of the number of predictors; The
optimal number of trees (228) was determined
by minimizing the out-of-bag (OOB) error. The
SVM model, constructed from the svmRadial
method in the caret package, used a radial
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basis function (RBF) kernel. Key hyperparame-
ters (C and o) were automatically tuned
through internal cross-validation grid search.
The XGBoost model was implemented using
the xgboost package with the following param-
eters: booster = “gbtree”, objective = “binary:
logistic”, eta = 0.1, max_depth = 3, subsample
= 1, and colsample_bytree = 1. The model
was trained for 10 boosting rounds and evalu-
ated using log-loss. Model performance was
assessed using confusion matrices, receiver
operating characteristic (ROC) curves, and
area under the curve (AUC), with DeLong'’s test
used to compare predictive power against tra-
ditional scoring systems (APACHE Il and
Ranson). All implementation was conducted in
R using the caret, randomForest, xgboost, and
pROC packages.

SHAP (Shapley Additive Explanations) analysis

To enhance the interpretability of the XGBoost
model in distinguishing SAP-HTG from N-SAP-
HTG, we applied SHAP analysis using the
SHAPforxgboost package in R. SHAP is a
game-theoretic approach that quantifies the
contribution of each feature to model predic-
tions by calculating the average marginal effect
across all possible feature combinations. In
this study, SHAP values were computed for all
key predictors to assess their relative effect on
disease severity classification. Feature impor-
tance was visualized using SHAP beeswarm
plots (global importance), waterfall plots (indi-
vidual prediction explanations), and depen-
dence plots (feature interactions). These analy-
ses provided critical insight into the non-linear
and interactive effects of predictors and clari-
fied their role in stratifying patients by disease
severity.

Scoring system definitions and comparative
rationale

The APACHE Il and Ranson scoring systems are
widely used to assess the severity of acute pan-
creatitis [13, 14]. APACHE Il incorporates acute
physiologic data, age, and chronic health sta-
tus, with scores ranging from O to 71; higher
scores indicate greater severity and mortality
risk. The Ranson score incorporates clinical
and laboratory indicators assessed at admis-
sion and after 48 hours, with a maximum score
of 11. Higher Ranson scores predict worse out-
comes. Both systems are well-established for
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risk stratification and treatment guidance in
clinical practice.

In this study, APACHE Il and Ranson scores
were used as benchmark references for evalu-
ating the predictive performance of ML models.
By comparing AUC values and predictive accu-
racy, we aimed to determine whether ML-based
approaches could outperform traditional scor-
ing systems in identifying patients at risk of
SAP-HTG. This comparison provides a clinically
relevant framework for interpreting the utility
and advantages of ML models in real-world
settings.

Outcome measures

Primary outcomes included identification of key
risk factors for SAP-HTG, evaluation of model
predictive performance (logistic regression, RF,
SVM, XGBoost), analysis of variable contribu-
tions, and comparison of ML models with tradi-
tional scoring systems.

Secondary outcomes included comparison of
baseline characteristics, scoring indices, and
laboratory findings between SAP-HTG and
N-SAP-HTG patients, determination of optimal
cut-off values for continuous variables, and
validation of model accuracy and consistency.

Statistical analysis

Statistical analysis was performed using
SPSS 26.0 and R version 4.3.3. Continuous
variables were tested for normality using the
Kolmogorov-Smirnov test. Normally distributed
variables were expressed as mean + standard
deviation (SD) and compared using indepen-
dent sample t-tests. Non-normally distributed
data were presented as median (P50) and
interquartile range (IQR) and compared using
Mann-Whitney U tests. Categorical data were
expressed as percentages and compared using
the chi-square (x?) test.

LASSO regression for feature selection was
performed using the gimnet package. Uni-
variable and multivariable logistic regression
analyses (stats package) were applied to evalu-
ate independent risk factors. ML models,
including SVM (caret package), RF (randomFor-
est package), and XGBoost (xgboost package)
were evaluated using confusion matrices
(caret), ROC curves, and AUCs (pROC package).
The Delong test was used to compare AUCs
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between ML models and traditional scoring
systems.

SHAP analysis using the SHAPforxgboost pack-
age was conducted to quantify variable contri-
butions and explore feature interactions. All
statistical tests were two-sided, and P < 0.05
was considered significant.

Results

Comparison of patient characteristics between
SAP-HTG and N-SAP-HTG groups

Comparison of baseline characteristics be-
tween the SAP-HTG and N-SAP-HTG groups
revealed significant differences in age (P <
0.001) and history of diabetes (P < 0.001).
Patients with SAP-HTG were younger and had
a higher prevalence of diabetes. No significant
differences were found between the two groups
in terms of sex, BMI, smoking history, alcohol
consumption, high-fat diet, history of hyperten-
sion, or fatty liver (P > 0.05) (Table 1).

Comparison of scoring indices between SAP-
HTG and N-SAP-HTG groups

Both APACHE Il (P < 0.001) and RANSON scores
(P < 0.001) were significantly higher in the SAP-
HTG group compared to N-SAP-HTG group, indi-
cating greater disease severe in the SAP-HTG
group (Table 2).

Comparison of biochemical and hematological
indicators

Significant differences were observed in FBG,
TyG index, AMY, TG, TC, CRP, and serum Ca?* (P
< 0.001). Patients with SAP-HTG exhibited
higher values for all parameters except Ca?,
which was lower. No significant differences
were found in other indicators, including HDLC,
LDLC, GGT, RBC, Hb, Hct, MON, WBC, PLT, Na*,
BUN, Cr, UA, and GFR (P > 0.05) (Table 3).

LASSO regression analysis of characteristic
variables in SAP-HTG patients

Nine variables (age, diabetes history, FBG, TyG
index, AMY, TG, TC, CRP, Ca?*) were entered into
the LASSO regression analysis. Both the 1-
standard error (1 se = 0.022) and minimum
(min = 0.003) criteria retained all nine vari-
ables. Among them, CRP, TG, TyG index, AMY,
and FBG showed the strongest associations
with SAP-HTG, whereas Ca?* and age were neg-
atively correlated (Figure 1).
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Table 1. Comparison of baseline characteristics between SAP-HTG and N-SAP-HTG patients

Variable Total SAP-HTG (n =90) N-SAP-HTG (n = 424) Statistic P value
Age 12.499 <0.001
> 45 years 264 (51.36%) 31 (34.44%) 233 (54.95%)
< 45 years 250 (48.64%) 59 (65.56%) 191 (45.05%)
Gender 0.110 0.740
Male 322 (62.65%) 55 (61.11%) 267 (62.97%)
Female 192 (37.35%) 35 (38.89%) 157 (37.03%)
BMI 0.565 0.452
> 25 kg/m? 315 (61.28%) 52 (57.78%) 263 (62.03%)
< 25 kg/m? 199 (38.72%) 38 (42.22%) 161 (37.97%)
Smoking history 1.806 0.179
Yes 301 (58.56%) 47 (52.22%) 254 (59.91%)
No 213 (41.44%) 43 (47.78%) 170 (40.09%)

Alcohol consumption history 0.185 0.667
Yes 239 (46.50%) 40 (44.44%) 199 (46.93%)
No 275 (53.50%) 50 (55.56%) 225 (53.07%)

High-fat diet 1.034 0.309
Yes 272 (52.92%) 52 (57.78%) 220 (51.89%)
No 242 (47.08%) 38 (42.22%) 204 (48.11%)

Hypertension history 3.378 0.066
Yes 105 (20.43%) 12 (13.33%) 93 (21.93%)
No 409 (79.57%) 78 (86.67%) 331 (78.07%)

Diabetes history 10.963 < 0.001
Yes 233 (45.33%) 55 (61.11%) 178 (41.98%)
No 281 (54.67%) 35 (38.89%) 246 (58.02%)

Fatty liver 0.605 0.437
Yes 310 (60.31%) 51 (56.67%) 259 (61.08%)
No 204 (39.69%) 39 (43.33%) 165 (38.92%)

Note: SAP-HTG: Severe Acute Pancreatitis with Hypertriglyceridemia, N-SAP-HTG: Non-Severe Acute Pancreatitis with Hypertri-
glyceridemia, BMI: Body Mass Index.

Table 2. Comparison of APACHE Il and Ranson scores between SAP-HTG and N-SAP-HTG patients

Variable Total SAP-HTG (n = 90) N-SAP-HTG (n = 424) Statistic Pvalue
APACHE I 3.00 (2.00) 6.00 (4.00) 3.00 (2.00) 12.105 <0.001
RANSON 1.00 (1.00) 2.00 (4.00) 0.00 (1.00) 12.136 <0.001

Note: SAP-HTG: Severe Acute Pancreatitis with Hypertriglyceridemia, N-SAP-HTG: Non-Severe Acute Pancreatitis with Hypertri-

glyceridemia, APACHE II: Acute Physiology and Chronic Health Evaluation Il, RANSON: Ranson Criteria.

Univariate and multivariate regression analysis
of characteristic variables

Univariate analysis showed that FBG, TyG index,
AMY, TG, TC, CRP, and diabetes history were
significant risk factors for SAP-HTG, with CRP,
TG, and AMY having the highest odds ratios
(ORs). Conversely, Ca?* and age were protective
factors. Multivariate analysis confirmed that
CRP (OR = 8.787), TG (OR = 7.548), TyG index
(OR = 5.689), AMY (OR = 3.662), FBG (OR =
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3.339), TC (OR = 2.873), and diabetes history
(OR = 2.541) were independent risk factors for
SAP-HTG, while Ca?* (OR = 0.258) and age (OR
= 0.290) were protective factors (Table 4).

Performance analysis of three machine learn-
ing models

To optimize predictive performance, three

machine learning models - RF, SVM, and
XGBoost - were systematically tuned and evalu-
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Table 3. Comparison of biochemical and hematologic data between SAP-HTG and N-SAP-HTG patients

Variable Total SAP-HTG (n=90)  N-SAP-HTG (n=424)  Statistic P value
FBG (mmol/L) 8.46+2.37 9.47+2.01 8.24+2.39 4543  <0.001
TyGindex 3.72+0.44 3.95+0.40 3.68+0.43 5584  <0.001
AMY (U/L) 327.00 (397.50)  601.50 (547.25) 292.00 (344.50) 7283  <0.001
TG (mmol/L) 10.16 (9.34) 12.09 (5.27) 9.09 (9.96) 4.283 <0.001
TC (mmol/L) 5.89+1.66 6.67+1.61 5.72+1.63 5.027  <0.001
HDLC (mmol/L) 0.83 (0.80) 0.90 (0.74) 0.81(0.81) 0.936 0.349
LDLC (mmol/L) 1.22 (1.09) 1.18 (1.25) 1.23 (1.06) 0.630 0.529
GGT (U/L) 30.90 (35.98) 33.35 (46.12) 29.60 (33.57) 1.229 0.219
RBC (x10712/L) 4.92+0.77 4.88+0.76 4.93+0.77 0.523 0.601
Hb (g/L) 141.00+10.14 141.81+9.80 140.83+10.21 0.832 0.406
Hct (%) 40.26+2.39 40.16+2.91 40.28+2.27 0.438 0.662
MON (x10"9/L) 0.35 (0.25) 0.34 (0.30) 0.36 (0.26) 0.322 0.747
WBC (x10"9/L) 9.77 (3.09) 10.02 (4.52) 9.75 (2.84) 0.938 0.348
PLT (x10"9/L) 151.81+25.29 148.54+27.04 152.50+24.89 1.349 0.178
CRP (mg/L) 47.59+18.67 62.93128.32 44.34+13.92 5974  <0.001
Na* (mmol/L) 135.45+5.54 135.61+5.37 135.42+5.58 0.302 0.763
Ca?* (mmol/L) 2.13+0.32 1.98+0.31 2.16+0.31 4985  <0.001
BUN (umol/L) 10.48+1.96 10.37+1.79 10.50+2.00 0.573 0.567
Cr (umol/L) 45.01+15.13 45.31+14.65 44.95+15.25 0.208 0.835
UA (umol/L) 369.70+114.43  370.54+118.53 369.53+113.68 0.076 0.939
GFR (mL/min) 105.02+15.37 104.96+16.60 105.03+15.12 0.036 0.971

Note: FBG: Fasting Blood Glucose, TyGindex: TriglycerideGlucose Index, AMY: Amylase, TG: Triglycerides, TC: Total Choles-
terol, HDLC: HighDensity Lipoprotein Cholesterol, LDLC: LowDensity Lipoprotein Cholesterol, ApoA1l: Apolipoprotein A1, ApoB:

Apolipoprotein B, LP: Lipoprotein, ALB: Aloumin, ALT: Alanine Aminotransferase, AST: Aspartate Aminotransferase, CK: Creatine
Kinase, GGT: GammaGlutamyl Transferase, DBil: Direct Bilirubin, IBil: Indirect Bilirubin, RBC: Red Blood Cells, Hb: Hemoglobin,
Hct: Hematocrit, MON: Monocytes, WBC: White Blood Cells, NE: Neutrophil Percentage, PLT: Platelets, CRP: CReactive Protein,
PCT: Procalcitonin, Na*: Sodium, Ca?*: Calcium, BUN: Blood Urea Nitrogen, Cr: Creatinine, UA: Uric Acid, GFR: Glomerular Filtra-

tion Rate.

ated. For the RF model, the out-of-bag (O0B)
error steadily declined as the number of trees
increased, achieving optimal performance at
228 trees, beyond which the error stabilized,
indicating model convergence and stability
(Figure 2A). For the SVM model, recursive fea-
ture elimination (RFE) selected the most infor-
mative predictor subset, with the error rate
decreasing as feature count increased, reach-
ing a minimum of 0.107 with eight features,
underscoring the effectiveness of RFE in
enhancing generalizability (Figure 2B). For the
XGBoost model, logarithmic loss (log-loss) con-
sistently decreased across 10 boosting itera-
tions, reflecting improved calibration and
reduced classification uncertainty, consistent
with the principle of progressive optimization in
gradient boosting (Figure 2C). These tuning
procedures ensured each model was trained
optimally, enhancing reliability in distinguishing
SAP-HTG from N-SAP-HTG.
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Confusion matrix evaluation of SAP-HTG pre-
dictive models

Confusion matrix analysis demonstrated over-
all accuracies of 88.91% for logistic regression,
92.02% for RF, 90.47% for SVM, and 91.63%
for XGBoost. Among the models, RF achieved
the highest accuracy, followed by XGBoost
and SVM. Logistic regression had the lowest
accuracy, with a notably higher false-positive
rate. RF and XGBoost exhibited more balanced
sensitivity and specificity, supporting their
greater reliability in distinguishing SAP-HTG
from N-SAP-HTG (Figure 3).

ROC curve analysis of predictive models
ROC curve analysis showed the following AUC
values: Logistic Regression (0.924), RF (0.955),

SVM (0.926), and XGBoost (0.959). XGBoost
and RF demonstrated the highest predictive
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Figure 1. LASSO regression analysis of predictive variables for SAP-HTG. A. LASSO Variable Trace Plot: Shows the
trajectory of each variable’s coefficient as the penalty parameter (A) changes, illustrating the variable selection pro-
cess under different regularization strengths. B. LASSO Coefficient Selection Plot: Displays the predictive variables
identified by LASSO regression and their corresponding coefficients, indicating each variable’s importance in pre-
dicting SAP-HTG. Note: SAP-HTG: Severe Acute Pancreatitis with Hypertriglyceridemia, FBG: Fasting Blood Glucose,
TyGindex: Triglyceride-Glucose Index, AMY: Amylase, TG: Triglyceride, TC: Total Cholesterol, CRP: C-Reactive Protein,
Ca?*: Calcium, LASSO: Least Absolute Shrinkage and Selection Operator.

capabilities, followed by SVM, with logistic
regression performing least well. Pairwise com-
parisons using DelLong’s test revealed signifi-
cant differences between logistic regression
and RF (P < 0.001), logistic regression and
XGBoost (P < 0.001), RF and SVM (P = 0.003),
and SVM and XGBoost (P < 0.001). No signifi-
cant differences were observed between RF
and XGBoost (P = 0.58) or between logistic
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regression and SVM (P = 0.816). The details
are shown in Figure 4.

SHAP analysis and feature contribution evalu-
ation

SHAP analysis of the XGBoost model revealed
that CRP, TG, and TyG index had the highest
SHAP values, indicating strong positive contri-
butions to SAP-HTG prediction. In contrast, Ca?*
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Table 4. Univariate and multivariate regression analysis of SAP-HTG risk factors

Univariate analysis

Multivariate analysis

Characteristic Total (N)

OR (95% Cl) P value OR (95% Cl) P value

FBG 514

< 8.05 297 Reference Reference

>8.05 217 3.834 (2.187-6.720) <0.001 3.339 (1.608-6.936) 0.001
TyG index 514

< 3.645 283 Reference Reference

>3.645 231 4.758 (2.683-8.438) <0.001 5.689 (2.643-12.243) <0.001
AMY 514

<443 184 Reference Reference

> 443 330 5.147 (3.156-8.397) <0.001 3.662 (1.909-7.027) <0.001
TG 514

<8.81 297 Reference Reference

>8.81 217 6.084 (3.218-11.503) < 0.001 7.548 (3.295-17.288) <0.001
TC 514

<6.145 226 Reference Reference

>6.145 288 2.929 (1.819-4.716) <0.001 2.873 (1.482-5.570) 0.002
CRP 514

<5735 122 Reference Reference

>57.35 392 6.920 (4.237-11.303) < 0.001 8.787 (4.454-17.337) <0.001
Ca?* 514

<2.085 286 Reference Reference

>2.085 228 0.328 (0.203-0.530) <0.001 0.258 (0.133-0.500) <0.001
Age 514

<45 264 Reference Reference

>45 250 0.431 (0.268-0.693) <0.001 0.290 (0.148-0.565) <0.001
History of diabetes 514

No 233 Reference Reference

Yes 281 2.172 (1.363-3.460) 0.001 2.541 (1.335-4.838) 0.005

Note: SAP-HTG: Severe Acute Pancreatitis with Hypertriglyceridemia, N-SAP-HTG: Non-Severe Acute Pancreatitis with Hyper-
triglyceridemia, FBG: Fasting Blood Glucose, TyGindex: Triglyceride-Glucose Index, AMY: Amylase, TG: Triglyceride, TC: Total
Cholesterol, CRP: C-Reactive Protein, Ca?*: Calcium, OR: Odds Ratio, Cl: Confidence Interval.

and age were associated with negative SHAP
values, suggesting protective effects (Figure
5A). Waterfall plots of representative cases
(patients 12, 26, and 38) revealed that predic-
tions for patients 12 and 26 were primarily
influenced by CRP and TG, whereas the predic-
tion for patient 38 was affected by old age and
high AMY, with Ca2* showing a notable protec-
tive effect (Figure 5B-D).

SHAP dependence plot analysis

The SHAP dependence plots illustrated that
CRP, TG, and TyG index exhibited increasing
SHAP values with higher feature levels, rein-
forcing their strong positive contributions to
SAP-HTG risk. AMY and FBG also contributed
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positively but with smaller SHAP gradients.
Conversely, Ca?" and age displayed decreasing
SHAP values as their values increased, reinforc-
ing their protective roles. A history of diabetes
was also associated with a positive contribu-
tion, particularly in patients with a history of
diabetes (Figure 6).

Comparative ROC analysis of predictive mod-
els with conventional scoring systems

When compared to traditional scoring syste-
ms, the XGBoost achieved the highest AUC
(0.959), followed by APACHE Il (0.893) and
RANSON (0.878). Statistically significant differ-
ences in AUC were found between XGBoost and
APACHE Il (P = 0.002) and between XGBoost

Am J Transl Res 2025;17(9):6778-6794
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Figure 2. Model optimization analysis for SAP-HTG prediction. A. Error Rate vs. Number of Trees in the RF Model. B. Error Rate vs. Number of Features in the SVM
Model. C. Log Loss vs. Number of Iterations in the XGBoost Model. Note: SAP-HTG: Severe Acute Pancreatitis with Hypertriglyceridemia, RF: Random Forest, SVM:
Support Vector Machine, XGBoost: Extreme Gradient Boosting, MIN error: Minimum Error.
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Figure 3. Confusion matrices of SAP-HTG prediction models. A. Logistic Regression Confusion Matrix. B. RF Confu-
sion Matrix. C. SVM Confusion Matrix. D. XGBoost Confusion Matrix. Note: SAP-HTG: Severe Acute Pancreatitis with
Hypertriglyceridemia, RF: Random Forest, SVM: Support Vector Machine, XGBoost: Extreme Gradient Boosting.

and RANSON (P < 0.001). No significant differ-
ence was found between APACHE Il and
RANSON (P = 0.567) (Figure 7).

Discussion

Severe hypertriglyceridemia-associated acute
pancreatitis (SAP-HTG) has garnered increas-
ing attention due to its rapid progression and
high mortality. Its incidence is rising in parallel
with the growing prevalence of obesity, diabe-
tes, and high-fat diets. SAP-HTG demonstrates
more severe inflammatory responses and met-
abolic disturbances compared to N-SAP-HTG,
highlighting a critical need for early identifica-
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tion of high-risk patients [15]. Traditional scor-
ing systems, including APACHE Il and Ranson
scores, exhibit limited predictive capacity as
they fail to integrate lipid metabolism and
inflammatory markers. In contrast, ML tech-
niques enable the recognition of nonlinear rela-
tionships and allow the construction of high-
precision predictive models [15].

In this study, key risk factors were selected
through LASSO regression, and predictive mod-
els were developed using logistic regression,
RF, SVM, and XGBoost algorithms. Among
them, XGBoost demonstrated the best perfor-
mance (AUC = 0.959), significantly outperform-
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ing APACHE Il (AUC = 0.893) and Ranson (AUC
= 0.878). SHAP analysis further identified CRP,
TG, and TyG index as core predictors, providing
valuable tools for early diagnosis and risk strat-
ification. These findings help address current
limitations in SAP-HTG prediction and support
the advancement of precision medication.

LASSO regression identified seven critical risk
factors (CRP, TG, TyG index, AMY, FBG, TC, and
diabetes history) and two protective factors
(age and Ca) for SAP-HTG. These factors dem-
onstrate strong associations with the disease’s
underlying pathophysiology and offer important
clinical guidance. CRP (OR = 8.787), as an
inflammatory marker, reflects intense syste-
mic inflammatory responses in SAP-HTG. This
response is likely mediated by proinflammatory
cytokines such as IL-6 and TNF-a, which exac-
erbate pancreatic necrosis and contribute to
multi-organ damage. Literature indicates that
CRP correlates with HTG-AP severity and recur-
rence risk [11], suggesting that close CRP
monitoring may provide a reliable measure of
infammatory status and guide timely anti-
inflammatory or supportive interventions, in-
cluding fluid resuscitation.

TG (OR = 7.548) represents a hallmark feature
of SAP-HTG, inducing microcirculatory dysfunc-
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Figure 4. Performances of vari-
ous predictive models for SAP-HTG
analyzed using ROC curve and De-
long test. A. Logistic regression. B.
RF. C. SVM. D. XGBoost. E. Delong
test results. Note: SAP-HTG: Severe
Acute Pancreatitis with Hypertriglyc-
eridemia, RF: Random Forest, SVM:
Support Vector Machine, XGBoost:
Extreme Gradient Boosting, AUC:
Area Under the Curve.
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0.003
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tion through chylomicron deposition and free
fatty acid (FFA) toxicity, directly damaging aci-
nar cells and amplifying inflammation via the
TLR4 pathway. Tan et al. [16] documented sig-
nificantly higher TG levels in HTG-AP patients,
emphasizing the urgency of lipid-lowering inter-
ventions. TG-derived non-esterified fatty acids
(NEFA) have been linked to multiple organ fail-
ure, supporting the necessity of rapid TG reduc-
tion [17]. Clinically, insulin infusion and plasma-
pheresis are effective strategies, and Zhou et
al. [18] reported improved outcomes with insu-
lin combined with low-molecular-weight heparin
(LMWH).

TyG index (OR = 5.689) reflects insulin resis-
tance, which may aggravate disease progres-
sion by promoting lipolysis, increasing FFA lev-
els, and triggering oxidative stress. Wang et al.
[19] demonstrated significant correlations be-
tween TyG index and SAP-HTG severity. When
combined with systemic immune-inflammation
index (Sll) and nutritional risk index (NRI), the
model achieved an AUC of 0.705, highlighting
the importance of comprehensive glucose and
metabolic syndrome management.

AMY (OR = 3.662) and FBG (OR = 3.339) reflect
enzymatic and glucose metabolic disturbanc-
es. These abnormalities likely result from local
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Figure 5. SHAP waterfall analysis of SAP-HTG prediction model. A. SHAP beeswarm plot of feature variables. B-D. SHAP waterfall force plots for samples 12, 26,
and 38. Note: SAP-HTG: Severe Acute Pancreatitis with Hypertriglyceridemia, CRP: C-Reactive Protein, TG: Triglyceride, TyGindex: Triglyceride-Glucose Index, AMY:
Amylase, FBG: Fasting Blood Glucose, Ca?*: Calcium, XGBoost: Extreme Gradient Boosting, SHAP: Shapley Additive Explanations.
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Figure 6. SHAP dependence plots for SAP-HTG prediction model. A. SHAP dependence plot: CRP vs. TG. B. SHAP
dependence plot: TG vs. Ca?*. C. SHAP dependence plot: AMY vs. Diabetes. D. SHAP dependence plot: Ca?* vs. TG.
E. SHAP dependence plot: TyG Index vs. AMY. F. SHAP dependence plot: FBG vs. TG. G. SHAP dependence plot:
Age vs. Ca?*. H. SHAP dependence plot: TC vs. CRP. I. SHAP dependence plot: Diabetes vs. AMY. Note: SAP-HTG:
Severe Acute Pancreatitis with Hypertriglyceridemia, CRP: C-Reactive Protein, TG: Triglyceride, TyGindex: Triglyceride-
Glucose Index, AMY: Amylase, FBG: Fasting Blood Glucose, TC: Total Cholesterol, Ca?*: Calcium, XGBoost: Extreme

Gradient Boosting, SHAP: Shapley Additive Explanations.

pancreatic inflammation and stress hyperglyce-
mia triggered by TG elevation. Literature has
confirmed FBG as an independent risk factor
for SAP-HTG [20], supporting the role of insulin
therapy and nutritional support in manage-
ment. TC (OR = 2.873) and diabetes history (OR
= 2.541) indicate long-term lipid metabolic dis-
orders and metabolic syndrome, which predis-
pose the pancreas to TG-induced injury. Ding
et al. [21] identified diabetes history as a pre-
dictor of HTG-AP recurrence, emphasizing the
importance of chronic metabolic control. Shafiq
et al. [22] found that HTG-AP patients exhibit
higher BMI and increased clinical severity, fur-
ther supporting a need for comprehensive met-
abolic syndrome management.

6790

These risk factors may act synergistically to
exacerbate disease severity. For example, TG
and CRP may establish a vicious cycle of inflam-
mation and lipotoxicity. Literature supports
insulin infusion as an effective strategy for rap-
idly lowering TG and improving HTG-AP progno-
sis [1]. Clinically, CRP and TG should be priori-
tized for monitoring, in combination with TyG
index and FBG, to guide comprehensive strate-
gies including lipid-lowering, anti-inflammatory,
and glycemic control measures aimed at reduc-
ing the risk of SAP-HTG onset and progression.

Serum Ca?* (OR = 0.258, > 2.085 mmol/L as a
protective factor) and age (OR = 0.290, > 45
years as a protective factor) demonstrated neg-
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Figure 7. Performances of machine learning predictive models for SAP-HTG analyzed using ROC curve and Delong
test. A. XGBoost; B. APACHE II; C. RANSON; D. Delong test results. Note: SAP-HTG: Severe Acute Pancreatitis with
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ative associations with SAP-HTG severity, offer- age by stabilizing cellular membranes, sup-
ing valuable clinical insights. Low Ca?* levels pressing proinflammatory cytokines such as
may result from fat saponification due to pan- IL-1B, and supporting cardiovascular and neu-
creatic necrosis, inflammation-induced hypoal- rological function. Clinically, regular calcium
buminemia, or multi-organ dysfunction (e.g., monitoring and timely supplementation may
renal impairment), and is typically associated improve prognosis.

with more severe pancreatic injury and system-

ic inflammation. Dong et al. [23] identified low Interestingly, patients aged > 45 years demon-
Ca?* as an independent predictor for SAP-HTG, strated a protective effect, possibly due to
with an AUC of 0.957 when incorporated into decreased metabolic rates or adaptive chang-
the model. Conversely, maintaining higher es associated with chronic diseases, which
serum calcium may alleviate pancreatic dam- reduce rapid accumulation of TG and FFAs.
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Previous studies reported that patients < 40
years have a higher HTG-AP recurrence risk
[24], supporting that younger individuals may
be more susceptible due to active metabolism,
obesity, or genetic predisposition. Similarly,
Cao et al. [24] observed higher ICU admission
rates in younger patients, reinforcing the need
for early screening and timely intervention.
Both univariate and multivariate analyses in
this study confirmed the independent protec-
tive role of age. Genetic predisposition has also
been implicated in younger patients [25], sup-
porting a need for future studies exploring
genetic susceptibility markers.

The protective effects of Ca?" and age may
reflect their roles in modulating inflammation
and maintaining metabolic homeostasis. For
example, high Ca?* may inhibit proinflammatory
cytokine release, whereas older patients may
exhibit attenuated inflammatory responses due
to metabolic adaptation. These findings under-
score the importance of targeted early screen-
ing and intervention in younger patients and
close monitoring of Ca?* levels, to mitigate SAP-
HTG complications.

All four ML models (logistic regression, RF,
SVM, XGBoost) demonstrated strong predictive
performance for SAP-HTG. XGBoost (AUC =
0.959) and RF (AUC = 0.955) outperformed
logistic regression (AUC = 0.924), SVM (AUC =
0.926), and traditional scores (APACHE II:
0.893; Ranson: 0.878). DeLong test confirmed
the superiority of XGBoost and RF, emphasiz-
ing their strength in capturing complex nonlin-
ear relationships and multidimensional feature
interactions. RF, using 228 trees, achieved
92.02% accuracy with balanced sensitivity and
specificity, while XGBoost, optimized through
gradient boosting (eta = 1, max_depth = 3),
showed stable log-loss reduction and the high-
est AUC, highlighting its clinical potential.

Literature has demonstrated the predictive util-
ity of CT- and serum marker-based models
incorporating Ca?* and CRP, achieving high
accuracy (AUC = 0.930) in SAP-HTG [23], con-
sistent with the advantages observed in our
ML models. Compared to APACHE Il and Ran-
son scores, ML models integrate SAP-HTG-
specific features such as TG and TyG index,
thereby providing enhanced predictive power.
Wang et al. [19] reported an AUC of 0.705
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for a model combining SlI, NRI, and TyG index,
supporting the effectiveness of multi-feature
integration approaches. In our study, confusion
matrix analysis revealed that RF and XGBoost
demonstrated fewer false positives than logis-
tic regression, achieving better classification
balance.

SHAP analysis enhanced interpretability th-
rough summary and waterfall plots, revealing
CRP, TG, and TyG index as dominant contribu-
tors, particularly in high-value ranges. This
highlights the synergistic effects of inflamma-
tion and dyslipidemia. For instance, predictions
in samples 12 and 26 were driven by high CRP
and TG levels, while sample 38 was influenced
by age and AMY, with Ca?* exerting a protective
effect. SHAP dependence plots illustrated
strong positive impacts of CRP and TG at high
levels, suggesting shared pathologic pathways
in SAP-HTG progression. AMY and diabetes his-
tory interactions reflected complex relation-
ships between pancreatic injury and metabolic
disorders.

Negative contributions of Ca®* and age further
support their protective roles, possibly due to
metabolic stability and disease tolerance.
Literature supports that insulin infusion can
rapidly reduce TG and improve outcomes in
HTG-AP [26, 27], aligning with SHAP findings on
TG. Wang et al. [28] reported that rapid TG
reduction did not significantly shorten the dura-
tion of organ failure, suggesting that SHAP can
aid in prioritizing treatment timing. Clinically,
SHAP provides a basis for monitoring priorities
- focus should be on dynamic changes in CRP
and TG to guide lipid-lowering and anti-inflam-
matory therapy, while closely monitoring low
Ca?* patients for deterioration risk. These find-
ings offer precise tools for early diagnosis and
individualized treatment of SAP-HTG, address-
ing traditional score limitations and advancing
precision medicine.

Nevertheless, several limitations should be
acknowledged. First, this was a single-center
retrospective study, raising the possibility of
sampling bias. Second, data were static and
lacked longitudinal dynamics. Future research
should include multicenter cohorts for external
validation, integrate dynamic clinical and
laboratory data, and incorporate imaging fea-
tures, genetic markers, and development of
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XGBoost-based CDSS to evaluate their effect
on reducing mortality and improving outcomes.
Finally, emerging techniques such as deep
learning should also be explored to further
optimize SAP-HTG prediction and treatment
approaches.

Conclusion

This study identified nine key risk factors for
SAP-HTG using LASSO regression and con-
structed several machine learning models.
Among them, the XGBoost model achieved the
highest predictive performance. These findings
provide a reliable and interpretable tool for
early diagnosis and individualized risk stratifi-
cation of SAP-HTG, thus advancing precision
medicine.
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