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Abstract: Objectives: Sepsis-induced acute kidney injury (AKI) is a critical complication with limited treatment op-
tions. We investigated the protective effects of cinnamaldehyde (CA) on lipopolysaccharide (LPS)-induced AKI and
elucidated underlying mechanisms focusing on ferroptosis and the glycogen synthase kinase 3 beta (GSK3p)/nu-
clear factor erythroid 2-related factor 2 (Nrf2)/glutathione peroxidase 4 (GPX4) pathway. Methods: Network pharma-
cology, molecular docking, and experimental validation were integrated. LPS-induced AKI models were established
in C57BL/6 mice and human proximal tubular epithelial HK-2 (HK-2) cells. CA effects on renal function, histological
injury, inflammation, and ferroptosis markers were evaluated. GSK3p involvement was tested via lentiviral over-
expression. Protein and mRNA levels were measured by Western blotting, quantitative polymerase chain reaction
(qPCR), enzyme-linked immunosorbent assay (ELISA), and immunofluorescence. Results: CA improved renal func-
tion and reduced tubular injury and inflammation. CA suppressed ferroptosis, evidenced by decreased malondial-
dehyde (MDA), iron, and lipid peroxidation, and normalization of GPX4 and acyl-CoA synthetase long chain family
member 4 (ACSL4) expression. Network pharmacology and docking identified GSK3p as a key CA target; lentiviral
GSK3p overexpression abolished CA’s renoprotective and anti-ferroptotic effects. Mechanistically, CA activated Nrf2
and increased GPX4 expression via inhibition of the GSK3B/Nrf2/Kelch-like ECH-associated protein 1 (KEAP1) path-
way. Conclusions: CA protects against LPS-induced AKI by inhibiting ferroptosis through modulation of the GSK33/
Nrf2/GPX4 axis, highlighting CA as a potential ferroptosis-targeted therapeutic candidate for septic AKI.
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Introduction

Sepsis, a systemic inflammatory response syn-
drome triggered by bacteria, viruses, or fungj,
can lead to severe consequences such as
shock, multiple organ dysfunction syndrome
(MODS), and ultimately, death [1]. Acute kidney
injury (AKI) is one of the most common and
severe complications, characterized by an ab-
rupt decline in renal function and diagnosed
primarily by elevated serum creatinine (Scr) lev-
els or the presence of oliguria. The pathogene-
sis of septic AKI is multifactorial, involving
endothelial dysfunction [2], mitochondrial dys-
function [3, 4], tubular mitophagy [5], renal
microcirculatory disturbances, amplified inflam-

matory responses, and disordered energy me-
tabolism [6]. Effective targeted therapies re-
main limited. Therefore, elucidating the mecha-
nisms of septic AKI is essential for developing
improved therapeutic strategies.

Ferroptosis is an iron-dependent regulated cell
death distinguished from apoptosis, necrosis,
and autophagy by intracellular iron accumula-
tion and lipid peroxidation, exhibiting distinct
morphological, biochemical, and genetic fea-
tures [7]. Glutathione peroxidase 4 (Gpx4) and
acyl-CoA synthetase long-chain family member
4 (Acsl4) are pivotal regulators of ferroptosis.
Gpx4 suppresses ferroptosis by using glutathi-
one (GSH) to detoxify lipid hydroperoxides and
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maintain redox homeostasis. In contrast, Acsl4
promotes arachidonic acid (AA) and adrenic
acid (AdA) into phosphatidylethanolamine (PE),
generating polyunsaturated phospholipid sub-
strates for lipid peroxidation [8, 9]. Ferroptosis
has been documented in experimental models
of septic AKI [10, 11].

Cinnamaldehyde (CA) is a natural aromatic
aldehyde derived from multiple parts (leaves,
bark, roots, and flowers) of Cinnamomum spe-
cies. CA exhibits antioxidant, antimicrobial, anti-
diabetic, anti-obesity, and anticancer activities
[12], and confers renoprotection in models of
ischemia/reperfusion injury [13], cisplatin-in-
duced nephrotoxicity [14], lipopolysaccharide
(LPS)-induced renal inflammation [15] and dia-
betic nephropathy [16]. Notably, CA attenuates
doxorubicin-induced cardiotoxicity by suppress-
ing ferroptosis in cardiomyocytes [17]. These
findings suggest that CA may modulate ferrop-
tosis in septic AKI, yet its renal mechanisms
remain insufficiently defined. Here, we provide
evidence of CA’s protective effects against
LPS-induced renal damage. Integrated network
pharmacology, molecular docking, and experi-
mental validation identified glycogen syntha-
se kinase 3 beta (Gsk3p) as a potential key tar-
get in septic AKI. Furthermore, our data indi-
cate that CA regulates ferroptosis via the
Gsk3pB/nuclear factor erythroid 2-related factor
2 (Nrf2)/Kelch-like ECH-associated protein 1
(KEAP1) pathway, offering mechanistic insight
and a rationale for targeting this axis.

Materials and methods

Collection of candidate genes associated with
septic AKI

We retrieved candidate genes using the key-
word “Septic AKI” from various databases and
complied the non-redundant results into an
Excel file (Disease.xlsx). Specifically, we queried
the following resources: (1) PharmGkb (https://
www.pharmgkb.org/): a filtering criterion was
applied (reported as “Score_gda > 0.17; please
verify this field, as Score_gda typically refers
to the DisGeNET GDA score). (2) GeneCards
(https://www.genecards.org/): genes with a
GeneCards Relevance score > 10 were re-
tained. (3) OMIM (https://omim.org/): disease
entries related to sepsis and acute kidney inju-
ry were manually screened to extract reported
associated genes.
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Detailed viral delivery protocol

For in vivo overexpression of Gsk3[3, a recombi-
nant lentivirus encoding mouse Gsk3p (Gene-
Chem, Shanghai, China) was used. Eight-week-
old male C57BL/6 mice were randomly assign-
ed to experimental groups. Mice in the Gsk3p
overexpression (OVE) group received a single
tail vein injection of 1 x 10”8 transducing units
(TU) of Gsk3B-expressing lentivirus in 100 pL
sterile phosphate-buffered saline (PBS), as pre-
viously described [PMID: 39472663]. Control
mice received the same volume of control lenti-
virus (empty vector) or PBS. The injection was
performed three days prior to LPS administra-
tion to ensure efficient transgene expression.
Successful overexpression of Gsk3p in renal
tissue was confirmed by qPCR and Western
blot analysis.

Protein-protein interaction (PPI) network con-
struction and analysis

To delve deeper into the interplay between
CA and septic AKl-associated targets, we inter-
sected the curated CA-related targets with the
septic AKI by intersecting CA-related genes
with those linked to septic AKI. We then im-
ported the shared target dataset into the
STRING database (https://string-db.org/), spe-
cifying Mus musculus as the species and a min-
imum required interaction score of 0.4. Sub-
sequently, we downloaded the “string_interac-
tions_short.tsv” file and imported it into Cy-
toscape 3.7.2 for network visualization, utilizing
the string_interactions_short.tsv plugin. Net-
work topology metrics were computed using
the CytoNCA plugin to prioritize hub genes,
and connected modules were identified with
MCODE module for network cluster identifica-
tion and analysis.

Molecular docking analysis

To assess the binding affinity of key network
hubs, molecular docking analysis was em-
ployed. The three-dimensional (3D) structures
of Gsk3p and CA were retrieved from the RC-
SB Protein Data Bank (http://www.rcsb.org/).
These structures were prepared using the
MGLTools_win32_1.5.6 software and stored in
PDBQT format. Subsequently, AutoDock Vina
1.1.2 (http://vina.scripps.edu/) was used to
evaluate the docking affinity between CA and
the target proteins. Finally, the results of the
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molecular docking analysis were visually repre-
sented using PyMOL software.

Animal experiments

Eight-week-old male C57BL/6 mice were ob-
tained from the Experimental Animal Center of
the Institute of Medicine, Shanghai university,
and all animal experiments were approved
by the Animal Care Committee of Shanghai
University and conducted in accordance with
the Guide for the Care and Use of Laboratory
Animals (Approval No. YS 2024-131). In the ini-
tial experiment, the mice were randomly as-
signed to four groups: a control group (n = 6),
an LPS group (10 mg/kg; n = 6), a CA group (40
mg/kg CA; n = 6), and a CA + LPS group (n = 6).
The CA dosage was determined based on previ-
ous sepsis studies [13]. CA was administered
via the tail vein three days prior to LPS injec-
tion. After 24 hours, hearts and blood samples
were collected. In the subsequent experiment,
mice were again randomly distributed into four
groups: a control group (n = 6), an LPS group (n
=6), a CA + LPS group (n = 6), and a CA + LPS
+ Gsk3p OVE group (n = 6).

Animal care and surgical procedures

C57BL/6 mice (8-10 weeks, 20-25 g) were
acclimatized > 7 days. Isoflurane anesthesia
(3-4% induction; 1.5-2% maintenance) was
delivered to the animals on a warming pad with
ocular lubrication. Buprenorphine (0.05 mg/kg,
s.c.) was given 30 min pre-incision and every
8-12 h for 48 h postoperatively (+ meloxicam
1-2 mg/kg every 24 h for 2 days); rescue crite-
ria were predefined. Vital sighs and reflex moni-
toring plus core temperature (36.5-37.5°C)
were maintained intraoperatively; postopera-
tive checks followed an intensified schedule
during the first 48 h. Humane endpoints (> 20%
weight loss, anorexia, severe respiratory dis-
tress, moribund state) triggered euthanasia.
Euthanasia consisted of slow onset of CO,
exposure, with a secondary confirmatory meth-
od; pentobarbital overdose (150-200 mg/kg,
i.p.) was applied for sensitive tissue collection.
Procedures complied with AVMA (2020), IACUC,
and ARRIVE 2.0 guidelines.

Cell culture and treatment

HK-2 cells (ATCC, Manassas, VA, USA) were cul-
tured in DMEM containing 10% fetal bovine
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serum (FBS) sourced from Gibco (USA). These
cells were maintained in a controlled environ-
ment, specifically a humidified atmosphere set
at 37°C with 5% CO,. To induce an inflammato-
ry response in the HK-2 cells, they were stimu-
lated with LPS at a concentration of 10 uM.

CCK-8 assays

HK-2 cells were dissociated into a single-cell
suspension using trypsin (Gibco, USA). Subse-
quently, these cells were seeded into 96-well
plates at a density of 2 x 10° cells per well.
After treatment, the CCK-8 reagent (Beyotime,
China) was diluted with the culture medium and
added to the wells. The cells were then incu-
bated for 1 h in a suitable incubator. Finally, the
absorbance of these cells was measured using
a spectrophotometer from Beckman (USA).

Serum index detection

Utilizing ELISA kits (Shanghai Westang Bio-Tech
Co., Ltd., China), we measured the concentra-
tions of IL-6, IL-13, TNF-o, and MCP-1 in serum
samples, as well as MDA and iron levels in kid-
ney tissue.

Lipid peroxidation assay

A lipid peroxidation assay kit (A106, Jiancheng,
China) was used to measure LPO levels in kid-
ney tissue lysates according to the manufac-
turer’s instructions. Briefly, the lipid peroxides
react with chromogenic agents at 45°C for 60
minutes, yielding a stable chromophore with
maximal absorbance at 586 nm [18-20].

Real-time gRT-PCR

Total RNA was extracted (TRIzol, Invitrogen) and
reverse-transcribed using SuperScript reverse
transcriptase and olig(dT) primers. For quanti-
tative real-time PCR, a CFX Connect detection
system from Bio-Rad Laboratories was em-
ployed. The primer sequences for Gsk3[3, KIM1,
and NGAL were designed as follows: sense
primer for Gsk3B: 5-CAAACTACCAAATGGGCG-
AGACAC-3’, antisense primer: 5-TGAGGCTGCT-
GTGGCGTTG-3’; sense primer for KIM1: 5’-CCCT-
GCTGCTACTGCTCCTTG-3’, antisense primer: 5'-
ACCACGCTTAGAGATGCTGACTTC-3’; sense pri-
mer for NGAL: 5’-~-ACCACGGACTACAACCAGTTCG-
3’, antisense primer: 5-CTTGGCAAAGCGGGTG-
AAACG-3'. The PCR conditions were set at an
annealing temperature of 60°C for 40 cycles.
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The relative gene expression was calculated
using the comparative Ct (threshold cycle)
method with the arithmetic formula 244Ct, and
the mRNA level was normalized against 3-actin
expression.

Western blot analysis

Kidney tissue was lysed in cold RIPA buffer
(Beyotime, China) supplemented with Protease
Inhibitor Cocktail (Roche, Germany). The isolat-
ed proteins underwent a concentration analy-
sis using BCA assays. Subsequently, SDS-PAGE
(10%) was performed to separate the proteins,
followed by their transfer onto PVDF mem-
branes. The membranes were blocked with
TBS-dissolved nonfat dry milk and then incu-
bated overnight at 4°C with a primary antibody
dilution buffer (Beyotime, China) containing
specific antibodies for Gsk3p (1:1000, cat. no.
sc-377213; Santa Cruz Biotechnology, Inc.),
Gpx4 (1:1000, cat. no. 52455S; Cell Signaling
Technology, Inc.), Acsl4 (1:1000, cat. no. sc-
271800; Santa Cruz Biotechnology, Inc.), Kl-
M1 (1:1000, cat. no. 30948-1-AP; Proteintech,
Inc.), NGAL (1:1000, cat. no. 26991-1-AP; Pro-
teintech, Inc.) and B-actin (1:1000, cat. no. sc-
81178; Santa Cruz Biotechnology, Inc.). After
incubation, the membranes were exposed to a
horseradish peroxidase-conjugated secondary
antibody (1:3000) for 1 hour at room tempera-
ture. Finally, the Enhanced Chemiluminescence
(ECL) Western Blotting Detection system (Santa
Cruz Biotechnology, Inc.) and a GeneGlome HR
scanner (SynGene Europe) were employed to
visualize the immunoreactive proteins and
detect the chemiluminescent signals.

Immunofluorescence analysis

Renal tissue paraffin sections (5 ym) under-
went rehydration and were processed in a citric
acid buffer via a microwave to facilitate antigen
retrieval. Following a 1-hour incubation with
10% BSA, the sections were incubated over-
night at 4°C with a primary antibody against
Gpx4 (1:1000, cat. no. 52455S; Cell Signaling
Technology, Inc.) or Nrf2 (1:1000, cat. no.
16396-1-AP; Proteintech, Inc.). After thorough
washing, the sections were incubated with
Alexa Fluor 568-conjugated anti-rabbit IgG
(Invitrogen, Carlsbad, CA) at 1:400 for 1 h at
37°C in the dark. Nuclei were subsequently
counterstained with DAPI (Sigma-Aldrich). The
investigator was blinded to group allocation.
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Renal tubular injury scores

The assessment of renal tubular injury scores
was conducted in a blinded manner. Specifically,
two independent pathologists evaluated the
renal tubular damage without knowledge of the
groupings. These scores were determined on a
0 to 4 scale, where O represented no damage
(0%), 1 indicated damage affecting less than
25%, 2 corresponded to damage between 26%
and 50%, 3 signified damage between 51% and
75%, and 4 denoted damage exceeding 76%
[24].

Statistical analysis

Data are presented as mean + SD, and statisti-
cal analysis was conducted using SPSS 16.0
software. For comparing two groups, a two-
tailed Student’s t-test was employed. When
comparing multiple groups, either a one-way or
two-way ANOVA, followed by Bonferroni’'s post-
hoc test, was applied. A p-value less than 0.05
was deemed to indicate a statistically signifi-
cant difference.

Results

Identification of CA as a candidate therapeutic
agent against LPS-induced injury in HK-2 cells

To identify the therapeutic target for proximal
tubule epithelial cell injury triggered by LPS, we
conducted a meticulous screen of a small li-
brary of natural products from Selleck Chemi-
cals, encompassing 100 compounds as shown
in Figure 1, using HK-2 cells exposed to LPS.
We evaluated cell viability in epithelial cells af-
ter treating them with 10 uM LPS for 24 hours,
both in the absence and presence of 10 yM of
each natural product compound. Out of the
100 compounds tested, CA produced the great-
estincrease in cell viability against LPS-induced
cell injury in HK-2 cells, as shown in Figure 1.
Furthermore, our results demonstrated that CA
attenuated LPS-induced cell injury (Figure 2A)
and inflammation in a dose-dependent manner
(both P < 0.01) (Figure 2B-E). These findings
indicate that CA is a promising therapeutic
agent for addressing LPS-induced HK-2 cell
injury.

CA attenuates LPS-induced septic AKI

To validate the therapeutic effectiveness of CA
in treating septic AKI, in vivo animal studies
were undertaken with 2.5, 10 and 40 mg/kg.

Am J Transl Res 2026;18(1):498-511
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Figure 1. Anti-damage activity of natural products in lipopolysaccharide (LPS)-treated epithelial cells. The HK-2 cells
were subjected to LPS (10 uM), both in isolation and in combination with the specified natural product compounds
(10 pM). Subsequently, the CCK-8 kit was employed to assess the viability of the cells.

A O Control O Control C 2 Eggtrol
1.5 @ LPS 200, @ LPS 200 o
s O,
. E 150 *x £ 150 “h
£ E 3 2 o HH
5 = i = o ##
= = 100 %# e S 100 °
> z z
= -_ o =
3 2 - o
Q ﬁl 50 i 50
0 0
Qe QN 0y Ne N

N rs““’ \7-“"\ RN ) \w 1\\\»“ S\ 2 \\m‘c M—“"

D O Control E O Control
@ LPS @ LPS
150 80
= skk — kk
E o E o
100 5 60 idid
= HH# " & o,
3 o o] HH#
< o [ o
4 50 - o
z [} 520
= 2
=
0 0

e \ §
NS EO \\\\’C‘Mw“ R R n\s“ \m) o

Figure 2. Anti-damage and anti-inflammation activity of cinnamaldehyde
(CA) in LPS-treated HK-2 cells. The HK-2 cells were subjected to LPS (10
uM) followed by CA (5, 10 and 20 uM). (A) CCK-8 kit was employed to assess
the viability of the cells. (B-E) ELISA was carried out to determine the con-
centrations of the inflammatory markers. The figure shows the serum levels
of Interleukin-6 (IL-6) (B), Interleukin-13 (IL-1B) (C), Tumor necrosis factor-a
(TNF-a) (D) and Monocyte chemoattractant protein 1 (MCP1) (E). Data are
shown as the mean + SD (n = 4). "*P < 0.01 vs. control + vehicle; #P < 0.01
vs. LPS + vehicle.

a dose-responsive fashion.
Next, we applied a dose of 40
mg/kg to further investiga-
tion. It was found that mice
with septic AKI demonstrated
a substantial rise in kidney
KIM1 and NGAL mRNA and
protein levels compared to
controls. This surge was nota-
bly reversed with CA treatment
(both P < 0.01) (Figure 4A-E).
Histological assessments re-
vealed that CA effectively alle-
viated abnormal tubular dam-
age, specifically manifesting in
the reduction of cellular de-
tachment from tubular base-
ment membranes and the
accumulation of inflammatory
cells, as well as enhanced res-
toration of brush border integ-
rity (Figure 4F and 4G).

CA mitigates LPS-induced
kidney inflammation

To further clarify the impact of
CA on LPS-triggered kidney
inflammation, the serum con-

Our findings, depicted in Figure 3A and 3B, indi-
cate that mice undergoing LPS exhibited in-
creased serum levels of creatinine and Bun
(both P < 0.01). However, these elevations were
significantly lowered in mice treated with CA in
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centrations of IL-6, IL-1B, TNF-&, and MCP-1
were carefully measured. As shown in Figure 5,
Post-LPS injection, mice exhibiting septic AKI
demonstrated a marked elevation in the serum
levels of IL-6 (P < 0.01) (Figure 5A), IL-1B (P <

Am J Transl Res 2026;18(1):498-511
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Figure 3. CA reduced serum creatinine and Bun level
in a mouse model of LPS-induced AKI in a dose-
dependent manner. Mice received LPS (i.p., 10 mg/
kg) to induce septic AKI. CA (2.5, 10, 40 mg/kg) was
administered via the tail vein, three days prior to LPS
injection. The control mice received an equivalent
volume of vehicle. All the mice were euthanized 24
h after LPS administration, and blood was collected
for serum creatinine (Scr) and Bun detection. A and
B. ELISA was carried out to determine Scr and Bun
levels. Data are shown as the mean + SD (n = 6).
“*P < 0.01 vs. control + vehicle; #P < 0.01 vs. LPS
+ vehicle.

0.01) (Figure 5B), TNF-a (P < 0.01) (Figure 5C),
and MCP-1 (P < 0.01) (Figure 5D). However,
the elevation in these serum markers was par-
tially mitigated by CA, indicating its potential
protective effect against LPS-induced kidney
inflammation.

CA mitigates LPS-induced kidney ferroptosis

A growing body of research has established a
link between septic AKI and ferroptosis. Sub-
sequently, the question arises whether CA can
attenuate septic AKI by modulating ferroptosis.
In the LPS-induced AKI model, LPS markedly
increased renal oxidative/ferroptotic injury, evi-
denced by elevated malondialdehyde, lipid per-
oxidation, and renal iron content compared
with Control. Administration of the ferroptosis
inhibitor ferrostatin-1 (Fer-1) significantly atten-
uated these increases, lowering malondialde-
hyde, lipid peroxidation, and iron toward Control
levels vs. LPS (Supplementary Figure 2). As
illustrated in the Figure 6A-C, sepsis mice
exhibited significantly elevated levels of malo-
ndialdehyde (MDA), iron and LPO in kidney tis-
sue, which were notably reduced following CA
administration (both P < 0.01). Additionally,
the expression of the ferroptosis-associated
protein Gpx4 was significantly downregulated,
while the expression of Acsl4 protein was up-
regulated in kidney tissue from LPS-treated
mice (P < 0.01) (Figure 6D). CA administration
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effectively mitigated the sepsis-induced abnor-
mal expression of Gpx4 and Acsl4. Moreover,
immunofluorescence analysis of Gpx4 in kidney
tissue revealed that CA significantly mitigated
the decrease in Gpx4 expression observed in
septic kidney tissue (P < 0.01) (Figure 6E), indi-
cating that CA’s protective effect against septic
AKI might be mediated through the suppres-
sion of ferroptosis.

Network pharmacology and molecular docking
identify GSK3[ as a core target of CA in septic
AKI

To explore the underlying mechanism of CA
against LPS-induced AKI, we performed net-
work pharmacology analysis. A total of 2,879
sepsis-associated AKl-related genes were ob-
tained from DisGeNET database, Genecards
database and OMIM database (Figure 7A). The
CA-related genes and septic AKI genes were
intersected to obtain 41 candidate genes for
CA against sepsis-induced AKI, for instance
Malt, Ptpn22, Brd4, Tir4, Rela, Nos2, Nos3
Gsk3p, Parpl, Mapk8, Mcll, etc. PPl analysis
demonstrated that TIrd4, Gsk3[3, Rela, Mapk8,
Mcl1, Nos3 and Parpl might be the core target
(Figure 7B). Next, qPCR was conducted to
examine the mRNA levels of the above targets.
As shown in Figure 7C, the mRNA levels of TIr4,
Gsk3B, Rela, Mapk8 and Mcll was dramatically
increased, whereas the expression of Parpl
and Nos3 in mRNA was dramatically decreased
(both P < 0.01). Notably, Gsk3 had the most
significant change in expression among them.
Molecular docking also verified the affinity
between CA and Gsk3B, and the binding en-
ergy was -7.0 kcal/mol (Figure 7D). Gene
Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) enrichment analyses re-
vealed various pathways associated with septic
AKI, including the PI3K-Akt pathway, IL-17 path-
way, and Hifl pathway (Figure 7E and 7F).
These findings suggested that these pathways
might be involved in the renoprotective effects
of CA against septic AKI.

CA mitigates LPS-induced renal inflammation
and injury partly via GSK33 modulation

To delve deeper into the role of Gsk3[B in
CA’s protective mechanism against septic AKI,
we conducted a meticulous measurement of
Gsk3[ expression at the protein level. Our find-
ings revealed that LPS-treated kidney tissue

Am J Transl Res 2026;18(1):498-511
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< 0.01 vs. control + vehicle; #P < 0.01 vs. LPS + vehicle.

protein levels (both P < 0.01)
(Figure 8B-H). Histological an-
alysis also corroborated these
findings, demonstrating that
Gsk3[ OVE abolished CA’s po-
sitive impact on LPS-mediated
tubular structural abnormali-
ties (Figure 8l and 8J).

ELISA revealed that Gsk3p
OVE abrogated CA’s inhibitory
effect on LPS-induced inflam-
matory responses. This was
characterized by a surge in
the levels of IL-6, IL-13, TNF-«,
and MCP-1 (both P < 0.01)
(Figure 9A-D). These findings
provide valuable insights into
the intricate interplay between
Gsk3B, CA, and septic AKI,
highlighting the potential ther-
apeutic implications of target-
ing Gsk3p in the management
of this condition.

CA inhibited LPS-induced re-
nal ferroptosis via the Gsk3[3/
Nrf2/Keapl pathway

Subsequently, we investigat-
ed the influence of Gsk3p
OVE on CA’s protective effect

exhibited a marked elevation in Gsk3[3 protein
levels (P < 0.01). However, CA administration
significantly mitigated this increase (P < 0.01)
(Figure 8A). To further investigate the impact of
Gsk3[ overexpression (OVE) on septic AKI and
inflammation, we employed a Gsk3[ lentivirus.
As shown in Supplementary Figure 1A and 1B,
the lentiviral delivery of Gsk3[p resulted in a
significant, approximately 4.30 + 0.75-fold in-
crease in Gsk3[( expression within the kidney
tissue of Gsk3B OVE mice, as compared to
control animals. Furthermore, immunofluores-
cence staining specifically targeting Gsk3[
revealed an elevated level of Gsk3[ in both the
glomerular and interstitial regions of the kidney
in Gsk3B OVE mice, in contrast to the controls.
In addition, Gsk3p OVE negated the protective
effects of CA against LPS-induced renal injury.
This was evidenced by re-elevated serum cre-
atinine and Bun, as well as increased renal
KIM1 and NGAL expression at the mRNA and
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against LPS-induced kidney

ferroptosis. Our findings, illus-
trated in the accompanying Figure 10A-D, de-
monstrate that Gsk3p OVE hinders CA’s ability
to protect against LPS-induced renal ferropto-
sis. This was evident from the elevated levels
of renal MDA (P < 0.01) (Figure 10A), iron (P <
0.01) (Figure 10B), LPO (P < 0.01) (Figure 10C)
and Acsl4 protein, coupled with a decrease in
Gpx4 levels (P < 0.01) (Figure 10D), suggesting
that CA attenuated LPS-induced renal ferropto-
sis by regulating the expression of Gsk3p. Im-
munofluorescence analysis demonstrated that
the upregulation effect of CA on Gpx4 expres-
sion in septic kidney tissue was mitigated
by Gsk3p OVE (Figure 10E). Prior research has
firmly established that the involvement of
Gsk3B in modulating the Nrf2/Gpx4 pathway
can potentially impact the progression of fer-
roptosis [22-24]. Western blot analysis was
employed to assess the protein expression
level of Nrf2 and Keapl. In the LPS group, there
was a notable decrease in the protein levels of
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Nrf2 and a significant increase in Keapl levels Discussion

(P < 0.01). However, the administration of CA

reversed these alterations in Nrf2 and Keapl CA, an active constituent of cinnamon, has long
protein levels (P < 0.01). Interestingly, the inhib- been used as a natural flavor and aroma agent
itory effect of CA on these changes was abro- in both culinary and industrial applications.
gated by Gsk3p overexpression (lentiviral deliv- Moreover, CA has been extensively utilized in
ery) (P <0.01) (Figure 10F). Immunofluroscence biological research as a promising therapeutic
staining also indicated that CA could signifi- agent for treating various diseases due to its
cantly reverse the LPS-induced decrease in diverse therapeutic properties, encompassing
Nrf2 expression in the kidney (Figure 10G). antioxidant, anti-inflammatory, anti-apoptotic,
These results suggest that Gsk3B3/Nrf2/Keapl antimicrobial, anti-diabetic, anti-obesity, and
pathway is involved in the impact of CA against anti-cancer effects [12, 25]. Currently, a grow-
LPS caused renal ferroptosis. ing body of evidence suggests that CA offers
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ferroptosis. Network pharma-
cology plus experimental con-
firmation identified Gsk3[ as
a core target of CA in septic
AKI. Suppression of Gsk3p
was associated with the reno-
protective role of CA against
septic AKI via modulation of
Nrf2/Gpx4 pathway.

Ferroptosis is characterized
by increased lipid peroxida-
tion, reactive oxygen species
(ROS) overload, and plasma
membrane rupture. Until now,
there only limited studies
have explored the relationship
between CA and ferroptosis.
In the realm of cancer and
bacterial research, CA-based
organic ligands [29], nanopar-
ticles [30], and nano-emul-
sions [31] have been reported
to induce ferroptosis through
various mechanisms, includ-
ing blocking the reduction of
lipid peroxides, disrupting re-
dox homeostasis, and causing
cell membrane disruption, res-
pectively, ultimately exerting a
potential role in cancer and
antibacterial therapy. Conver-
sely, in cardiovascular resear-
ch, CA has been reported to
alleviate doxorubicin-induced
cardiotoxicity by suppressing
ferroptosis, achieved through
modulating Nrf2 nucleartrans-
location and HO-1 expression
[17]. Consistent with this stu-
dy, we have also demonstrat-
ed the inhibitory effect of CA
on ferroptosis in kidney tissue
from LPS-treated mice, fur-
ther highlighting its potential
therapeutic role in the man-
agement of kidney-related dis-
orders. The diverse impact of
CA on ferroptosis may be

significant benefits in the treatment of kidney attributed to the varying microenvironments
diseases, including diabetic nephropathy [16, present in different diseases and tissues.

26], kidney senescence [27], cisplatin-induced

nephrotoxicity [14], renal cell carcinoma [28] Gsk3pB, a highly conserved serine/threonine
and renal ischemia/reperfusion injury [13]. In protein kinase, regulates cell proliferation, dif-
the present study, we show that CA protects ferentiation, apoptosis, and necrosis, under-
against LPS-induced septic AKI by suppressing scoring its pivotal role in cellular homeostasis
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and biological processes [32]. As a highly ed to attenuate cisplatin induced AKI through
expressed kinase in kidney tissue, Gsk3[3 plays a PP2Ac-dependent mechanisms [33]. Other
a pivotal role in nephropathy, particularly in Gsk3pB inhibitors, TDZD-8 and lithium, have
AKI, that is broadly acknowledged. Among been documented to exhibit protective effects
these, a novel Gsk3p inhibitor, 5n, was report- against renal ischemia-reperfusion injury and
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nonsteroidal anti-inflammatory drugs (NSAIDs)
or rhabdomyolysis-associated AKI [32, 34, 35].
More importantly, Howard et al. showed that
both pharmacological inhibition by TDZD-8 and
proximal tubule-specific deletion of Gsk3[3 con-
fers protection against HgCl2-induced AKI in
mice [36].

Recently, Gsk3[p has emerged as a crucial mo-
dulator that enhances ferroptosis. Both the
selective inhibitor LY2090314 and Gsk3p
knockdown have been shown to mitigate fer-
roptosis. Furthermore, Gsk3[3 knockdown can
decrease the expression of iron metabolic com-
ponents, disrupting iron homeostasis and re-
ducing intracellular labile iron levels [37]. Re-
cent research has illuminated the intricate
interplay between Gsk3p, Nrf2, and Gpx4. Gsk-
3B acts as a negative regulator of Nrf2 and a
common effector of numerous Nrf2 inducers in
the non-canonical, Keapl-independent path-
way [38]. As a versatile serine/threonine kina-
se, Gsk3p promotes Nrf2 inactivation by retain-
ing Nrf2 within the cytoplasm or facilitating its
export [39, 40]. Gsk3p initiates phosphoryla-
tion that drives nuclear export of Nrf2, thereby
limiting its transcriptional activity [40-43]. Our
data indicate that GSK3[ overexpression (OVE)
blunts the CA-induced increase of Nrf2 in both
the cytoplasm and nucleus, implicating the
GSK3pB/Nrf2 axis in CA's protection against
LPS-induced renal ferroptosis. In addition, the
activation of the Gsk3B/Nrf2 signaling path-
way, leading to the upregulation of Gpx4, has
been linked to the anti-ferroptotic effects of
various therapeutic agents, including dexme-
detomidine, Schizandrin B, and Britanin [24,
40, 44]. One study emphasized balancing the
Gsk3B/Nrf2 axis as a strategy to modulate
elastin-triggered ferroptosis in breast cancer
[22]. In the present study, we found that the
inhibition of Gsk3pB mediated by CA impedes
ferroptosis by upregulating Gpx4, which subse-
quently attenuates septic AKI. There are a few
limitations in this study. A major limitation is
that although Nrf2 expression was assessed,
the precise intracellular localization of Nrf2,
along with the mechanism behind CA’'s down-
regulation of Gsk3[3, remains elusive.

Conclusions

CA attenuates LPS-induced AKI by inhibiting
ferroptosis via the Gsk3B/Nrf2/Gpx4 pathway.
Our findings provide a new molecular mecha-
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nism for LPS-induced AKI from the perspective
of renal ferroptosis and demonstrate the thera-
peutic potential of CA for LPS-induced AKI
through regulation of the Gsk3p/Nrf2/Gpx4/
ferroptosis pathway.
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Supplementary Figure 1. Verification of GSK3[ overexpression. A. Representative immunoblot showing increased
GSK3p protein abundance in the GSK3p overexpression (GSK3p OVE) group versus Control; B-actin serves as a
loading control. Right (or below) is densitometric quantification of GSK3p normalized to B-actin and expressed as %
of Control (Control set to 100%). B. Representative immunofluorescence (or immunocytochemistry; confirm) images
of Control and GSK3p OVE groups demonstrating elevated GSK3p signal intensity; scale bar = 25 ym. Experimental
details (vector, transfection or infection method, multiplicity of infection or plasmid amount, exposure time post-
transfection, cell type, and antibody sources) are described in Methods. Data are mean + SD, n = 6 independent
experiments (or biological replicates). Statistical analysis: unpaired two-tailed t test if only two groups. Significance:
*P < 0.05, **P < 0.01, ***P < 0.001 versus Control.
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Supplementary Figure 2. Ferrostatin-1 attenuates LPS-induced increases in renal lipid peroxidation and iron ac-
cumulation. A. Renal malondialdehyde (MDA) levels (reported in the source file as nmol/ug protein; please verify
whether the intended unit is nmol/mg protein). B. Renal lipid peroxidation (LPO) (umol/g protein). C. Renal iron
content (ug/g wet weight). Animals were divided into Control, LPS, and LPS + Fer-1 groups. LPS was administered
at 10 mg/kg, and ferrostatin-1 (Fer-1, 10 mg/kg) was given as described in Methods. Data are presented as mean
+ SD (n = 6). Statistical analysis: one-way ANOVA with Tukey’s post hoc test. Significance indicators: *P < 0.05, **P
< 0.01, ***P < 0.001, ****P < 0.0001 (define the comparison basis, e.g. vs. Control unless otherwise indicated).
Abbreviations: Fer-1, ferrostatin-1; LPO, lipid peroxidation; MDA, malondialdehyde.



