
Am J Transl Res 2026;18(1):13-34
www.ajtr.org /ISSN:1943-8141/AJTR0166606

https://doi.org/10.62347/ZSRU1567

Review Article
Viral infections in solid organ transplant recipients:  
immunological principles and intervention strategies

Ziyu Wang*, Kaiwen Sheng*, Yansen Wang*, Jianhua Luo, Meng Guo

National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Navy Medical University, Shang-
hai 200433, China. *Equal contributors.

Received June 5, 2025; Accepted December 9, 2025; Epub January 15, 2026; Published January 30, 2026

Abstract: Objective: This review aims to examine the challenges of opportunistic viral infections in transplant recipi-
ents on long-term immunosuppression and to explore the potential of emerging immunotherapies to improve infec-
tion management. Methods: We summarize the mechanisms and effects of current clinical immunosuppressants, 
outline the incidence of viral infections following various organ transplants, and discuss the limitations of existing 
antiviral pharmacotherapies. Furthermore, we systematically review recent advances in novel immunotherapies 
that harness the patient’s immune system. Results: While immunosuppressive regimens significantly improve graft 
survival, they increase susceptibility to viral infections. Emerging immunotherapies demonstrate promising poten-
tial in managing these infections, yet their application in transplant recipients remains underexplored. Conclusion: 
Innovative immunotherapies represent a promising avenue for overcoming the limitations of conventional treat-
ments. Their integration into transplantation practice may enhance long-term outcomes, although further clinical 
validation is needed.
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Introduction

Organ transplantation represents the definitive 
treatment for patients with end-stage organ 
failure. Its success depends on the refinement 
of surgical techniques and the meticulous regu-
lation of immune rejection responses [1]. 
Calcineurin inhibitors (CNIs), such as cyclospo-
rine, are widely used in clinical practice and 
have extended the median survival of trans-
planted organs to over eight years [2]. Despite 
these therapeutic advances, prolonged im- 
munosuppressive therapy, essential for main-
taining graft survival, significantly increases 
transplant recipients’ risk of complications, 
with notably heightened susceptibility to viral 
infections. This increased vulnerability arises 
from the inherent impairment of antiviral 
immune defenses induced by standard immu-
nosuppressive regimens. Common viral patho-
gens affecting transplant recipients include 
cytomegalovirus (CMV), Epstein-Barr virus 
(EBV), and BK polyomavirus. These viruses not 
only cause acute morbidity but also negatively 
impact long-term graft function and overall 

patient outcomes. As immunological research 
advances, novel immunotherapeutic strate-
gies, ranging from cell therapies, vaccination, 
cytokine treatments, to immunomodulators, 
have demonstrated promising clinical benefits 
for the treatment of viral infections. However, in 
the context of organ transplantation, these 
therapies may either heighten the risk of graft 
rejection or exhibit diminished efficacy due to 
the immunosuppressive environment. There- 
fore, the application and overall effectiveness 
of immunotherapy in transplant recipients re- 
main inadequately explored.

This review examines the scope of action and 
immunological mechanisms of immunosup-
pressants currently used in clinical practice, 
with emphasis on CNIs, mammalian target of 
rapamycin inhibitors, co-stimulation inhibitors, 
and interleukin-2 receptor antagonists (IL-2Ra). 
Additionally, the immunomodulatory roles of 
glucocorticoids and metabolic disruptors are 
considered. We also outline the rates of viral 
infections following organ transplantation in dif-
ferent regions and discuss the pharmacological 
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treatment strategies for these infections and 
their limitations. Finally, we explore the poten-
tial application of novel immunotherapeutic 
strategies in organ transplant recipients, focus-
ing on the research progress of emerging 
immunotherapeutic approaches, including how 
they mobilize the patient’s own immune sys- 
tem and address the shortcomings of tradi- 
tional treatments. This review aims to serve as 
a guide for clinical and basic researchers in 
transplantation medicine, promoting the ad- 
vancement and application of novel immuno-
therapeutic approaches.

Epidemiology and clinical burden of CMV and 
BK polyomavirus infections in solid organ 
transplant recipients

Viral infections following organ transplantation 
represent a complex clinical challenge result 
ing from the interplay between the recipient’s 
immunocompromised condition and the im- 
munosuppressive regimens. Although these 
agents are crucial for preventing graft rejection, 
they simultaneously impair antiviral immune 
defenses, significantly increasing susceptibility 
to opportunistic viral pathogens. Among trans-
plant recipients, infections caused by CMV, 
EBV, and BK polymavirus are the most com-
mon. Without preventive measures, 40-100% 
of renal transplant recipients in the United 
States may develop CMV infection [3]. A nation-
wide cohort study from Denmark reported that 
CMV infection occurred in 23% of patients fol-
lowing solid organ transplantation. In 49 stud-
ies across Asia, Latin America, and Oceania, 
the CMV infection rate post-solid organ trans-
plantation ranged from 5.8% to 63.2% [4]. 
Notably, clinical studies conducted in China 
have reported significantly lower infection 
rates, ranging from 5.8% to 13.2% (Table 1).

Current evidence suggests that BK polyomavi-
rus infection exhibits pronounced organ tro-
pism, occurring predominantly in renal trans-
plant recipients with a markedly lower incidence 
in other solid organ transplants. In the context 
of kidney transplantation, BK polyomavirus is 
the principal causative agent of polyomavirus-
associated nephropathy (PyVAN), a serious 
complication that compromises allograft func-
tion and long-term graft survival. The incidence 
of BK polyomavirus reactivation following 
immunosuppressive therapy ranges from 30% 
to 60% [5] (Table 1).

Immunosuppressive agents in transplanta-
tion: mechanisms of action, cellular targets, 
and clinical implications

A major challenge in organ transplantation is 
the host immune system’s recognition of the 
graft as “non-self”, triggering immune respons-
es that can lead to graft rejection. Central to 
this process is the major histocompatibility 
complex (MHC) expressed on donor cells, which 
serves as a key target for host immune surveil-
lance. Donor antigens are recognized either 
through direct presentation by donor-derived 
MHC molecules or indirectly via processing and 
presentation by host antigen-presenting cells, 
ultimately activating recipient T lymphocytes. 
This adaptive immune response is orchestrat-
ed through the well-established “three-signal 
model”: (1) antigen recognition via T-cell recep-
tor (TCR) engagement with MHC-peptide com-
plexes; (2) co-stimulatory interactions, such as 
CD28-B7 and CD40-CD40L binding; and (3) 
cytokine-mediated signaling that drives T cell 
proliferation and differentiation. In parallel, B 
cells can generate donor-specific antibodies 
that contribute to graft injury through comple-
ment activation and antibody-dependent cel 
lular cytotoxicity (ADCC). Immunosuppressive 
agents mitigate rejection by dampening both 
innate and adaptive immune responses, there-
by markedly improving transplant outcomes. 
For example, CNIs, a cornerstone of current 
immunosuppressive regimens, have extended 
median graft survival to over eight years (Table 
2).

Indeed, while these agents are effective in pre-
venting rejection, they also compromise host 
immune surveillance, particularly against la- 
tent viral infections. As noted earlier, this im- 
munosuppressive state facilitates the reacti- 
vation and replication of opportunistic patho-
gens such as CMV, EBV, and BK polyomavirus. 
Therefore, a comprehensive understanding of 
how immunosuppressive drugs influence im- 
mune cell subsets, intracellular signaling path-
ways, and virus-host dynamics is essential for 
optimizing post-transplant care and mitigating 
infection-related complications (Figure 4).

CNIs

CNIs are the cornerstone of immunosuppres-
sive therapy following organ transplantation. 
The main representatives of CNIs include 
Cyclosporine A (CSA) and Tacrolimus (FK506). It 
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Table 1. Epidemiological data of viral infections in organ transplant recipients
Kidney transplant Liver transplant Heart transplant

CMV 5.8-100% [3, 4, 109] 13.2-67% [4, 109] 42.5-72.1% [109, 115]
EBV 11.3-56% [110-113, 116] 60.4% [117] -
HSV 6.5% [118] 8.4% [118] 9.4% [118]
BK Polyomavirus 30-60% [5] 15.9% [119] -
JC Polyomavirus 22.3% [119] 22.7% [119] -

Table 2. Commonly used immunosuppressive drugs and their main characteristics
Drug Type Commonly Used Drugs Features
CNIs CSA

FK506
Forms a complex that binds to calcineurin, thereby inhibiting its activity and 
preventing the transcription of pro-inflammatory cytokines such as interleu-
kins.

mTORi Sirolimus Blocks cells from entering the S phase from the G1 phase, thereby preventing 
the proliferation and differentiation of immune cells; may increase the risk of 
infection.

Co-stimulation Inhibitors Abatacept Belatacept Binds to the B7 molecule, blocks its binding to CD28, and reduces T cell 
activation; may increase the risk of infection.

IL-2Ra Basiliximab antibody
Daclizumab antibody

Blocks the binding of IL-2 to its receptor, thereby inhibiting T cell proliferation 
and activation, and reducing the immune system’s attack on transplanted 
organs.

GCs GCs Simulating the effects of naturally occurring cortisol in the human body, 
such as inhibiting the production of proinflammatory cytokines, reducing the 
release of inflammatory mediators, and reducing the migration and activity of 
inflammatory cells.

Anti-metabolities MMF
MPS

By inhibiting IMP dehydrogenase, it blocks the de novo synthesis of 
guanylate, inhibiting the proliferation and function of lymphocytes; finely 
regulating the immune response while managing the risk of viral infection.

Lymphocyte-depleting antibody drugs ATG
ATLG
Alemtuzumab

Inhibits the immune response through direct cytotoxic effects, inducing 
apoptosis, blocking signaling molecules on the cell surface, and regulating 
the release of cytokines.

is now understood that CNIs target calcineurin 
phosphatase, a protein composed of two sub-
units, CnA and CnB. During T-cell activation, the 
recognition of antigens by the T-cell receptor 
(TCR) leads to an increase in intracellular Ca2+ 
levels and the activation of CnB, thereby acti-
vating the phosphatase activity of CnA. 
Activated CnA dephosphorylates the cytoplas-
mic transcription factor NFATc, allowing it to 
translocate to the nucleus with activated 
calmodulin, where it upregulates the expres-
sion of various cytokines and costimulatory 
molecules required for complete T-cell activa-
tion [6]. CSA forms a complex with cyclophilin, 
whereas tacrolimus (FK506) binds to the 
FK-binding protein (FKBP). These drug-immu-
nophilin complexes subsequently inhibit cal- 
cineurin phosphatase activity, thereby disrupt-
ing key T-cell activation pathways (Figure 1). 
This inhibition of T-cell activation secondarily 
impairs B-cell function by diminishing T-cell 
help (Figure 2) [7]. Besides, current evidence 
suggests that CNIs can affect humoral immu-
nity by directly inhibiting the proliferation of 

naive B cells and the differentiation of plasma-
blasts [8].

Due to the limited biological role of NFAT in NK 
cells, which only regulates the expression of 
CD16, CNIs have almost no effect on the activ-
ity of NK cells [9, 10]. In vitro experimental 
results have shown that CNIs inhibit the ADCC 
of NK cells and significantly suppress the pro-
duction of IFNγ in a dose-dependent manner 
(Figure 3) [11]. Through this mechanism, CNIs 
selectively suppress NK cell-mediated T cell 
activation while preserving NK cell prolifera-
tion, thereby reducing the risk of graft-versus-
host disease (GVHD) without disrupting NK cell 
homeostasis.

Mammalian target of rapamycin inhibitors 
(mTORi)

mTORi are a class of important immunosup-
pressive drugs that inhibit the growth and pro-
liferation of immune cells by suppressing the 
activity of mTOR. mTOR is a serine/threonine 
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Figure 1. The functional effects and mechanisms of action of immunosuppressive agents on T lymphocytes. CNIs 
form complexes that bind to calcineurin, inhibiting its activity and preventing the transcription of pro-inflammatory 
cytokines such as interleukin through the NFAT signaling pathway. mTORi suppress the PI3K/AKT/mTOR signaling 
pathway, blocking cell transition from the G1 phase to the S phase, thereby inhibiting the proliferation and dif-
ferentiation of immune cells. IL-2Ra directly blocks the binding of IL-2 to its receptor, causing internalization of the 
IL-2 receptor and blocking IL-2-dependent T cell clone expansion, which inhibits T cell proliferation and activation, 
reducing the immune system’s attack on the transplanted organ. Co-stimulation inhibitors, exemplified by CTLA-4-Ig, 
bind to B7 molecules, preventing their interaction with CD28 and reducing T cell activation. Metabolism-disrupting 
drugs inhibit inosine monophosphate dehydrogenase, blocking de novo synthesis of guanosine nucleotides, which 
disrupts the transcription and translation of T cells, thereby interfering with their proliferation and function. GCs act 
directly on the glucocorticoid receptors in the T cell nucleus, exerting effects such as inhibiting the production of 
pro-inflammatory cytokines, reducing the release of inflammatory mediators, and decreasing the migration and ac-
tivity of inflammatory cells. Lymphocyte-depleting monoclonal antibodies, exemplified by ATG, can suppress immune 
responses by blocking signaling molecules on the cell surface and modulating the release of cytokines.

protein kinase and a member of the phos-
phoinositide 3-kinase (PI3K)-related kinase 
family, interacting with different proteins to 
form mTOR complex 1 (mTORC1) and mTOR 
complex 2 (mTORC2) [12]. mTORC1 is involved 
in the regulation of multiple signaling path- 
ways in immune cells and is directly sensitive  
to certain immunosuppressive drugs such as 
Sirolimus (also known as Rapamycin) [13]. After 
administration, the drug forms a complex with 
the protein FKBP12, which further interacts 
with mTORC1 to inhibit its activity. This inhibi-
tory effect blocks cell cycle progression from 
the G1 to S phase, thereby suppressing the pro-
liferation and differentiation of both T and B 

lymphocytes (Figures 1 and 2). In contrast, 
mTORC2 is generally insensitive to rapamycin; 
however, prolonged exposure can disrupt its 
structural integrity, impacting cell survival and 
cytoskeletal organization [14].

The immunosuppressive effects of mTORi 
extend across multiple immune cell popula-
tions, including T cells, B cells, and NK cells 
[15-17]. These agents function by disrupting 
critical cell cycle signaling pathways (Figure 3). 
Besides, mTORi impair dendritic cell (DC) matu-
ration and their capacity to activate T cells [18]. 
While clinically valuable for immunosuppres-
sion, mTORi therapy carries significant consid-
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Figure 2. The functional effects and mechanisms of action of immunosuppressive agents on B lymphocytes. CNIs 
indirectly suppress B cell activation by preventing the transcription of pro-inflammatory cytokines such as interleu-
kin in T cells. mTORi blocks cell cycle progression from the G1 phase to the S phase by inhibiting the PI3K/AKT/
mTOR signaling pathway, thereby preventing the proliferation and differentiation of B cells. Metabolism-disrupting 
drugs impede the de novo synthesis of guanosine nucleotides by inhibiting inosine monophosphate dehydrogenase, 
disrupting the transcription and translation of B cells, and thus interfering with their proliferation and function. GCs 
exert pro-apoptotic effects by acting directly on the glucocorticoid receptors in the B cell nucleus and directly af-
fect humoral immune responses by reducing the production of circulating immunoglobulins. Lymphocyte-depleting 
monoclonal antibody drugs, exemplified by CD20 monoclonal antibodies, exert cytotoxic effects by directly targeting 
the B cell surface molecule CD20 to deplete B cells.

erations, including increased infection risk and 
other medication-associated adverse effects 
that require careful monitoring.

Co-stimulation inhibitors

Co-stimulation inhibitors represent a class of 
immunomodulatory agents that selectively tar-
get secondary signaling pathways essential for 
T cell activation. By blocking the critical costim-
ulatory signals required for full TCR engage-
ment, these therapeutics effectively suppress 
T cell clonal expansion and effector function 
while preserving baseline immune surveillance. 
Current evidence suggests that T cell activation 
requires two distinct signals: (1) primary anti-
gen recognition through TCR engagement with 

peptide-MHC complexes; and (2) costimulatory 
signaling, primarily mediated by CD28 receptor 
binding to B7 molecules (CD80/CD86) on anti-
gen-presenting cells (APCs). This dual-signal 
mechanism ensures antigen-specific immune 
responses while maintaining peripheral toler-
ance [19]. Co-stimulation inhibitors effectively 
attenuate T cell-mediated immune responses 
by interrupting the second signal (Figure 1).

Co-stimulation blockade can be achieved via 
two principal strategies: (1) competitive inhibi-
tion using recombinant fusion proteins (e.g., 
CTLA4-Ig) that exploit the higher affinity of 
CTLA-4 for B7 molecules (CD80/86), thereby 
preventing CD28 engagement and subsequent 
T cell activation; and (2) direct targeting with 
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Figure 3. The functional effects and mechanisms of action of immunosuppressive agents on NK cells. CNIs modu-
late the expression of CD16 in NK cells by inhibiting the NFAT signaling pathway, suppressing the ADCC effect of 
NK cells. mTORi prevent the transition of cells from the G1 phase to the S phase by inhibiting the PI3K/AKT/mTOR 
signaling pathway, thereby inhibiting the proliferation and differentiation of NK cells. Metabolism-disrupting drugs 
block the de novo synthesis of guanosine nucleotides by inhibiting inosine monophosphate dehydrogenase, reduc-
ing the expression of all activated NK cell receptors. GCs act directly on the glucocorticoid receptors in the NK cell 
nucleus, inhibiting the expression of effector molecules such as perforin, granzyme B, and granzyme A, as well as 
the production of interferon-γ, thereby suppressing the cytotoxic activity of NK cells and their activating effect on T 
cells.

monoclonal antibodies against either B7 li- 
gands or CD28 itself [20]. Currently, clinical co-
stimulation inhibitors are all derivatives of 
CTLA4, including Abatacept [21] and Belatacept 
[22]. Abatacept is a fusion protein comprising 
the extracellular domain of human CTLA4 
linked to the Fc segment of the IgG1 antibody 
[21], while Belatacept is an optimized version 
of Abatacept with an enhanced amino acid 
sequence that increases the drug’s affinity for 
CD80 and CD86 [22]. While co-stimulation 
inhibitors reduce the need for long-term immu-
nosuppressants (such as CNIs), their use can 
increase the risk of certain infections.

IL-2Ra

IL-2Ra represents a class of biological agents 
specifically targeting the IL-2 receptor α chain 

CD25. Current evidence suggests that IL-2 is a 
key cytokine essential for the activation and 
maintenance of T cell function. In the context of 
post-transplantation, IL-2Ra functions by block-
ing the binding of IL-2 to its receptor, thereby 
suppressing T cell proliferation and activation, 
thereby mitigating immune-mediated rejection 
of the transplanted organ. The IL-2 receptor is 
composed of three non-covalently bound sub-
units: IL-2Rα (CD25), IL2Rβ (CD122), and IL-2Rγ 
(CD132). Naïve T cells constitutively express 
the intermediate-affinity IL-2 receptor com-
posed of βγ subunits (IL-2Rβγ). Following anti-
gen recognition and initial activation, these 
cells upregulate expression of the α chain 
(CD25), forming the high-affinity trimeric IL-2 
receptor (IL-2Rαβγ) that confers maximal 
responsiveness to IL-2 signaling [23]. After IL-2 
binds to the high-affinity receptor, it activates 
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Figure 4. The functional effects and mechanisms of action of immunosuppressive agents on major immune cells. 
The seven main classes of immunosuppressive agents exert their immunosuppressive effects through distinct 
mechanisms targeting a variety of immune cells, including lymphocytes, neutrophils, and mononuclear phagocytes.

JAK1 and JAK3, leading to the recruitment and 
phosphorylation of STAT5, which drives T cell 
proliferation. IL-2 receptor antagonists exert 
their immunosuppressive effects by competi-
tively binding to the α subunit of the high-affini-
ty IL-2Rαβγ complex. This binding triggers 
receptor internalization and subsequent lyso-
somal degradation, thereby preventing IL-2-
mediated signaling and inhibiting clonal expan-
sion of activated T cells (Figure 1).

Clinically approved IL-2 receptor antagonists 
include the monoclonal antibodies basiliximab 
and daclizumab, which are primarily employed 
as induction immunosuppressants in the peri-
transplant period. These biologic agents are 
typically administered as part of a multidrug 
regimen, combining with CNIs (cyclosporine or 
tacrolimus), mTORi, and other immunosuppres-

sive agents to achieve synergistic therapeutic 
effects while minimizing individual drug toxici-
ties [24].

Glucocorticoids (GCs)

GCs are a class of potent anti-inflammatory and 
immunosuppressive drugs widely used in organ 
transplantation. They play a pivotal role in post-
transplant management by mimicking the 
effects of naturally occurring cortisol in the 
human body. GCs achieve their potent anti-
inflammatory effects through multiple comple-
mentary mechanisms: (1) transcriptional sup-
pression of pro-inflammatory cytokines; (2) 
inhibition of inflammatory mediator synthesis; 
and (3) impairment of inflammatory cell traffick-
ing and effector functions [25]. In the context of 
organ transplantation, GCs are commonly used 
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during the early stages to prevent and treat 
acute rejection. Furthermore, their inclusion in 
long-term regimens contributes significantly to 
graft preservation.

It is now understood that GCs exert compre-
hensive immunomodulatory effects across 
both innate and adaptive immunity (Figures 
1-3). GCs suppress innate immune responses 
by: (1) Inhibiting pro-inflammatory cytokine pro-
duction (e.g., TNF-α, IL-1β) in monocytes, mac-
rophages, and dendritic cells (DCs), while im- 
pairing their antigen-presenting capacity [26]; 
and (2) Reducing NK cell cytotoxicity by down-
regulating perforin and granzymes (A/B) [27, 
28] and suppressing Interferon-γ (IFN-γ) pro-
duction [29].

GCs modulate adaptive immunity through: (1) 
Upregulating immunomodulatory proteins (e.g., 
CTLA-4, PD-1) and pro-apoptotic genes while 
inhibiting pro-inflammatory cytokines (e.g., IL-2, 
IFN-γ) and cell cycle progression [30]. (2) 
Strongly inhibiting Th1 responses while moder-
ately suppressing Th2, skewing immunity to- 
ward type 2 responses [30]. (3) Promoting regu-
latory T cell (Treg) differentiation and expan-
sion, enhancing immune tolerance [31, 32], 
and (4) Inducing apoptosis in developing B cells 
and reducing circulating immunoglobulins, 
dampening humoral immunity [33]. Collectively, 
these mechanisms highlight the broad immu-
nosuppressive effects of GCs, underscoring 
their central role in suppressing excessive im- 
mune activation. As such, GCs remain a corner-
stone of maintenance in immunosuppressive 
therapy in transplantation medicine. However, 
their long-term use necessitates careful moni-
toring and management of associated meta-
bolic and infectious complications.

Metabolism-disrupting drugs

In transplant recipients, immune metabolic 
modulators are employed to achieve precise 
immune regulation, balancing graft protection 
against infection risks. These agents exert their 
effects by selectively targeting metabolic pa- 
thways crucial for lymphocyte activation and 
proliferation, thereby modulating immune re- 
sponses while maintaining viral surveillance. 
The IMPDH inhibitors mycophenolate mofetil 
(MMF) and mycophenolic acid (MPA) mediate 
immunosuppression via targeted disruption of 
purine metabolism. By competitively inhibiting 

IMP dehydrogenase, these drugs deplete gua-
nosine nucleotide pools in lymphocytes, which 
lack the hypoxanthine-guanine phosphoribo- 
syl transferase (HGPRT)-dependent salvage 
pathway available to other cell types [34]. 
Moreover, MMF exerts additional immunomo- 
dulatory effects by suppressing STAT3 phos-
phorylation and downstream signaling, leading 
to a marked reduction in key growth factor  
production (e.g., VEGF-A and PDGF-BB) and 
chemokines (e.g., MIG/CXCL9 and SDF-1α/
CXCL12), thereby disrupting the differentiation 
of CD4+ T lymphocytes and the development  
of B lymphocytes [35]. Besides, MMF therapy 
compromises NK cell functionality through  
multiple mechanisms. Clinical studies have 
demonstrated that MMF treatment: (1) selec-
tively depletes the immunoregulatory CD16-

CD56 bright NK subset; and (2) downregulates 
expression of activating receptors, including 
NKG2D, NKp30, NKp44, and NKp46 [36, 37], 
collectively impairing NK cell immune surveil-
lance capacity.

Lymphocyte-depleting monoclonal antibodies

For acute rejection prophylaxis and treatment 
in transplantation, T-cell depleting agents like 
anti-thymocyte globulin (ATG) and anti-human 
T-cell immunoglobulin (ATLG) remain essential. 
These polyclonal IgG fractions, produced by 
immunizing horses or rabbits with human lym-
phocytes, are now understood to induce rapid 
peripheral T-cell clearance through multiple 
effector mechanisms, including direct cytotoxic 
effects, induction of apoptosis, blocking of cell 
surface signaling molecules, and modulating 
the release of cytokines [38]. Besides, ATG 
depletes pre-activated T cells through ADCC or 
Fas-dependent apoptosis [39]. Beyond T cell 
depletion, ATG exhibits additional immunomod-
ulatory effects in vitro, including upregulation 
of PD-L1 expression on monocytes. This PD-1/
PD-L1 axis activation significantly suppresses 
CD8+ T cell proliferation and cytotoxic function, 
as evidenced by reduced granzyme B produc-
tion [40]. Intriguingly, a study revealed that B 
cells (CD20+) and NK cells (CD16+/CD56+) 
may only be affected at higher doses of thymo-
globulin [41]. ATLG shares fundamental mecha-
nisms of action with ATG, although subtle differ-
ences in epitope recognition profiles may lead 
to variations in their clinical efficacy and side 
effect profiles (Figure 1).
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Alemtuzumab is a recombinant DNA-derived 
humanized monoclonal antibody targeting CD- 
52, designed to deplete lymphocytes. Initially 
developed for chronic B-cell leukemia and mul-
tiple sclerosis, clinical trials have established 
its efficacy in preventing acute rejection follow-
ing transplantation with a favorable safety pro-
file and high graft survival rates [42, 43]. CD52 
is a cell surface antigen highly expressed on T 
and B lymphocytes and at lower levels on NK 
cells, monocytes, dendritic cells, macrophages, 
and eosinophils [44]. Alemtuzumab exerts its 
immunosuppressive effect through comple-
ment-dependent cytotoxicity (CDC), ADCC, and 
the induction of lymphocyte apoptosis [42], 
leading to the depletion of T and B lympho-
cytes, NK cells, dendritic cells, and monocytes 
[45]. Furthermore, the expression of the sur-
face molecule CD20 on B cells at various stag-
es of differentiation makes it a highly specific 
target for monoclonal antibodies like rituximab 
[46]. The application of anti-CD20 monoclonal 
antibodies (e.g., rituximab) in immunosuppres-
sive regimens has significantly improved the 
success rate of ABO-incompatible kidney trans-
plants [47] (Figure 2).

Pharmacological management of opportunis-
tic viral infections in organ transplant recipi-
ents: challenges and therapeutic strategies

The functional impacts and mechanisms of 
immunosuppressive agents on key immune cell 
populations have been extensively character-
ized. The seven principal classes of immuno-
suppressants exert their immunomodulatory 
effects via distinct pathways, targeting a broad 
spectrum of immune cells, including lympho-
cytes, neutrophils, and monocyte-macropha- 
ges. In the context of post-transplant immuno-
suppressive therapy, this systemic immune 
suppression compromises the host’s antiviral 
defenses, leading to increased susceptibility to 
viral infections. Therefore, managing viral infec-
tions in transplant recipients requires a care-
fully balanced therapeutic strategy that con-
trols viral replication while causing further 
immune impairment.

Pharmacological strategies for CMV infection 
treatment

CMV infection is one of the most prevalent and 
detrimental viral infections following organ 
transplantation. The pharmacotherapy for CMV 

primarily encompasses a range of antiviral 
agents, which are detailed as follows.

1) Ganciclovir (GCV) [48]: GCV is a nucleoside 
analogue that mimics guanosine and incorpo-
rates into the viral DNA chain, thereby terminat-
ing viral replication [49]. GCV is indicated for 
the treatment and prophylaxis of CMV disease, 
particularly in patients undergoing high-risk 
renal and cardiac transplantations. However, 
its clinical use poses certain challenges. First, 
its intravenous administration can be inconve-
nient for hospitalized patients and complicates 
outpatient treatment protocols. Besides, GCV 
may trigger side effects, most notably bone 
marrow suppression, which can manifest as a 
significant decrease in neutrophil counts and 
subsequently elevate the risk of infection. For 
patients with impaired renal function, careful 
dose adjustment of GCV is essential to mitigate 
the risk of toxicity.

2) Valganciclovir (VGCV) [50]: VGCV serves as 
the oral prodrug of GCV, which is converted into 
GCV after absorption in the body. It offers a 
more convenient oral administration route, par-
ticularly suitable for long-term prophylactic 
treatment or the management of mild to mod-
erate active CMV disease. A study conducted 
among adult recipients of renal, hepatic, cardi-
ac, and pulmonary transplants demonstrated 
that the long-term efficacy of oral VGCV is com-
parable to that of intravenous GCV in treating 
solid organ transplant recipients with CMV syn-
drome and tissue-invasive CMV disease [51]. 
However, high-dose oral GCV can be employed 
for prophylaxis and maintenance treatment of 
immunosuppressed transplant patients, yet 
the oral dosage is insufficient for treating active 
CMV disease [48]. Similar to GCV, VGCV also 
presents side effects such as bone marrow 
suppression.

3) Letermovir: This novel antiviral agent for 
CMV infection operates through a mechanism 
distinct from that of GCV, primarily by prevent-
ing the terminal stage of viral DNA cleavage and 
packaging. Letermovir provides a new thera-
peutic option for patients with drug-resistant or 
treatment-intolerant CMV infections.

4) Maribavir: Maribavir, an oral drug that inhib-
its the CMV UL97 protein kinase, is indicated 
for the treatment of drug-resistant or refractory 
CMV infections. It exhibits activity against CMV 
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both in vitro and in vivo, including strains resis-
tant to ganciclovir, foscarnet, or cidofovir [52]. 
In transplant recipients with resistant/refracto-
ry CMV, Maribavir has been shown to be supe-
rior to GCV and VGCV in achieving CMV viremia 
clearance rate and symptom control rate post-
treatment, resulting in a higher overall response 
rate [53].

Pharmacological treatment of EBV infection

EBV infection has been associated with the 
development of post-transplant lymphoprolifer-
ative disorders (PTLD), a potentially fatal com-
plication. Although direct antiviral treatments 
against EBV have limited efficacy, the following 
strategies have shown benefits: 1) Acyclovir 
and Ganciclovir [54]: These drugs exhibit activ-
ity against EBV in vitro but have not demon-
strated significant efficacy in the treatment of 
EBV-PTLD. They are primarily used as prophy-
lactic measures for EBV infection, particularly 
to prevent primary infection in EBV seronega-
tive organ transplant recipients. 2) Rituximab 
[55]: Rituximab is a monoclonal antibody that 
specifically targets CD20+ B cells and is uti-
lized in the treatment of EBV-associated B cell 
PTLD. By selectively targeting B cells, Rituximab 
not only reduces the risk of PTLD development 
but also effectively treats early-stage cases of 
this disorder.

Pharmacological treatment of BK virus infec-
tion

BK virus is a common infection in transplant 
recipients, especially among renal transplant 
recipients. Currently, no FDA-approved antivi- 
ral therapies exist specifically for BK virus in- 
fection. Clinical management primarily focuses 
on the following approaches: 1) Adjustment  
of Immunosuppressive Dosage [56]: Reducing 
the dosage of immunosuppressive agents 
helps to restore the patient’s immune system, 
thereby enhancing the defense against the BK 
virus. 2) Intravenous Immunoglobulin (IVIG) 
[56]: Although the precise mechanism of action 
remains to be fully elucidated, IVIG has been 
employed in some instances to treat BK vi- 
rus-associated nephropathy, functioning as a 
means to augment the host’s immune re- 
sponse. However, its high cost and inconsistent 
efficacy among individuals have constrained  
its broader application.

Emerging immunotherapeutic strategies for 
managing post-transplant viral infections: ad-
vances, mechanisms, and clinical challenges

Current clinical treatments for viral infections in 
solid organ transplant recipients are mainly 
non-immunotherapies, including antiviral drug 
therapy and chemotherapy. While these meth-
ods have demonstrated success, they also 
have limitations. In this respect, drugs like leflu-
nomide (LFM) and preemptive therapy (PET) 
are effective at suppressing CMV reactivation 
with favorable safety profiles [57]. However, 
clinically significant late-onset CMV viremia 
develops in at least 30% of high-risk transplant 
recipients following treatment cessation [58]. 
This recurrence may be attributed to the emer-
gence of CMV genetic mutations conferring 
resistance to LFM, underscoring the limitations 
of current antiviral strategies [59]. To address 
this, the management of other opportunistic 
viral infections in transplant recipients, includ-
ing BK viremia and PTLD, has increasingly 
incorporated novel immunotherapeutic appro- 
aches. These clinical challenges collectively 
highlight the urgent need for immunotherapies 
capable of simultaneously preventing viral 
escape and maintaining graft tolerance.

Recent advances in immunotherapeutic strate-
gies for viral infections have demonstrated 
promising clinical potential (Table 3). Current 
evidence suggests that active immunization, 
which includes treatments like cytokines [60] 
and vaccines [61], stimulates endogenous 
immune activation, resulting in both immediate 
antiviral effects and long-term immunological 
memory. In contrast, passive immunization pro-
vides immediate but transient protection. This 
approach bypasses the need for endogenous 
immune activation by administering pre-formed 
antiviral effectors such as neutralizing antibod-
ies or immune globulins. Examples of passive 
immunization include adoptive T cell therapy 
[62], NK cell therapy, and IVIG therapy [63]. 
While these interventions are well established 
for treating common viral infections, their effi-
cacy and safety in the context of post-trans-
plant viral infections remain to be fully 
elucidated.

Immunity-related therapeutic approaches have 
the potential to overcome certain limitations 
associated with antiviral drugs, including toxic-
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Table 3. Efficacy, safety, and limitations of current immunotherapies
Immunotherapy 
strategy Representative product Therapeutic effect Safety Limitations

Cytokine Therapy IFN-α [120] Control and eliminate 
of difficult-to-treat HEV 
infection

Risk of acute transplant 
rejection

High risk of rejection; 
Efficacy confirmed only in 
ribavirin-non-responsive 
patients

IFN-λ [121] Significantly reduces all 
markers of intrahepatic 
HDV infection

Based on animal models; no 
human safety data

Lack of clinical trial data in 
transplant recipients

Therapeutic vaccine High-dose influenza vac-
cine and MF59 adjuvant 
influenza vaccine [122]

Triggers a stronger antibody 
response

Higher incidence of reac-
tions compared to standard 
vaccine

No significant change in the 
incidence of influenza

Recombinant Zoster Vac-
cine [123]

81% effectiveness in pre-
venting herpes zoster

Frequent mild to moderate 
adverse reactions (e.g., 
pain, myalgia, fatigue)

A relatively high incidence of 
adverse reactions

CpG adjuvant hepatitis B 
vaccine [124]

Good protective effect 
before transplantation

No obvious adverse reac-
tions

Affected by the immunosup-
pressive state

Adoptive T Cell Therapy CMV-specific T cells [125] Significantly reduces the 
viral load and eliminate 
the virus

No adverse events occurred Highly individualized; Persis-
tent uncertainty

EBV-specific cytotoxic T 
cells [126]

High objective response 
rate; Long-lasting viro-
logical and immunological 
control

Rare, mild, localized acute 
graft-versus-host disease 
(GVHD)

High cost; slow to take 
effect

BK virus-specific T cells 
[96]

Clear viremia and stabilize 
the transplanted renal 
function

No adverse events occurred Non-response in 20% of 
patients; Lack of large-scale 
data

Immunoglobulin Infusion Cytomegalovirus Immune 
Globulin [127]

Low therapeutic effect; 
primarily for prevention

No obvious adverse reac-
tions

High cost; limited efficacy 
against established/active 
viral infection

ity, drug-drug interactions, and the risk of treat-
ment-emergent resistance. Among these im- 
munotherapies, CAR-T cell therapy, vaccine 
infusion, and NK cell therapy hold huge prom-
ise as they can further reduce the risk of viral 
drug resistance by specifically targeting multi-
ple antigenic epitopes.

The differences of CMV, EBV and BK viruses in 
immune responses

To better identify the most suitable immuno-
therapeutic approaches for different viral infec-
tions, it is essential first to understand the 
characteristics of the immune responses they 
elicit. CMV, a member of the betaherpesvirinae 
subfamily, is the most frequently encountered 
opportunistic pathogen, present in 20% to 60% 
of transplant recipients. Moreover, CMV is cell-
associated, primarily establishing latency in T 
lymphocytes, though it can also be found in 
polymorphonuclear cells, vascular endothelial 
tissue, and epithelial cells [64]. This cell-associ-
ated nature enables viral transmission via the 
transplanted organ. CMV can significantly influ-
ence host immune responses. After infecting a 
cell, CMV produces immediate-early antigens 

that regulate DNA synthesis. Within the follow-
ing 6 to 24 hours, the virus generates late anti-
gens that direct nucleocapsid protein produc-
tion. It also upregulates interleukin-2 (IL-2) and 
can counteract the inhibitory effect of cyclospo-
rine on IL-2 gene expression. Additionally, CMV 
downregulates MHC class I molecules on in- 
fected cells to evade immune recognition by 
the host [65].

EBV, a gammaherpesvirus with a double-str- 
anded DNA core, remains latent in lymphocytes 
after primary infection, similar to other herpes 
viruses. EBV can drive the replication and clon-
al expansion of B cells, which serve as its pri-
mary reservoir, as well as other cell types. 
However, an effective immune system, particu-
larly T-cell responses, normally restricts the 
proliferation of these cells. In cases of impaired 
T-cell function, such as in renal transplant 
recipients, this surveillance mechanism may 
fail, leading to PTLD [66].

BK virus, a polyomavirus with a circular double-
stranded DNA genome, was first described in a 
renal transplant patient with ureteral stenosis 
and is now recognized as a significant cause of 
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renal allograft dysfunction. The clinical course 
and treatment response in BK viral infection 
are largely influenced by the functional compe-
tence of virus-specific cellular immunity [67]. 
During early infection, when intragraft inflam-
mation remains low, BK virus-specific T cells 
play a protective role. At this stage, modifying 
or reducing immunosuppression can facilitate 
recovery of cell-mediated antiviral immunity. 
However, in patients with persistent viral repli-
cation due to inadequate T-cell responses, sus-
tained intragraft inflammation may develop. 
This inflammatory milieu can accelerate viral 
replication and promote infiltration of alloreac-
tive cytotoxic T cells, further amplifying tissue 
inflammation. In such cases, reducing immuno-
suppression may be not only ineffective but 
also potentially harmful to the allograft [68].

Interferons

Cytokines currently used in clinical treatment 
for viral infections are primarily IFNs. Based on 
sequence homology, IFNs are divided into three 
families (Type I, II, and III), which can activate 
interferon-stimulated genes (ISGs) through 
multiple pathways to exert their antiviral activi-
ty, antitumor activity, and various immunomod-
ulatory effects [60]. IFN-I plays a pivotal role in 
establishing cellular antiviral defenses by 
inducing uninfected cells to express antiviral 
proteins that effectively block viral entry, nucle-
ic acid replication, and protein synthesis. 
Furthermore, IFN-I potentiates the activity of 
antigen-presenting cells, thereby enhancing T 
cell-mediated viral recognition and elimination. 
In parallel, IFN-γ primarily secreted by activated 
T cells and NK cells - exerts its immunomodula-
tory effects through two key mechanisms: (1) 
augmenting the phagocytic and bactericidal 
capacity of macrophages and (2) orchestrating 
the functional regulation of diverse immune cell 
populations.

Moreover, IFN treatment may exacerbate post-
transplant immune responses, increasing the 
risk of rejection. For example, IFN-α may acti-
vate T cells and NK cells, leading to immune-
mediated damage to the transplanted organ 
[69]. In addition, interferon therapy has been 
associated with significant adverse effects, 
including flu-like symptoms, bone marrow sup-
pression, and the risk of triggering or aggravat-
ing autoimmune disorders, which substantially 

restrict its clinical use for treating viral infec-
tions in transplant recipients.

Viral vaccines

Vaccines represent a major tool for combating 
viral infections, including adenovirus vaccines, 
inactivated vaccines, and mRNA vaccines, etc. 
Indeed, selecting the optimal vaccine accord-
ing to the characteristics of different viruses 
can often achieve good prevention or treatment 
effects [70]. From an epidemiological stand-
point, vaccine technology for viral infections is 
well-established. By stimulating both antibody-
mediated and cell-mediated immune respons-
es, vaccines can induce long-lasting protection 
against viral attacks. In this respect, vaccines 
for Hepatitis B, yellow fever vaccines, and HPV 
have shown good preventive and therapeutic 
outcomes [71].

Although no vaccine is currently licensed for 
CMV prevention, several are being evaluated in 
clinical trials for their potential to prevent and 
treat CMV in solid organ transplant recipients. 
Several clinical studies have evaluated the 
recombinant glycoprotein B (gB) vaccine formu-
lated with Novartis MF59 adjuvant [72-74]. The 
results demonstrated that the gB/MF59 vac-
cine could significantly increase the gB anti-
body titers in both seronegative and seroposi-
tive patients, shorten the duration of viremia, 
and thus reduce the use of antiviral drugs. The 
antibodies induced by the gB/MF59 vaccine 
could bind to the virus in the donor organ, 
thereby preventing the transmission of CMV to 
the recipient [74]. The MVA vector CMV vaccine 
(Triplex) is a modified Ankara cowpox (MVA) vac-
cine that encodes three full-length CMV anti-
gens: pp65, IE1-exon4, and IE2-exon5 [75]. 
Research suggests that the antigen stimulation 
driven by the triple vaccine may enhance the 
recovery of the T cell compartment by increas-
ing the production of naive T cells in the thymus 
[76]. In addition, clinical trials are currently 
underway for other vaccines such as ASP0113 
[77] and PepVax [78]. As more vaccine strate-
gies are clinically tested, the goal is to develop 
vaccines that offer both preventive and thera-
peutic effects against CMV.

The envelope proteins of EBV, including gH/gL, 
gB, and gp350, play a key role in the entry and 
infection of target cells by EBV [79, 80]. The 
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body’s B cells produce neutralizing antibodies 
against these proteins, which can prevent EBV 
from infecting target cells and significantly 
reduce the virus’s titer in the peripheral blood 
of humanized mice [81]. Recent studies have 
shown that a combination of serum containing 
EBV gH/gL and EBV gB antibodies can signifi-
cantly enhance the synergistic neutralizing 
activity of EBV compared to either antibody 
alone [97]. Furthermore, clinical trials for thera-
peutic EBV vaccines are underway, primarily 
aiming to enhance preexisting antiviral adap-
tive immune responses or induce novel adap-
tive immunity in patients with EBV-associated 
malignancies [82]. These vaccines predomi-
nantly target EBNA1, LMP2, and/or LMP1, as 
these proteins regulate key factors driving nor-
mal cell transformation into tumor cells [83-
85]. Incorporation of EBV envelope proteins 
(gH/gL, gB, and gp350) may further enhance 
the efficacy of these therapeutic vaccines [86].

Furthermore, vaccine safety must be rigorously 
assessed based on key immune parameters, 
including: (1) Antibody-mediated responses: 
serum neutralizing antibody titers and antigen-
specific IgG levels; (2) Cellular immunity: magni-
tude and breadth of T-cell responses; (3) 
Durability of response: persistence of immune 
memory over time [75]. Live-attenuated and 
recombinant viral vector vaccines are generally 
contraindicated in transplant recipients due to 
the risk of disseminated infection or uncon-
trolled replication. Instead, safer vaccine plat-
forms like subunit, mRNA, or inactivated plat-
forms are preferred. An ideal vaccine for 
transplant recipients should combine a high 
safety profile with protection against primary 
infection and a therapeutic effect against pre-
existing or reactivated latent infection.

In summary, vaccines typically exert their ef 
fects by inducing immune responses against 
multiple pathogen targets, particularly through 
B cell-mediated humoral immunity [87]. How- 
ever, many immunosuppressants interfere-  
with B cell proliferation, such as glucocorti-
coids, mTOR inhibitors, and metabolic disrup-
tors, which may limit the efficacy of vaccines. 
Besides, immunocompromised populations re- 
quire heightened vaccine safety profiles. For 
instance, recombinant adenoviral vaccines and 
live-attenuated vaccines are contraindicated  
in organ transplant recipients. Vaccines that 
combine sufficient safety with dual therapeu- 

tic and prophylactic capabilities remain to be 
developed.

Adoptive T cell therapy

Adoptive T cell therapy involves obtaining T 
cells from patients or healthy donors, culturing 
and modifying them in vitro to enhance their 
targeting and killing abilities, and reinfusing 
them back into the patient to control infection 
and rebuild immune responses. Modalities that 
directly target immune deficits, the underlying 
cause of CMV infections in transplantation, are 
promising tools for CMV prevention and treat-
ment. Currently, CMV-specific T cell transfer 
has been widely studied and applied in hemato-
poietic stem cell transplantation (HSCT) pa- 
tients [88], which can rebuild protective antivi-
ral immunity and treat refractory CMV infection. 
In contrast, there is less research on solid 
organ transplant recipients, and patients are 
more likely to be treated with drug therapy first. 
However, accumulating evidence demonstrates 
that CMV-specific T cells confer protective 
immunity against infection, thereby enhancing 
post-transplant clinical outcomes [89]. Clinical 
results have demonstrated the efficacy of 
adoptive T cell therapy in controlling CMV infec-
tion while maintaining an excellent safety pro-
file, with no significant treatment-related com-
plications reported [90], indicating that patients 
have achieved stable immune reconstruction. 
Adoptive transfer of autologous, donor, or third-
party virus-specific T cells (VSTs) represents an 
attractive concept for preventing and treating 
CMV infections in transplant recipients [91]. 
Several VST products have been used in non-
randomized clinical trials for prevention and 
treatment of CMV infections in solid organ 
transplant recipients (SOTr) and hematopoietic 
cell transplant recipients (HCTr), and numerous 
VST products are under active investigation 
[92].

However, T cell therapy still faces difficulties 
and challenges. First, the immunosuppressive 
drugs that transplant recipients must take to 
prevent rejection may affect the overall efficacy 
of T cells [93]. The second major concern is the 
uncertainty of T cell durability in the recipient’s 
body. The duration of T cells varies significantly 
among different patients, leading to uncertain-
ty in their efficacy. The precise mechanisms 
governing this variability remain to be elucidat-
ed [94].
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Similar to CMV, virus-specific T cell therapies 
have shown success in treating infections from 
other viruses, including EB virus [95], and BK 
virus [96]. Importantly, adoptive T cell therapy 
demonstrates significant potential for treating 
post-transplant viral infections. However, criti-
cal challenges remain regarding how to main-
tain T cell functionality and prolong survival in 
immunosuppressed environments. Further re- 
search is imperative to optimize these cellular 
therapies for clinical application.

Natural killer (NK) cell-based therapies

NK cells constitute 5-10% of circulating lym-
phocytes and mediate immune responses 
against cancerous and virally infected cells. 
Beyond conventional T-cell-mediated immunity, 
NK cells play a pivotal role in controlling viral 
infections in solid organ transplant (SOT) recipi-
ents via their innate cytotoxicity and cytokine 
production [97]. Previous studies on severe 
combined immune-deficient (SCID) or Rag-/- 
mice suggest that NK cells likely do not signifi-
cantly contribute to the rejection of solid organ 
transplants. Despite the presence of function-
ally competent NK cells, these T cell- and B cell-
deficient mice failed to mount a rejection re- 
sponse against skin allografts, suggesting that 
immunotherapeutic strategies leveraging NK 
cell activity could potentially offer an enhanced 
safety profile for controlling viral reactivation in 
the post-transplant setting [98]. Furthermore, 
current immunosuppressive regimens exhibit 
limited targeting of NK cell function. Among 
available agents, only glucocorticoids, mTORi, 
select metabolic inhibitors, and CNIs modulate 
NK cell activity, primarily through downregula-
tion of CD16 expression and consequent 
impairment of ADCC. Current research indi-
cates a potential involvement of activated NK 
cells in acute and chronic rejection of solid 
organ transplants [99]. The functional activity 
of NK cells is governed by a delicate balance of 
signals derived from numerous activating and 
inhibitory receptors. For instance, the efficacy 
of NK cells is significantly influenced by the 
interaction between killer immunoglobulin-like 
receptors (KIRs) and human leukocyte antigen 
(HLA) class I molecules [100]. KIR-HLA mis-
matching, particularly the absence of HLA 
ligands for inhibitory KIRs, enhances NK cell 
activation and antiviral activity. Studies in both 
animals and humans suggest that NK cells are 
critical in the host defense against EBV. In vitro 

studies have shown that autologous NK cells 
can kill EBV-infected B cells [101]. The adoptive 
transfer of allogeneic NK cells from KIR-mis- 
matched donors may offer a potential thera-
peutic benefit for controlling EBV reactivation in 
transplant recipients, though its efficacy and 
safety require further validation in clinical 
studies.

Furthermore, cytokine-induced memory-like 
(CIML) NK cells, preactivated with IL-12, IL-15, 
and IL-18, exhibit enhanced antiviral responses 
and persistence upon reinfection [102]. CMV 
infection reshapes the NK cell receptor land-
scape, driving the expansion and long-term 
maintenance of memory-like NKG2C+KIR+ NK 
cells [103]. A recent cohort study indicated  
that KIR genes can affect CMV infection and 
provide potential clinical value following liver 
transplantation [104]. These advances high-
light NK cell therapy as a strategy to bridge the 
gap between immunosuppression and antiviral 
defense, offering a graft-friendly alternative by 
leveraging innate immunity without exacerbat-
ing alloreactivity.

Immunoglobulin infusion

In the management of post-transplant viral 
infections, combination therapy with immuno-
globulins and antiviral drugs often demon-
strates superior prophylactic and therapeutic 
efficacy. For instance, CMV immunoglobulin 
(CMVIG) neutralizes viral particles before they 
reach host cells, while antiviral drugs inhibit 
viral DNA polymerase to block intracellular rep-
lication. High-dose immunoglobulins derived 
from healthy donors exhibit an excellent safety 
profile. Studies have shown that CMVIG mono-
therapy or combination regimens significantly 
reduce mortality and graft loss in heart/lung 
transplant recipients [105]. However, due to 
limited data, this therapy is primarily used for 
prevention or as an adjunctive treatment. The 
American Transplant Society guidelines do not 
recommend CMVIG for prophylaxis in kidney/
liver transplants. Further clinical trials are 
needed to establish its therapeutic value [106].

Conclusion and future perspectives

The feasibility of organ transplantation was first 
established through surgical advances [1]. The 
subsequent development of immunomodulato-
ry drugs targeting both innate and adaptive 
immune responses has significantly improved 
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the success of non-HLA-identical solid organ 
transplantation and the management of auto-
immune diseases, effectively addressing the 
historical limitations imposed by the absence 
of effective anti-rejection therapies [2].

Various types of immunosuppressants regu- 
late autoimmunity by acting at different levels 
of the immune response, including the innate 
immune level, where DCs, macrophages, and 
NK cells play a role, and the adaptive immune 
level, where T cells and B cells are involved. 
CNIs primarily inhibit their activity by binding to 
calmodulin, preventing the transcription of pro-
inflammatory cytokines such as interleukins, 
thereby inhibiting T cell activation [107]. An 
increasing body of evidence suggests that 
mTORi prevent the proliferation and differentia-
tion of immune cells such as T cells, B cells, 
and NK cells by blocking the cell cycle from the 
G1 phase to the S phase [15-17]. Costimulation 
inhibitors have a high affinity for B7-1 on anti-
gen-presenting cells, leading to a reduced T cell 
response to specific antigens [20]. IL-2 receptor 
antagonists mainly act by blocking T cell clone 
expansion dependent on IL-2 [108]. GCs act on 
the glucocorticoid receptor, affecting various 
levels of immune response through genomic 
and non-genomic mechanisms [25]. Metabo- 
lite-disrupting drugs exert immunosuppressive 
effects by hindering DNA synthesis, interfering 
with the differentiation of CD4+ T lymphocytes 
and the development of B lymphocytes [35]. 
Moreover, lymphocyte-depleting antibody drugs 
primarily exert immunosuppressive effects by 
causing severe depletion of T and B lympho-
cytes, NK cells, dendritic cells, and monocytes 
[45].

While immunosuppressive therapy has made 
organ transplantation the standard treatment 
for end-stage organ failure, it comes with sub-
stantial adverse effects. The primary concern 
is a significantly increased risk of opportunistic 
viral infections. In solid organ transplant recipi-
ents, the most clinically significant viruses 
include CMV, EBV, and BK virus, which collec-
tively contribute to a considerable burden of 
post-transplant morbidity. Although the rate of 
viral infections after solid organ transplantation 
varies across different countries and regions, 
CMV [3, 4, 109] and EBV generally have a high-
er infection rate [110-113].

In this context, the prevention and treatment of 
viral infections after organ transplantation are 

crucial. The current clinical treatments for viral 
infections after solid organ transplantation 
mainly include antiviral drug therapy and che-
motherapy, which are non-immunological ap- 
proaches. For CMV, which has a high infection 
rate in clinical practice, GCV [48] and its oral 
prodrug VGCV [50] are currently used as first-
line therapies for prevention and treatment. 
Maribavir has also shown promising results in 
the treatment of resistant/refractory CMV 
infection [52]. LMV and PET have demonstrat-
ed effective suppression of CMV reactivation 
with a favorable safety profile [57]. However, 
these pharmacological treatments still present 
notable limitations. Following drug discontinua-
tion, there remains a significant risk of late-
onset CMV viremia. These clinical challenges 
underscore the urgent need for immunothera-
peutic strategies that can concurrently prevent 
viral escape and sustain graft tolerance.

The past few years have witnessed burgeon- 
ing interest in developing immunological thera-
pies for viral infections, such as interferons 
[60] and vaccines [61] that exert antiviral 
effects through active immunization path- 
ways, and adoptive T cell therapy [62] and IVIG 
therapy [63] that directly kill viruses. Among 
them, clinical trials of vaccines and research on 
adoptive T cell therapy are areas of consider-
able interest. Vaccines often induce immune 
responses against multiple targets of patho-
gens, especially humoral immunity, where B 
cells play a major role [87]. However, the use of 
many immunosuppressants affects B cell pro-
liferation, such as glucocorticoids, mTORi, and 
metabolite-disrupting drugs, which may limit 
the effectiveness of vaccines. In addition, indi-
viduals with compromised immunity have high 
demands for vaccine safety. Despite its thera-
peutic potential, adoptive T cell therapy con-
fronts several critical challenges. First of all, 
the overall efficacy of T cells is also affected by 
immunosuppressants [93]. Moreover, the dura-
bility of T cells in the recipient’s body varies 
from person to person [94]. Indeed, further 
research is warranted to overcome immuno-
suppressive barriers to ensure durable T cell 
persistence and functional competence.

In summary, while viral infections following 
organ transplantation have garnered signifi-
cant attention, current clinical treatment meth-
ods still exhibit certain limitations. Emerging 
immunotherapeutic strategies show significant 
promise for improving long-term outcomes in 
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transplant recipients. Notably, the develop-
ment of dual-purpose vaccine platforms that 
confer concurrent therapeutic and prophylactic 
efficacy while maintaining rigorous safety pro-
files represents a critical research priority. 
Equally critical are advancements in adoptive T 
cell therapies capable of retaining functional 
efficacy within immunosuppressive microenvi-
ronments and achieving prolonged persistence 
through optimized cellular kinetics in clinical 
settings, thereby maximizing their therapeutic 
potential while optimizing treatment durability. 
Furthermore, current immunosuppressive regi-
mens exhibit limited targeting of NK cell func-
tion, primarily through downregulation of CD16 
expression and consequent impairment of 
ADCC. Notably, NK cells play a critical role in 
innate immunity by recognizing and eliminating 
infected cells exhibiting MHC class I downregu-
lation, a process enhanced by cytokines such 
as IFN-γ [114]. These unique immunological 
properties suggest that adoptive NK cell thera-
py may represent a promising novel approach 
for managing post-transplant viral infections.
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