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Abstract: Background: Inflammatory bowel disease (IBD) is a chronic inflammatory disease characterized by in-
testinal dysfunction. Ferroptosis is a critical pathogenic mechanism in IBD. However, the therapeutic targets for
ferroptosis-related IBD progression remain unclear. Therefore, this study aimed to identify potential therapeutic
targets associated with ferroptosis in IBD. Methods: Single-cell RNA sequencing data (GSE134809) were analyzed
using gene set scoring, cell-cell communication, pseudotime analysis, and high-dimensional gene co-expression
network analysis (hdWGCNA) to screen for ferroptosis-related targets. In vitro experiments, including RT-qPCR, west-
ern blotting, flow cytometry, and ELISA, were performed to verify the regulatory role of annexin A2 (ANXA2) in ferrop-
tosis and inflammation using its silencing or overexpression. For in vivo validation, a dextran sulfate sodium (DSS)-
induced IBD mouse model was established. Immunofluorescence (IF) staining was then performed to examine
ANXA2 expression and its co-localization with collagen type | alpha 2 chain (COL1A2) and 4-hydroxynonenal (4-HNE)
in colon tissues. Results: Bioinformatic analysis of 28,974 cells identified that fibroblasts, particularly the Fibro_2
subpopulation, were highly associated with ferroptosis, with ANXA2 identified as a core target. In vitro, ANXA2 silenc-
ing significantly inhibited ferroptosis, oxidative stress, and inflammatory factors interleukin-6 (IL.-6) and C-X-C Motif
Chemokine Ligand 8 (CXCL8), whereas ANXA2 overexpression demonstrated the opposite effects. In vivo, ANXA2
was significantly up-regulated in the colon tissues of IBD mice, showing strong co-localization with the fibroblast
marker COL1A2 and the ferroptosis marker 4-HNE. Conclusion: ANXA2 is highly expressed in fibroblasts and is as-
sociated with the ferroptosis of IBD, providing a novel therapeutic target for treatment of 1BD.
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Introduction affecting millions of people in the world [3].
Although the exact etiology of IBD remains
unknown, increasing evidence suggests that
individual genetic susceptibility, intestinal mic-
robiota, immune response, and environmental

factors are all involved in the pathogenesis of

Inflammatory bowel disease (IBD) is a chronic
inflammatory gastrointestinal disease that seri-
ously affects human health. It primarily includes
ulcerative colitis and Crohn’s disease, which

are autoimmune diseases [1]. Clinically, 1BD
patients usually present with vomiting, abdomi-
nal pain, diarrhea, and bloody stool; and in
severe cases, intestinal perforation, intestinal
obstruction, and carcinogenesis may occur [2].
In recent years, the morbidity of IBD has been
increasing. It is listed as a modern refractory
disease by the World Health Organization,

IBD [4]. Currently, aminosalicylic acid, thiopu-
rines, corticosteroids, biological agents, and
immunosuppressants are primarily used for the
clinical treatment of IBD [5]. While these treat-
ments are effective in inducing remission in
patients with mild disease, their efficacy in
severe IBD is limited, and their long-term use is
frequently associated with adverse reactions,
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including anorexia and osteoporosis [6, 7].
Therefore, identifying novel therapeutic targets
for IBD remains an urgent clinical need.

Annexin A2 (ANXA2), a type of calcium-depen-
dent protein that specifically binds to phospho-
lipids, mainly expresses on the surface of endo-
thelial cells and tumor cells. It participates in
membrane related events, such as membrane
aggregation, fusion, and formation to regulate
multiple cellular functions, including cell prolif-
eration, apoptosis, invasion and migration [8,
9]. A previous study demonstrated that ANXA2
regulates the intestinal cytoskeleton and
affects tight junctions between intestinal cells
by binding to F-actin in intestinal cells [10].
Moreover, ANXA2 was reported to be upregu-
lated in migrated intestinal mucosal epithelial
cells and to promote intestinal epithelial wound
closure by modulating the small GTPase RhoA
[11]. In addition, the depletion of ANXA2 was
proven to improve intestinal inflammation by
inhibiting the cleavage of TNF-a and induce
cell proliferation and mucosal repair by promot-
ing the cleavage of AREG and HB-EGF [12].
Although these studies had suggested a role of
ANXA2 in intestinal homeostasis, its specific
functions and related mechanisms of ANXA2 in
IBD remain largely unclear.

Ferroptosis, a novel cell death form that is dis-
tinct from apoptosis and necrosis, is character-
ized by iron dependence and lipid peroxidation
[13]. Previous research suggested that IBD
could cause iron deficiency anemia due to mal-
absorption, and oral administration of iron has
been used clinically to treat IBD-induced iron
deficiency anemia [14]. However, intestinal iron
overload can generates excessive reactive oxy-
gen species (ROS) through the Fenton reaction
that disrupt the gut microbiota [15]. The sus-
tained oxidative stress state induces lipid per-
oxidation and stimulates secretion of inflam-
matory cytokines, further disrupting intestinal
mucosal homeostasis and exacerbating inflam-
matory response in IBD [16]. Recently, numer-
ous studies have demonstrated that iron chela-
tors can promote the growth of beneficial gut
microbiota, thereby protecting the intestinal
mucosa and alleviating chronic intestinal
inflammation [17, 18]. In addition, computation-
al analyses have identified ANXA2 as a ferrop-
tosis-related gene and a possible diagnostic
biomarker for non-alcoholic fatty liver disease
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[19]. Meanwhile, experimental results further
indicated the positive relationship between
ANXA2 and ferroptosis in severe acute pancre-
atitis [20]. However, it is still unclear whether
ANXAZ2 is associated with ferroptosis in IBD.

Based on the above background, this study
employed single-cell transcriptomics to deter-
mine whether ANXA2 is a ferroptosis-related
gene in IBD, and further investigated whether
ANXA2 is highly expressed in the fibroblasts
and predominantly associated with ferroptosis
in IBD in vivo, thereby providing a novel target
for the clinical treatment of IBD.

Materials and methods

Acquisition and processing of single-cell RNA
sequencing (scRNA-seq) data

The scRNA-seq data, GSE134809, were down-
loaded from the National Genome Sequen-
ce Archive (https://ngdc.cncb.ac.cn/gsa/). The
dataset includes samples from both lesional
and non-lesional sites of 11 IBD patients. Af-
ter being processed by the Seurat software
package (v.4.3.0), the percentage of mitochon-
dria and rRNA were calculated using the
PercentageEigenSet function. Cells with fewer
than 200 or more than 6000 detected genes,
cells with mitochondrial gene expression
exceeding 30%, and cells with fewer than
200 unique molecular identifiers (UMIs) were
excluded, leaving a total of 28974 cells retained
for subsequent analyses.

Annotation of scRNA-seq data

After standardization and normalization, princi-
pal component analysis (PCA) was used for
dimensionality reduction of scRNA-seq data.
Subsequently, the FindAlIMarkers function in
the Seurat software package was used to
identify marker genes for each cell subpopula-
tion. Finally, cell subpopulations were annotat-
ed to reveal their functional differences and
development process using SingleR tool. The
processed scRNA-seq data were mapped in-
to a two-dimensional space to visually display
the similarities and differences between cells
by using the t-distributed stochastic neigh-
bor embedding (t-SNE) algorithm. The highly
expressed genes of each cell subpopulation
were displayed in the form of bubble chart.
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Gene set scoring

According to previous studies, the AUCell, sin-
gle-sample gene set enrichment analysis (ssG-
SEA), UCell, AddModuleScore, singscore were
performed based on single-cell gene expres-
sion ranking and the FerrDB database to score
the ferroptosis-related gene set in this study
[21-24]. After scoring, Student’s t-test was used
to analyze the significance of the ferroptosis-
related gene set scores among different cell
subpopulations between lesional and non-
lesional sites in IBD patients.

Cell-cell communication analysis

According to the scoring results mentioned
above, the cell subpopulations of the lesional
site of IBD patients were further divided into
two groups to explore the cell-cell communica-
tion, including the aggre_low and aggre_high
groups, which respectively represented the
cell subpopulation with low- and high-score of
the ferroptosis-related gene set. After that,
the CellChat R package was used to analyze
the cell-cell communication based on the
expression levels of ligands and receptors
across different cell subpopulations. In short,
after the “identifyOverExpressedGenes” and
“identifyOverExpressedinteractions” functions
were adopted to find highly expressed genes
and pathways, the “computeCommonProb”
function was used to calculate the number and
strength of intercellular communication. The
“netAnalysis_signalingRole” function was ado-
pted to identify the sender (expression ligand)
and receiver (expression receptor) in cell com-
munication.

GESA enrichment analysis

According to the cell-cell communication
results, fibroblasts were further selected for
subsequent studies. In this study, gene set
enrichment analysis (GSEA) was used to inves-
tigate the molecular mechanism associated
with core genes in fibroblasts. In brief, after
setting the permutation frequency to 1000
and the permutation type to phenotype, the
ClusterProfiler tool was used for GESA based
on gene sets from the Molecular Signatures
Database (MSigDB).

Pseudotime analysis

The “Monocle2” package was used for pseudo-
time analysis of fibroblasts. In short, after
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extracting the expression matrix, gene informa-
tion, and cell phenotype of fibroblasts, genes
expressed in fewer than 10 cells were removed,
and the top 1000 differentially expressed
genes (DEGs) were then selected to construct
the cell trajectory. Finally, the “DDRTree” algo-
rithm was used for the dimensionality reduc-
tion of data.

High dimensional gene co-expression network
analysis (hdWGCNA)

The “hdWGCNA” R package was used to con-
struct gene co-expression networks, identify
gene modules highly correlated with fibro-
blasts, and calculate the eigengene-based con-
nectivity of modules. Finally, the ModuleFea-
turePlot function was used to visualize each co-
expression module.

Animals, animal experiment protocol, and es-
tablishing an IBD model

C57BL/6 male mice (n = 6, 7-week-old, 19-23
g) were purchased from Sinostem Biotechno-
logy Co., Ltd. and acclimated for two weeks
under standard conditions with ad libitum
access to food and water and a 12 h light-dark
cycle. All mice were randomly divided into
two groups: the control and the IBD groups.
Mice in the control group were conventionally
fed, and the IBD model was established in
mice of the IBD group. The IBD model of mi-
ce was established according to a previous
study [25]. In short, mice received 1.5% dex-
tran sulfate sodium salt (DSS, Lot., HY-116282,
MedChemExpress, New Jersey, USA) dissolved
in drinking water for one week and subsequent-
ly received normal drinking water for one week.
IBD model was established after four cycles of
DSS administration and normal water allow-
ance. After the last cycle, the mice were eutha-
nized by an intraperitoneal injection of an over-
dose of pentobarbital sodium (200 mg/kg).
Death was confirmed by respiration and heart-
beat cessation, as well as the absence of cor-
neal reflex. Subsequently, the colon tissue was
collected for subsequent studies. All animal
experimental operations were approved by the
Institutional Animal Care and Use Committee of
Yi Shengyuan Gene Technology (Tianjin) Co.,
Ltd. (protocol number YSY-DWLL-2025732).

Immunofluorescence (IF) staining

IF staining was performed to determine ANXA2
expression and to evaluate its co-localization

Am J Transl Res 2026;18(1):91-111



ANXA?2 is a target for the ferroptosis in inflammatory bowel disease

Table 1. Primer sequence for RT-gPCR

Gene Primer  Sequence (5'—¢€’)

B-actin  Forward CACCATTGGCAATGAGCGGTTC
Reverse AGGTCTTTGCGGATGTCCACGT

ANXA2  Forward CCTCTTCACTCCAGCGTCATAG
Reverse TCGGACACATCTGGTGACTTCC

with fibroblasts, and ferroptosis-related mark-
ers in the colon tissue. The dissected colon tis-
sues were fixed in 4% paraformaldehyde and
embedded in paraffin. After deparaffinization,
the tissues were sectioned into 2 pm-thick slic-
es. All sections were subjected to antigen
retrieval in EDTA buffer, incubated with 3%
hydrogen peroxide solution for 25 minutes in
the dark to block endogenous peroxidase activ-
ity, and then blocked with BSA for 30 minutes
to reduce nonspecific binding. To determine
ANXA2 expression and its co-localization with
fibroblasts and ferroptosis-related markers in
colon tissues, immunofluorescence staining
was performed. Briefly, sections were incubat-
ed overnight at 4°C with an anti-ANXA2 anti-
body (1:200, Lot., ab189473), followed by incu-
bation with a Cy3-labelled fluorescent second-
ary antibody for 50 minutes at room tempera-
ture. Tyramide signal amplification (TSA) was
then applied for 10 minutes in the dark at room
temperature, after which sections were sub-
jected to a second round of antigen retrieval
using EDTA buffer. After that, all sections were
respectively incubated overnight at 4°C with
collagen type | alpha 2 chain (COL1A2, 1:200,
Lot., ab308455) and 4-hydroxynonenal (4-HNE,
1:300, Lot., ab48506) antibodies, followed by
incubation with FITC-labeled fluorescent sec-
ondary antibody for 50 minutes at room tem-
perature. All used antibodies were purchased
from Abcam (Cambridge, UK). Finally, nuclei
were counterstained with DAPI staining solu-
tion for 10 minutes in the dark at room tem-
perature, followed by treatment with fluores-
cence quencher liquid B for 5 minutes. The co-
localizations were observed and recorded using
a fluorescence microscope.

Cell culture and transfection

The human normal colon fibroblast cell line
(CCD-18Co) was purchased from Hefei Wanwu
Biotechnology Co., Ltd. to validate the regula-
tory role of ANXA2 in ferroptosis. The cells were
cultured in CCD-18Co Cell Complete Medium
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(Wanwu, Delf-27045). All cells were maintained
at 37°Cin a humidified incubator containing 5%
CO,. For transfection assays, the ANXA2 over-
expression plasmid (oe-ANXA2), small inter-
fering RNA targeting ANXA2 (si-ANXA2), and
their respective negative controls (NC-ANXA2)
were synthesized by GenePharma (Shanghai,
China). After reaching a confluency at approxi-
mately 70-80%, CCD-18Co cells were transfect-
ed with above vectors using Lipofectamine
3000 (Invitrogen, USA).

RT-gPCR

To evaluate the expression of ANXA2, total
RNA was extracted from the cells using Trizol
reagent (Invitrogen, 15596026). Subsequently,
reverse transcription was performed to synthe-
size ¢cDNA using the PrimeScript™ RT Master
Mix (Takara, RRO36A). RT-gPCR was then con-
ducted utilizing the TB Green® Premix Ex Tag™ I|
(Takara, RR820A) on a real-time PCR system.
The specific primer sequences used in this
study are listed in Table 1.

Western blot

Total protein was extracted from CCD-18Co
cells using RIPA lysis buffer (Solarbio, RO010)
and quantified with a BCA Protein Assay Kit
(Thermo Fisher Scientific, 3225). Proteins were
separated by 10-12% SDS-PAGE and trans-
ferred onto PVDF (Millipore, ISEQO0010). After
blocking, the membranes were incubated
overnight at 4°C with primary antibodies
against ANXA2 (Abcam, ab189473), GPX4
(Abcam, ab125066), FTH1 (Abcam, ab183781),
4-HNE (Abcam, ab48506), and B-actin (Abcam,
ab8227). Subsequently, the membranes were
incubated with HRP-conjugated secondary
antibodies (Abcam, ab6721) for 1 h. Protein
bands were visualized using an ECL substrate
(Thermo Fisher Scientific, 32106) and analyzed
by ImageJ software.

Detection of lipid peroxidation

Lipid peroxidation, an indicator of ferrop-
tosis, was determined using the C11-BODIPY
581/591 probe (Invitrogen, D3861). Trans-
fected cells were incubated with 10 uM C11-
BODIPY 581/591 probe for 30 min at 37°C,
washed with PBS, and analyzed by flow cytom-
etry (BD Biosciences). The extent of lipid peroxi-
dation was quantified by measuring the mean
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fluorescence intensity (MFI) of the oxidized
probe.

ELISA and biochemical assays

To evaluate the regulation of ANXA2 on in-
flammatory cytokines and oxidative stress
markers, commercial kits were used. Cell cul-
ture supernatants were collected to detect IL-6
(Elabscience, EH2IL6) and CXCL8 (Invitrogen,
88-8086-88) using ELISA kits. For oxidative
stress assessment, cells were lysed using
ultrasonication, and the levels of MDA and GSH
were determined using biochemical assay kits
(Nanjing lJiancheng Bioengineering Institute,
A003-1-2; A005-1-2). The optical density (OD)
values were measured using a microplate
reader.

Statistical analysis

All data were obtained from at least three
independent experiments and expressed as
mean + standard deviation. Statistical analy-
ses were determined using Student’s t-test
with GraphPad Prism 8.0.2 (La Jolla, California,
USA). A p-value < 0.05 was considered sig-
nificant.

Results

Annotation of cell subpopulation and ferropto-
sis-related gene scoring

To explain transcriptome changes in different
cell subpopulations of IBD, the GSE134809
dataset, containing the lesion and non-lesion
sites in 11 IBD patients, was used in this study.
After screening out 28974 cells using the
“Seurat” package, PCA was then performed for
dimensionality reduction, resulting in the iden-
tification of 25 distinct cell clusters (Figure 1A).
Subsequently, based on the marker gene, all
cell clusters were further annotated into 10 dif-
ferent cell subpopulations, including plasma B
cells (marker genes: CD79A, CD37, CD19,
CD79B, and MS4A1), dendritic cells (DC, mark-
er genes: CD209), fibroblasts (marker genes:
FGF7, MME, ACTA2, COL1A1, and COL3A1),
endothelial cells (marker genes: PECAM1 and
VWF), mast cells (marker genes: KIT and CPA3),
monocytes (marker genes: CST3, LYZ, CDGS,
CD163, and CD14), T cells (marker genes:
CD3D, CD3E, and CCR®), epithelial cells (mark-
er genes: EPCAM, CDH1, CLDN4, KRT18, and
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KRT19), neutrophils (marker genes: CXCLS,
NAMPT, and S100A8), and Paneth cells (marker
genes: MMP7 and DEFAG) (Figure 1B and 1D).
Meanwhile, comparison of cell subpopulations
between the lesional and non-lesional sites
revealed marked alterations in immune cell
composition at the lesional sites, characterized
by an increased proportion of monocytes and a
decreased proportion of dendritic cells, which
is associated with the inflammatory pathology
of IBD (Figure 1C and 1E). Next, a total of 264
ferroptosis-related genes were identified from
the FerrDB database, and ferroptosis activity
was evaluated using AUCell, UCell, singscore,
ssGSEA, and AddModuleScore algorithms. As
illustrated in Figure 1F, the AUCell, UCell, sing-
score, ssGSEA, and AddModuleScore scoring
and the total scoring were higher in the lesion
(the I group) than those in the non-lesional site
(the C group), indicating upregulated expres-
sion of ferroptosis-related genes in the IBD
lesions. Furthermore, analysis of the ferropto-
sis-related gene scores across cell subpopula-
tions demonstrated that plasma B cells, DC,
fibroblasts, monocytes, T cells, epithelial cells,
neutrophils, Paneth cells in the lesional site
(the | group) exhibited higher ferroptosis-relat-
ed scores than that in the non-lesional site (the
C group) (Figure 1G and 1H).

Cell-cell communication

To investigate further which cell subpopu-
lation plays an essential role in the ferroptosis
of IBD, the cells from lesional sites were strati-
fied into two groups, namely, the aggre_low
(with low ferroptosis-related gene score) and
aggre_high groups (with high ferroptosis-relat-
ed gene score). Cell-cell communication analy-
sis was performed. As presented in Figure 2A,
fibroblasts and Paneth cells displayed a larger
interaction number and stronger interaction
strength, indicating that these two kinds of
cells played an essential role in the ferroptosis
of IBD. In addition, further analysis found that
the communication strength of 37 signaling
pathways was significantly increased in the
aggre_high group (marked in red) and the com-
munication strength of 5 signaling pathways
was significantly increased in the aggre_low
group (marked in blue) (Figure 2B). Meanwhile,
the comparison of incoming and outgoing
interaction strength of different cell subpopula-
tions in the aggre_low and aggre_high groups
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Figure 1. Annotation of different cell subpopulations and scoring of ferroptosis-related genes. A. Identification of 25
cell clusters by the t-SNE algorithm. B. Detailed annotation of different cell clusters. C. Distribution of cell clusters
between the lesion (I group) and non-lesional sites (C group). D. Bubble diagram of marker genes of different cell
clusters. E. Stacked histogram of the proportions of different cell types in the lesion (I group) and non-lesional sites
(C group). F. AUCell, ssGSEA, UCell, AddModuleScore, and singscore scoring results comparing the lesional (I group)
and non- lesional sites (C group). G. Ferroptosis-related gene scores across different cell subpopulations. H. Violin
plots of ferroptosis-related gene scores across different cell subpopulations between the lesional (I group) and non-

lesional sites (C group).
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each cell subpopulations. B. Bar chart of the differences in enriched signaling pathways between the aggre_low
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and aggre_high groups. C. Bubble chart of the incoming and outgoing interaction strength in the aggre_low and
aggre_high groups. D. Scatter plot of increased ligand-receptor pairs among different cell subpopulations in the

aggre_high group.

showed that fibroblasts possessed the stron-
gest outgoing interaction strength in the
aggre_low and aggre_high groups (Figure 2C).
Finally, ligand-receptor interactions that in-
creased among different cell subpopulations in
the aggre_high group were analyzed. It was
found that the APP-CD74 pair accounted for a
large proportion of upregulated ligand-receptor
interactions, and was predominantly associat-
ed with fibroblasts-epithelial cells, fibroblasts-
neutrophils, Paneth cells-epithelial cells, and
Paneth cells-neutrophils interactions (Figure
2D).

GSEA of fibroblasts

As the above results demonstrated that fibro-
blasts exhibited a larger interaction number,
stronger interaction strength, and the largest
outgoing interaction strength, fibroblast sub-
populations in the lesion and non-lesion sites
were further isolated for subsequent studies.
After dimensionality reduction with PCA, fibro-
blast subpopulations in the lesional and non-
lesional sites were further divided into seven
cell subpopulations (Figure 3A). Comparison of
fibroblast subpopulation proportions between
lesional and non-lesional sites found that, com-
pared to the non-lesional site (the C group), the
proportions of Fibro_0O, 1, 3, and 4 were
reduced, while the proportions of Fibro_2 and
6 were elevated in the lesional site (the | group)
(Figure 3B). The most significant change was
observed in the proportion of Fibro_2, and
therefore Fibro_2 cells were further compared
between the lesional and non-lesional sites,
with particular attention paid to the enrichment
of associated pathways. The GSEA of the seven
cell subpopulations in the lesion was per-
formed. As illustrated in Figure 3C, different
cell subpopulations were enriched in multiple
pathways. The DEGs of the Fibro_2 cell sub-
population mainly included CCL11, ACTG2,
MYLG, ACTA2, MYLK, IGFBP5, PDGFRRA, MT2A,
COL1A1, CXCL8, CTHRC1, CTSK, CHI3L1, and
SOD2. These DEGs of the Fibro_2 cell subpopu-
lation were enriched in multiple pathways,
including the “eosinophil chemotaxis”, “humor-
al immune response”, “eosinophil migration”,
“complement activation”, “lymphocyte chemo-
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taxis”, “muscle contraction”, “muscle system
process”, “actin-mediated cell contraction”,
“wound healing”, “cellular component assem-
bly involved inmorphogenesis”, “platelet-deri-
ved growth factor receptor signaling pathway”,
“muscle cell differentiation”, “glomerulus devel-
opment”, “regulation of blood coagulation”,

“regulation of hemostasis”, “response to cop-

”

per ion”, “cellular response to zinc ion”,

” o u

“response to metal ion”, “cellular response to
copper ion”, “response to zinc ion”, “regulation
of angiogenesis”, “regulation of vasculature
development”, “regulation of inflammatory
response”, “leukocyte chemotaxis”, “myeloid
leukocyte migration”, “collagen metabolic pro-
cess”, “collagen catabolic process”, “cellular
response to UV-A”, and “extracellular matrix
organization” pathways. In addition, the GSEA
of the Fibro_2 cell subpopulation between
the lesional and non-lesional sites was per-
formed again. As presented in Figure 3D and
3E, compared to the non-lesional site, the top
three up-regulated pathways of Fibro_2 cell
subpopulation in the lesion were “response to
cytokine”, “response to abiotic stimulus”, and
“anatomical structure morphogenesis” path-
ways, and the top three down-regulated path-
ways were “stem cell differentiation”, “oxidative
phosphorylation”, and “aerobic respiration”

pathways.
Pseudotime analysis of fibroblasts

As the above results demonstrated that the
fibroblast subpopulations played an essential
role in the ferroptosis of IBD, the differentiation
capacity of fibroblasts was further analyzed.
CytoTRACE was first used to predict the
differentiation capacity of fibroblast subpopula-
tions in the lesional and non-lesional sites,
revealing significant differences between the
two groups (Figure 4A). Moreover, comparison
of CytoTRACE-predicted results with the pheno-
types of fibroblast subpopulations in the lesion-
al site showed that fibroblast subpopulations
with high differentiative capacity was mostly
enriched in the Fibro_2 cell subpopulation. The
Fibro_5 cell subpopulation was identified as
the developmental starting point, and the cell
subpopulations were then divided into different
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Figure 3. GSEA of fibroblasts. A. UMAP plot of fibroblast subpopulations in the lesion (I group) and non-lesion sites
(C group). B. Distribution of fibroblast subpopulations between the lesional (I group) and non-lesional sites (C group).
C. GSEA of fibroblast subpopulations in the lesional site. D. Top three up-regulated pathways of the Fibro_2 cell
subpopulation in the lesional site compared to the non- lesional site. E. Top three down-regulated pathways of the
Fibro_2 cell subpopulation in the lesional site compared to the non- lesional site.
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Figure 4. Pseudotime analysis of fibroblasts. A. Differentiation capacity of fibroblasts predicted by the CytoTRACE. B.
Pseudotime analysis revealing the differentiation trajectory of fibroblasts. C. Heatmap of dynamic changes in gene
expression across different cell clusters. D. Dynamic changes in FTH1 and GPX4 gene expression levels in different

fibroblast subpopulations along pseudotime trajectory.

states according to branching points (Figure
4B). In addition, the trajectory of cell differenti-
ation shifts from top to bottom over time, with
Fibro_1, Fibro_3, and Fibro_5 cell subpopula-
tions distributed in the early stage, Fibro_O
and Fibro_4 cell subpopulations roughly locat-
ed in the intermediate stage, and Fibro_2 and
Fibro_6 cell subpopulations distributed in the
late stage of development. Moreover, the differ-
ences in the trajectory of fibroblast differentia-
tion between the lesional site and the non-
lesional site of IBD were mainly reflected in the
early and late development stages. Then, the
dynamic changes in gene expression of differ-
ent cell clusters were analyzed. As presented in
Figure 4C, the gene expression levels in the
cluster 2, 3, 5, and 7 were gradually decreased
with the development of the pseudotime and
were gradually increased in cluster 1, 4, and 6.
Meanwhile, with the development of the pseu-
dotime, the relative expression levels of ferritin
heavy chain 1 (FTH1) and glutathione peroxi-
dase 4 (GPX4) were elevated, among which the
enhancement of FTH1 expression level exceed-
ed that of GPX4 (Figure 4D). Also, cells with
high FTHlexpression were mainly enriched in
the Fibro_2 cell subpopulation at the late stage
of differentiation.

hdWGCNA of fibroblasts

Subsequently, hdWGCNA was performed on
fibroblasts to identify genes strongly associat-
ed with fibroblasts. It was found that the mean,
median, and max connectivity were high and
the scale-free network was more biologically
significant when the soft power threshold was
set to 1 (Figure 5A). Then, a hierarchical clus-
tering tree was generated to group genes with
similar expression patterns into different mod-
ules. A total of 10 modules were identified,
which were distinguished using different colors
(Figure 5B). Meanwhile, there was a strong cor-
relation among different modules (Figure 5C).
In addition, given the prominent role of the
Fibro_2 cell subpopulation among fibroblasts,
the correlation between different modules and
fibroblast subpopulations was further analyzed.
It showed that all modules were related to the
Fibro_2 cell subpopulation, among which the
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Fibro_NEW10 module showed the strongest
association (Figure 5D). Subsequently, the top
10 core genes in each module with high KME
values were presented (Figure 5E). Given the
strongest association between Fibro_ NEW10
module with the Fibro_2 cell subpopulation,
we paid special attention to the core genes in
the Fibro_NEW10 module, identifying the top
10 core genes with high KME values in the
Fibro_NEW10 module, including ANXA2, RHOA,
TUBB, FIBIN, RARRES2, TMEM176B, MRGPRF,
KDELR3, YWHAH, and KDELR2, among which
ANXA2 possessed the highest kME value.
Therefore, ANXA2 was considered as the poten-
tial therapeutic target associated with ferropto-
sis in IBD. Meanwhile, the ModuleFeaturePlot
function was used to visualize the expression
patterns of fibroblast subpopulation for the
core gene with the highest KME value in each
module (Figure 5F). As the Fibro_NEW10 mod-
ule showed the strongest associated with the
Fibro_2 cell subpopulation, the top 25 hub
genes with the highest KME values in the Fibro_
NEW10 module were further visualized (Figure
5G). Meanwhile, the top 25 hub genes across
all modules were also visualized (Figure 5H).
Finally, comparison of ANXA2 expression level
revealed that the ANXA2 expression level in the
lesional site was significantly higher than that
in the non-lesional site of IBD (P < 0.0001,
Figure 5I).

ANXA2 was highly expressed in fibroblasts and
associated with the ferroptosis in IBD

As the above results suggested that ANXA2
may be a ferroptosis-related therapeutic target
in IBD, we further determined ANXA2 expres-
sion and its co-localization with fibroblasts and
ferroptosis-related markers in colon tissues
from IBD mice. As presented in Figure 6A, com-
pared to the control group, the proportion of
ANXA2-positive cells in the colon tissues of the
IBD group was significantly increased (P <
0.0001). Then, the colon tissues were counter-
stained with COL1A2 (fibroblast marker) and
4-HNE (ferroptosis marker) antibodies to deter-
mine the association between ANXA2 and fibro-
blasts as well as ferroptosis. As illustrated in
Figure 6B-H, both the proportion of ANXA2-
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Figure 5. hdWGCNA of fibroblasts. A. Selection of the optimal soft-threshold power. B. Gene clustering tree diagram of fibroblasts. C. Correlation among different
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ule based on KME values. F. Visualization of fibroblast subpopulations expressing the core gene with the highest kME value in each module. G. Top 25 hub genes in
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Figure 6. ANXA2 was highly expressed in fibroblasts and associated with the ferroptosis of IBD. (A, B) Evaluation of
ANXA2 expression in colon tissues. Representative IF images showing ANXA2 (red) expression (A) and quantitative
analysis of the mean fluorescence intensity (MFI) (B) in the Control and IBD groups. (C-E) Co-localization analysis
of ANXA2 and the ferroptosis marker 4-HNE. Representative IF images displaying the co-localization of ANXA2 (red)
and 4-HNE (green) (C). Quantitative analysis of the MFI of ANXA2 (D) and 4-HNE (E) corresponding to (C). (F-H)
Co-localization analysis of ANXA2 and the fibroblast marker COL1A2. Representative IF images displaying the co-
localization of ANXA2 (red) and COL1A2 (green) (F). Quantitative analysis of the MFI of ANXA2 (G) and COL1A2 (H)
corresponding to (F). Nuclei were stained with DAPI (blue). Scale bar = 100 yum. Data are presented as mean + SD
(n=3). *P < 0.05, **P < 0.01 vs. Control group.
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Figure 7. Validation of ANXA2 transfection efficiency and its regulatory effects on ferroptosis-related markers. (A,
B) Representative western blot images showing ANXA2 overexpression (A) and silencing (B). The groups included
Control, oe-NC, and oe-ANXA2 for overexpression, and Control, si-NC, and si-ANXA2 for silencing. (C, D) Quantitative
analysis of ANXA2 protein levels corresponding to (A and B), respectively. (E, F) Relative mRNA expression of ANXA2
determined by RT-gPCR following transfection with overexpression (E) or silencing (F) constructs. (G) Representative
western blot images of ANXA2, GPX4, FTH1, and 4-HNE proteins after modulation of ANXA2 expression. (H-K) Quan-
titative analysis of the protein levels of ANXA2 (H), FTH1 (1), 4-HNE (J), and GPX4 (K). Data are presented as mean +

SD. *P < 0.05, **P < 0.01, ***P < 0.001 vs. control group.

positive cells co-expressing COL1A2 or 4-HNE
and the degree of co-localization were dramati-
cally increased in the IBD group compared to
that in the control group. These results indicate
that ANXA2 is highly expressed in fibroblasts
and is associated with ferroptosis in IBD.

ANXA2 regulated ferroptosis-related proteins

To further investigate the regulatory role of
ANXAZ2 in ferroptosis, ANXA2 was silenced or
overexpressed in fibroblast CCD-18Co cells.
The transfection efficiency was verified using
gPCR and Western blotting. The results showed
that transfection with the ANXA2 overexpres-
sion plasmid significantly increased both the
mMRNA and protein levels of ANXA2 (Figure 7A,
7C, TE). Conversely, ANXA2 silencing led to a
significant reduction in its expression (Figure
7B, 7D, 7F). These results demonstrated that
ANXA2 expression was successfully modulated
in the cells.

Following this, we evaluated the effect of
ANXA2 on the ferroptosis-related proteins
GPX4 and FTH1, as well as the biomarker
4-HNE. We observed that ANXA2 silencing sig-
nificantly decreased 4-HNE levels, whereas
ANXA2 overexpression increased 4-HNE accu-
mulation (Figure 7G, 7H, 7J). In contrast, GPX4
and FTH1, which act as negative regulators of
ferroptosis, exhibited the opposite trend (Figure
71, 7K). These findings further indicate that
ANXA2 promotes ferroptosis.

ANXA2 regulated ferroptosis levels and subse-
quent oxidative stress and inflammation

Following validation of the effects of ANXA2 on
ferroptosis-related proteins, cell apoptosis was
further assessed using flow cytometry to evalu-
ate the regulatory role of ANXA2. The results
showed that ANXA2 silencing significantly
reduced apoptosis levels, whereas ANXA2
overexpression significantly increased it (Figure
8A, 8B).
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Given that ferroptosis is closely associated with
oxidative stress and inflammation, oxidative
stress markers MDA and GSH, as well as the
inflammatory cytokines IL-6 and CXCL8 we
subsequently examined. As expected, MDA (a
marker of oxidative damage) and GSH (an anti-
oxidant) exhibited opposite trends. Compar-
ed to the control group, ANXA2 silencing
decreased MDA levels and increased GSH lev-
els, while overexpression produced the oppo-
site effects. Regarding inflammation, silencing
ANXAZ2 reduced IL-6 and CXCLS8 levels, whereas
ANXA2 overexpression demonstrated a pro-
inflammatory effect (Figure 8C-F).

Discussion

IBD is a chronic gastrointestinal inflammatory
disease, commonly characterized by abdominal
pain, diarrhea, and bloody stools [26]. Owing to
its prolonged disease course, IBD is recognized
as one of the risk factors for colitis and colorec-
tal cancer, which not only greatly affects the
quality of life of patients, but also imposes a
heavy economic burden [27, 28]. At present,
the mechanisms underlying IBD remain incom-
pletely understood due to its complex patho-
genesis. Therefore, it is necessary to further
explore the pathogenesis of IBD, search for
potential therapeutic targets, and provide mo-
re treatment options, which is beneficial for
improving the prognosis and quality of life of
IBD patients. Single-cell transcriptomic tech-
nology enables efficient and comprehensive
characterization of cellular heterogeneity and
diversity in tissues under pathological specific
states, thereby identifying novel cell types and
gene expression patterns involved in diseases
occurrence and development [29]. Therefore,
single-cell transcriptomic technology was used
in this study to explore therapeutic targets of
IBD.

Ferroptosis, a distinct form of cell death, not

only regulates immune responses and pro-
motes the release of inflammatory cytokines,
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Figure 8. ANXA2 regulated ferroptosis-induced oxidative stress and inflammation. (A) Representative flow cytometry
histograms showing lipid peroxidation levels (an indicator of ferroptosis) assessed using the C11-BODIPY 581/591
probe. (B) Quantitative analysis of the mean fluorescence intensity (MFI) of C11-BODIPY corresponding to (A). (C-F)
Quantitative analysis of oxidative stress markers and inflammatory cytokines. The panels show the quantitative re-
sults for MDA (C), GSH (D), IL-6 (E), and CXCL8 (F). Data are presented as mean + SD. *P < 0.05, **P < 0.01, ***P

< 0.001 vs. control group.

but also participates in inflammatory process-
es by utilizing cyclooxygenase-related lipid per-
oxidation products [30]. In recent years, evi-
dence has indicated that ferroptosis is also
involved in the progression of IBD. A previous
study indicated that excessive dietary iron
altered gut phenotype, including the demethyl-
ation of quinone oxidoreductase 1 and glutathi-
one peroxidase 2, to affect the iron-mediated
intestinal diseases and regulate ferroptosis
[31]. In addition, another study demonstrated
that OTSSP167 effectively ameliorated IBD by
inhibiting ferroptosis in the intestinal tissues
and suppressing macrophage infiltration and
M1 polarization to reduce the secretion of pro-
inflammatory factors [32]. Therefore, in this
study, after identifying and annotating all 10
different cell subpopulations, ferroptosis-relat-
ed genes were scored across all cell subpopu-
lations between the lesion site (I group) and the
non-lesion site (C group). Our results suggested
that the ferroptosis-related genes were highly
expressed in the lesion site, with elevated
scores observed in Plasma_B, DC, Fibroblast,
Mono, T, Epithelial, Neutrophil, and Paneth_cell
subpopulations. Further analysis demonstrat-
ed that fibroblasts and Paneth cells displayed
higher numbers and strengths of intercellular
interactions, with fibroblasts showing the stron-
gest outgoing interaction strength, indicating
that fibroblasts might be strongly associated
with the ferroptosis of IBD.

Fibroblasts, an important component of the
intestine, were previously believed to primarily
play a role in tissue repair [33]. In recent years,
increasing evidence has demonstrated that
fibroblasts have multiple phenotypes, including
inflammatory fibroblasts, myofibroblasts, and
antigen-presenting fibroblasts [34]. These dis-
tinct fibroblast subsets might play an important
role in the progression of IBD. Previous studies
had shown that myofibroblasts are associated
with the intestinal fibrosis of Crohn’s disease
[35]. Another study affirmed that inflammatory
fibroblasts activated by bacterial antigens
secreted inflammatory factors, such as IL-13, to
induce chemotaxis and activate intestinal
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immune cells [36]. In addition, one previous
study profiling the expression of 940 genes in
1.35 million cells during the onset and recovery
phases of experimental colitis revealed exten-
sive crosstalk between fibroblasts and immune
cells [37]. Therefore, based on the above
results indicating that the fibroblasts might be
strongly associated with ferroptosis of IBD,
fibroblasts were extracted and divided into
seven cell subpopulations for subsequent stud-
ies. Our studies found that the proportion of
Fibro_2 in the lesion sites (I group) exhibited
the most pronounced increase compared to
the non-lesion sites (C group). Therefore, we
further focused on the enriched DEGs and
pathways of the Fibro_2 cell subpopulation.
Our results indicated that the DEGs of the
Fibro_2 cell subpopulation in the lesion site
mainly included CCL11, ACTG2, MYL6, ACTA2,
MYLK, IGFBP5, PDGFRRA, MT2A, COL1A1,
CXCLS8, CTHRCZ, CTSK, CHI3L1, and SOD2; the
top three up-regulated pathways of Fibro_2 cell
subpopulation in the lesion site were “response
to cytokine”, “response to abiotic stimulus”,
and “anatomical structure morphogenesis”
pathways, while the top three down-regulated
pathways of Fibro_2 cell subpopulation in the
lesion site were “stem cell differentiation”, “oxi-
dative phosphorylation”, and “aerobic respira-
tion” pathways. In addition, the results of pseu-
dotime analysis of fibroblasts suggested that
the Fibro_2 cell subpopulation distributed in
the late stage of IBD development. Moreover,
the pseudotime analysis results also indicated
that cells with high FTH1 expression were main-
ly enriched in the Fibro_2 cell subpopulation
during the late stage of development, hinting
that the Fibro_2 cell subpopulation was associ-
ated with the ferroptosis of IBD. Finally, after
the fibroblast subpopulations were further
divided into 10 different modules according to
similar expression pattern, the association
between each module and each fibroblast sub-
population was analyzed. Our results suggest-
ed that the Fibro_NEW10 module demonstrat-
ed the strongest association with Fibro_2 cell
subpopulation. Further analysis revealed that
ANXA2 exhibited the highest kME value in the
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Fibro_NEW10 module, which was considered
as the potential ferroptosis-associated thera-
peutic target in IBD.

ANXA2, a member of the membrane-associat-
ed protein family, has been demonstrated to be
associated with inflammatory responses [38].
A previous study demonstrated that the posi-
tive staining rate of ANXA2 in patients with
ulcerative colitis (UC) was significantly upregu-
lated compared to healthy control subjects,
indicating that ANXA2 was closely associated
with the pathogenesis of UC and may be a
marker for differential diagnosis of IBD [39]. In
addition, another study affirmed that ANXA2
was upregulated in mice with acute pancreati-
tis, which was positively related to the ferropto-
sis [20]. In this study, after predicting ANXA2 as
the possible therapeutic target associated with
ferroptosis in IBD, IF staining was performed to
confirm the role of ANXA2 in the ferroptosis of
IBD. Our results indicated that ANXA2 expres-
sion was significantly upregulated in the IBD
group compared with the control group, which
is consistent with previous reports. In addition,
the co-localization of ANXA2 with COL1A2
and the ferroptosis marker 4-HNE was dramati-
cally increased in the IBD group compared with
that in the control group, suggesting that
ANXA2 was highly expressed in fibroblasts and
positively associated with the ferroptosis in
IBD. However, a previous study affirmed that
increased ANXA2 expression inhibited ferropto-
sis in pancreatic cancer, which was opposite to
our results [40]. This discrepancy might be
attributable to fundamental differences in
genetic background, cellular context, and met-
abolic states between normal fibroblasts in
inflammatory conditions and malignant tumor
cells.

Despite these promising findings, several limi-
tations of this study warrant further investiga-
tion. First, although we confirmed that ANXA2
regulates ferroptosis and inflammation in IBD
using bioinformatic analysis, animal models,
and cell experiments, the precise downstream
molecular mechanisms remain incompletely
understood. For instance, how ANXA2 interacts
with or regulates the expression of GPX4 and
FTH1 at the transcriptional or post-translation-
al level requires further exploration. Second,
while we utilized public single-cell datasets for
human validation, this study lacks verification
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in a large-scale clinical cohort of IBD patients
from our own center.

In the future, we will focus on delineating the
specific signaling pathways mediated by ANXA2
in fibroblasts. Additionally, fresh clinical tissue
samples will be collected to further validate the
diagnostic and therapeutic value of ANXA2.
Investigating small molecule inhibitors or neu-
tralizing antibodies targeting ANXA2 may also
provide a novel strategy for the clinical treat-
ment of IBD.

Conclusions

A total of 28,974 cells from the GSE134809
dataset were divided into 25 clusters and
10 distinct cell subpopulations. Ferroptosis-
related gene scores were significantly increased
in the Plasma_B, DC, Fibroblast, Mono, T,
Epithelial, Neutrophil, Paneth_cell subpopula-
tions in IBD. Cell-cell communication analysis
indicated that fibroblast cell subpopulation was
closely associated with ferroptosis, involving
multiple differently expressed genes and path-
ways. Pseudotime analysis suggested that the
Fibro_2 cell subpopulation was associated with
ferroptosis. The hdWGCNA identified ANXA2 as
a potential target for ferroptosis in IBD. In vivo,
ANXA2 was significantly up-regulated in the
colon tissue of IBD mice and the co-localization
of ANXA2 with COL1A2 and 4-HNE was also
dramatically up-regulated in the colon tissues
of IBD mice.

In conclusion, ANXA2 is highly expressed in
fibroblasts and is associated with ferroptosis in
IBD, providing a novel therapeutic target for the
clinical treatment of IBD.
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