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Inhibiting OAS3 suppresses the development of clear
cell renal cell carcinoma by reducing cell proliferation
and altering the tumor immune microenvironment
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Abstract: Background: Immune checkpoint inhibitors have been approved for first-line treatment of metastatic clear
cell renal cell carcinoma (ccRCC), but limited therapeutic effects have been reported in patients with advanced
ccRCC. Investigating vital targets in specific immune interactions and their effect on the tumor microenvironment
of ccRCC could provide novel strategies for overcoming the above limitations. Methods: We investigated the expres-
sion characteristics, prognostic role, and immune associations of OAS3 in the tumor microenvironment in patients
with ccRCC. The functions of OAS3 in proliferation and migration were explored in 786-O and OS-RC-2 cells by
forced OAS3 overexpression or knockdown. Furthermore, a xenograft model was established in C57BL/6 mice to
study the combined effects of OAS3 downregulation and anti-PD1 therapy. The growth, proliferation, and apopto-
sis of tumor cells, as well as the infiltration of CD8+ T cells and M1/M2 macrophages within tumor tissues, were
evaluated by immunohistochemistry. Results: OAS3 was upregulated in ccRCC and significantly associated with the
overall survival of patients with ccRCC. OAS3 expression levels were correlated with genomic mutation profiles and
were positively associated with the infiltration of CD8+ T cells, macrophages, neutrophils, and dendritic cells. OAS3
upregulation increased the proliferation, migration, invasion, and colony formation abilities of 786-0 and 0S-RC-2
cells. In contrast, OAS3 knockdown had the opposite effect. In vivo experiments revealed that OAS3 downregulation
repressed the growth and proliferation of tumor cells, and promoted infiltration of M2 macrophages but enhanced
the apoptosis and infiltration of CD8+ T cells. The phosphorylation of NF-kB p65 was repressed by OAS3 downregu-
lation. In addition, the combination of anti-PD1 therapy and OAS3 downregulation had synergistic antitumor effects.
Conclusion: OAS3 is upregulated in ccRCC and promotes tumor progression by mediating the infiltration of immune
cells in the TME. OAS3 represents a promising therapeutic target for enhancing the antitumor effects of immune
checkpoint inhibitors.
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Introduction mately 15% of patients present with distant
metastasis [3]. The 5-year survival rate for ear-
ly-stage ccRCC can reach 90%, but once metas-

tasis occurs, the 5-year survival rate is only

Renal cell carcinoma (RCC) is one of the mo-
st common malignant solid tumors of the uri-

nary system. According to statistics, there are
approximately 400,000 new cases worldwide
each year and approximately 170,000 deaths
[1]. In the United States, RCC is the sixth most
common cancer in men and ranks ninth in
women [1]. Among these, clear cell renal cell
carcinoma (ccRCC) is the main pathologic sub-
type, accounting for 70%-85% of all RCC cases
[2]. Approximately 50% of RCC cases are dis-
covered incidentally during physical examina-
tion, whereas at the time of diagnosis, approxi-

approximately 12% [4]. Currently, there are vari-
ous clinical treatment methods for ccRCC,
including surgery, radiotherapy, cryotherapy,
immunotherapy, local radiotherapy, and target-
ed therapy for metastasis [5]. Although surgical
resection is effective for treating localized low-
risk ccRCC, approximately 40% of patients still
relapse within a short period after surgery,
while those with high-risk or metastatic disease
require systemic therapy to improve their prog-
nosis [6, 7]. In recent years, with the wide-
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spread clinical application of targeted thera-
pies and immunotherapies, the overall survival
rate of patients has improved. However, owing
to individual differences in treatment response
and the emergence of drug resistance, most
patients eventually progress to advanced
ccRCC, for which the 5-year survival rate is less
than 10% [8]. Therefore, it is necessary to iden-
tify new immune molecular markers to improve
the early diagnosis, prognostic evaluation, and
personalized treatment of RCC.

The tumor microenvironment (TME) is a com-
plex system composed of multiple components,
including tumor cells, immune cells, stromal
cells, the extracellular matrix (ECM), blood ves-
sels, soluble factors, and physical properties,
and plays critical roles in the processes of
tumorigenesis, recurrence, and metastasis [9].
In ccRCC, the TME often exhibits significant
immunosuppressive characteristics, which are
manifested by the infiltration of regulatory T
cells (Tregs), myeloid-derived suppressor cells
(MDSCs), and M2-type macrophages; these
cells jointly weaken effective antitumor immune
responses [10-12]. Notably, ccRCC is one of the
most vascularized and immune-infiltrated solid
tumors. This provides a basis for its immuno-
therapeutic use while also constituting a com-
plex background for drug resistance [13].
Differences in the components of the TME can
lead to individual variations in responses to
immunotherapy, thereby affecting clinical effi-
cacy [14]. Over the past decade, immune
checkpoint inhibitors targeting key T-cell regu-
latory factors, such as PD-1, PD-L1, and CTLA-
4, have achieved remarkable progress in the
treatment of ccRCC, with significant efficacy by
both monotherapy and combination regimens
[15, 16]. However, a considerable proportion of
patients still experience primary or acquired
resistance, leading to no initial response or
loss of previously acquired efficacy during treat-
ment, which has become one of the main chal-
lenges currently faced in ccRCC immunothera-
py [17]. Therefore, elucidating the mechanisms
of resistance mediated by the tumor microenvi-
ronment in depth and developing effective
combination treatment strategies accordingly
are crucial for improving the immunotherapeu-
tic outcomes of ccRCC patients and ultimately
overcoming the dilemma of resistance.

2',5-0Oligoadenylate synthetase (OAS) is an
interferon (IFN)-induced enzyme that, upon
activation by double-stranded RNA, converts
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ATP into 2',5-linked oligoadenylates [18]. The
OAS gene family consists of four key mem-
bers: OAS1, OAS2, OAS3, and OAS-like protein
(OASL). In addition to their primary antiviral
functions, the OAS gene family is also exten-
sively involved in processes such as apoptosis
and growth and is associated with a variety of
immune-related diseases [19]. In recent years,
OAS3 was shown to play a significant regulatory
role in tumors. For example, high OAS3 expres-
sion is associated with poor prognosis in breast
cancer patients [20]. Studies on pancreatic
cancer have identified OAS3 as a key target for
reversing antitumor immune resistance, with
high OAS3 expression indicating poor progno-
sis. Targeting OAS3 not only inhibits M2d polar-
ization and the protumor functions of macro-
phages but also synergistically enhances the
effects of chemotherapy and immunotherapy,
demonstrating important therapeutic potential
[21]. However, in melanoma and clear cell renal
cell carcinoma (ccRCC), higher OAS3 expres-
sion is associated with better clinical outcomes
following immune checkpoint blockade (ICB)
therapy [22]. Nevertheless, the specific func-
tion of OAS3 in ccRCC and its mechanism in
regulating the tumor immune microenviron-
ment remain to be elucidated.

This study aimed to analyze the expression
characteristics of OAS3 in ccRCC, its prognos-
tic relevance, and its correlation with immune
cell infiltration through bioinformatic methods.
Furthermore, in vitro and in vivo experiments
will be conducted to investigate the regulatory
effects of OAS3 on ccRCC cell proliferation,
migration, invasion, in vivo growth, and the
immune microenvironment. This study aims to
provide new references for the diagnosis of
ccRCC and immunotherapy decision-making.

Materials and methods
Bioinformatics analysis

TIMERS3 (https://compbio.cn/timer3/) was us-
ed to analyze the expression of OAS3 in human
cancers and for immune infiltration analysis
of OAS3 in KIRC. OAS3 gene and protein ex-
pression in KIRC was analyzed via UALC-
AN (https://ualcan.path.uab.edu/) and GEPIA
(http://gepia2.cancer-pku.cn/#index). The Hu-
man Protein Atlas (https://www.proteinatlas.
org/) was used for analyzing OAS3 expression
via IHC detection. The associations of OAS3 lev-
els with the survival of KIRC patients were
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determined via the Kaplan-Meier plotter (http://
kmplot.com/analysis/). LinkedOmics is an op-
en website that provides multiomics data anal-
ysis from all 32 TCGA cancer types. To derive
biological insights from the association results,
the LinkInterpreter module performs enrich-
ment analysis on the basis of Gene Ontology,
biological pathway, and network module data,
among other functional categories (https://
www.linkedomics.org/login.php).

Cells and cell culture

Two ccRCC cell lines, 786-0 (#CL-0010) and
0OS-RC-2 (CL-0177), were purchased from
Procell (Wuhan, China). The culture medium
was composed of 89% RPMI-1640, 10% fetal
bovine serum (FBS, #26010074, Gibco, Cali-
fornia, USA) and 1% penicillin/streptomycin
(#15140122, Gibco, California, USA). The cells
were incubated in a temperature (37°C) - and
humidity (100%)-controlled incubator contain-
ing 5% CO,. The medium was changed every 2
days.

Cell transfection

Two ccRCC cell lines, 786-0 and 0S-RC-2, were
seeded in 24-well plates. Each well contained
approximately 1*10° cells. Twenty-four hours
later, the cells were transfected with siRNAs
targeting OAS3 (si-OAS3#1, si-OAS3#2), pc-
DNA3.1-OAS3 overexpression plasmids, and
associated negative controls (si-NC or pc-DNA
3.1 vector). These siRNAs were bought from
RIBOBIO (Guangzhou, China), and the overex-
pression plasmids were bought from Abm
(Shanghai, China). An electroporation proce-
dure was used to facilitate the transfection of
those vectors. The transfection efficiency was
validated by RT-gPCR and western blotting. The
siRNA sense sequences for OAS3 and IFR2
were as follows: OAS3 (si-OAS3-1: 5-GGA-
AGGAGTTCGTAGAGAA-3’; si-OAS3-2: 5-GTGTC-
TACTGGACGGTCAACT-3’).

RT-PCR

TRIzol reagent (RO016; Beyotime, China) was
used to extract total RNA from 786-O and
0S-RC-2 cells, which were cultured in 6-well
plates (each well contained 1*10° cells). The
PrimeScript™ RT Reagent Kit (RRO47A, Takara,
Dalian, China) was used to synthesize OAS or
GAPDH cDNA. The amplification of the OAS3
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gene was carried out via the Premix Ex Tag™ |l
(RR820A, Takara) Kit. The 22t method was
used to calculate the relative OAS3 expression.
GAPDH was used as the internal control. The
primers used for OAS3 and GAPDH (Tsingke
Biotechnology Co., Ltd., China) were as follows:
OAS3 (forward: 5-TGATCAAGGTGGTCAAGGG-
TG-3" and reverse: 5-TGCTCAGTGAACTGGC-
TGAA-3’); and GAPDH (forward: 5-ATGGCAAA-
TTCCATGGCACC-3’ and reverse: 5'-AGCATCGC-
CCCACTTGATTT-3).

Western blot

Following cell transfection, total protein was
extracted from the ccRCC cell lines 786-0 and
0S-RC-2. RIPA (#)J63306. AP, Thermo Fisher,
USA) was used for cell lysis. The total protein
concentration was determined by the BCA
method (#A55860, Thermo Fisher, USA). Total
protein was separated by 10% SDS-PAGE and
then transferred onto PVDF membranes. After
being blocked with 5% BSA (#AM2616, Thermo
Fisher, USA), the membranes were incubated
with OAS3 rabbit pAb (#A9481, ABclonal,
Wuhan, China) or B-actin (#AC026, ABclonal,
Wuhan, China). The incubation temperature
was set at 4°C. Fifteen hours later, the mem-
branes were washed with TBST 3 times and
then incubated with the secondary antibody
goat anti-rabbit 1gG H&L (HRP) (#AB6721,
Abcam) for 60 min at room temperature. The
protein bands were visualized by an enhanc-
ed chemiluminescence (ECL) kit (#POO18S,
Beyotime, Shanghai, China).

CCK8 assay

786-0 and 0OS-RC-2 cells were seeded in
96-well plates after transfection. Each well con-
tained 2000 cells. The Cell Counting Kit-8
(CCK-8) assay was used to determine cell prolif-
eration. Ten microliters of CCK-8 solution
(#C0038, Beyotime, China) was added to each
well at 24 h, 48 h, or 72 h after cell seeding.
The absorbance was measured at 450 nm to
assess the proliferation of the above cells.

Transwell assay

Transwell chambers (Transwell® 8.0 um,
#3422, Corning, USA) were used to measure
cell migration and invasion. 786-0 and OS-RC-
2 cells in the well growth state were collected
and resuspended in non-FBS medium. 786-0
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and 0S-RC-2 cells (5x10% cells) in 200 pl of
medium were seeded in the upper chambers of
Transwells, while the lower chambers were sup-
plemented with 800 L of medium containing
20% FBS. The cells on the bottom surface were
fixed with 100% methanol and stained with
0.5% crystal violet. For the invasion assay, the
Transwell chambers were coated with Matrigel
(Sigma-Aldrich, St. Louis, MO, USA), and the
other procedures were the same in the migra-
tion assay. The number of migrated cells was
calculated by ImageJ.

Colony formation assay

786-0 and 0S-RC-2 cells cultured in 6-well
plates (1.5x10°2 cells in each well) were incu-
bated for 14 days. The medium was changed
every 3 days. Finally, the cells were washed
with PBS twice and fixed with 100% methanol
for 15 min. A 0.1% crystal violet solution was
used for cell staining. The number of cell colo-
nies (with more than 50 cells) was counted.

EdU staining assay

The proliferation of 786-0 and OS-RC-2 cells
following cell transfection was determined
using an EdU-staining kit (#40276ES60,
YEASEN, Shanghai, China). The above cells
were seeded into 24-well platelets. The cell
density was adjusted to 6x10° cells per well.
Twenty-four hours later, 50 yM EdU solution
was added to each well, and the cells were
incubated at 37°C for 2 h. The cells were fixed
with 4% formaldehyde. Nuclei were stained
with DAPI solution (#40728ES03, YEASEN,
Shanghai, China). The results were subse-
quently visualized via a fluorescence micro-
scope. The ratio of EdU-positive cells was cal-
culated to evaluate cell proliferation.

Animal studies in mice

All animal experiments were approved by the
Ethics Committee of Affiliated Hospital of
Jiujiang University. 6-week-old C57BL/6 male
mice were purchased from Beijing Vital River
Laboratory Animal Technology Co., Ltd. (Beijing,
China). A total of 3x10°% mouse renal cancer
cells (RENCA) were suspended in 100 pl of
PBS. Before surgery, the mice received 5% iso-
flurane inhalation to relieve pain. They were
then subcutaneously injected into the left
flanks of the mice, which were randomly divid-
ed into four groups. Two weeks later, the mice
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were intraperitoneally injected with an anti-
PD-1 antibody (3 mg/kg, BEO273, Bio X Cell,
West Lebanon, NH, USA) [23]. Tumor sizes were
measured every 3 days. Four weeks after cell
injection, the mice were sacrificed, and the
tumors were removed for histopathologic
analysis. The tumor weight was recorded, and
the volume was estimated with the following
formula: 1/2*(length x width2). In addition,
extreme values (maximum and minimum) were
eliminated. Euthanasia was performed using
5% isoflurane inhalation followed by cervical
dislocation.

Immunohistochemistry

The tumor tissues were fixed in formalin,
embedded in paraffin, and sectioned for immu-
nohistochemical staining to detect the expres-
sion of Ki-67, CD45, CD163, CD8, Granzyme B,
and PD-1. The sections were then incubated
with specific primary antibodies against CD45
(1:200, A23549, ABclonal, Wuhan, China),
Ki-67 (1:400, A26755PM, ABclonal, Wuhan,
China), CD163 (1:200, A8383, ABclonal, Wu-
han, China), CD8 (A11856, ABclonal, Wuhan,
China), Granzyme B (1:400, A2557, ABclonal,
Wuhan, China), and PD-1 (1:200, AF7695,
Beyotime, Shanghai, China), followed by incu-
bation with secondary antibodies (AO308,
Beyotime, China) conjugated with HRP and DAB
for color development.

Immunofluorescence

The tumor sections were prepared and block-
ed with 5% BSA for 60 min at room tempera-
ture. The sections were incubated with an anti-
p-p65 antibody (1:200, AP1458, ABclonal,
Wuhan, China) at 4°C overnight and with sec-
ondary antibodies at 37°C for 1 h. The sections
were counterstained with DAPI for 10 min to
stain the nuclei. The fluorescence was imaged
under a microscope (IX73, Olympus, Japan).

Statistical analysis

GraphPad Prism 10.2 software was used for
the statistical analyses (GraphPad, La Jolla, CA,
USA). Each group had at least three repetitions.
The measured data are presented as the
means = SD. One-way analysis of variance
(ANOVA) or two-tailed Student’s t test was used
to compare quantitative data. P values for each
analysis are marked in the figures, and the lev-
els of statistical significance were defined as
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P<0.05 (*P<0.05; **P<0.01; ***P<0.001,;
****p<0.0001).

Results

OAS3 mRNA and protein expression is in-
creased in KIRC

The expression of OAS3 in human cancers
was analyzed by TIMER3 (https://compbio.cn/
timer3/). The OAS3 gene level was increased
in most cancers, including KIRC (Figure 1A,
1B). OAS3 gene and protein expression in KIRC
was analyzed via UALCAN (https://ualcan.path.
uab.edu/). The results revealed that the OAS3
MRNA level was increased in KIRC tissues with
increased disease stage (Figure 1C) and nodal
metastasis (Figure 1D). At the protein level,
OAS3 expression was also greater in KIRC tis-
sues than in normal tissues (Figure 1E, 1F).
The Human Protein Atlas (https://www.protein-
atlas.org/) was used to analyze OAS3 expres-
sion in tumor tissues through IHC detection.
OAS3 was positively expressed in both normal
renal tissues and tumor tissues and was locat-
ed mainly in the cytoplasm and cell membrane
(Figure 1G).

Association of OAS3 levels with the survival of
patients with KIRC

By analyzing OAS3 alterations with respect to
the survival of KIRC patients using Kaplan-
Meier plotter (http://kmplot.com/analysis/), we
found that a higher OAS3 level was associated
with good overall survival in KIRC patients
(P=0.02, Figure 2A). In addition, a higher OAS3
level seemed to be associated with poorer
relapse-free survival (P=0.21, Figure 2B). We
conducted further analysis on the basis of sex
and immune cell enrichment. Among male KIRC
patients, higher OAS3 could predict poorer 0OS.
In contrast, higher OAS3 in female KIRC
patients was associated with better OS (Figure
2C). For patients with enriched immune cells,
such as CD4+ memory T cells, CD8+ T cells,
Tregs, and macrophages, higher OAS3 levels
were associated with poorer OS, whereas a
decreased immune cell enrichment could
reverse this phenomenon (Figure 2C-G).

Mechanisms of OAS3 in ccRCC

LinkedOmics was used to analyze possible
mechanisms of OAS3 in ccRCC. The top 50
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genes with positive or negative associations
are shown in Figure 3A, 3B. The enrichment
analysis of the LinkInterpreter module revealed
that OAS3 was significantly associated with
several biologic processes, such as the adap-
tive immune response, the immune response-
regulating signaling pathway, and positive regu-
lation of cytokine production (Figure 3C). The
KEGG pathways included Thl cell differentia-
tion, Th1 and Th2 cell differentiation, cell adhe-
sion molecules, and the NF-kappa B signaling
pathway (Figure 3D, 3E).

Association of OAS3 with immune cell infiltra-
tion in ccRCC

Based on TIMER3 analysis, we found that OAS3
was significantly associated with the infiltration
of immune cells (including CD4+ T cells, CD8+ T
cells, macrophages, CTL cells, and Th1/Th2
cells) in multiple cancers (Figure 4A). In KIRC,
OAS3 was positively associated with B cells,
CD8+ T cells, CD4+ T cells, neutrophils, and
dendritic cells (Figure 4B). The SCNA module
of TIMER provides a comparison of tumor infil-
tration levels among tumors with different
somatic copy number alterations for a given
gene. We did not identify significant associa-
tions between OAS3 copy number and the infil-
tration levels of immune cells (Figure 4C).

OAS3 upregulation enhances the proliferation,
migration, and invasion of ccRCC cells

An OAS3-overexpressing cell model was con-
structed in 786-0 and OS-RC-2 cells. RT-PCR
and WB confirmed the cell transfection efficien-
cy (Figure 5A, 5B). Next, CCK8, colony forma-
tion, and EdU staining assays were performed.
The results revealed that following OAS3 upreg-
ulation, the proliferation and colony formation
ability of these two cell lines increased (Figure
5C-H). Transwell assays revealed that more
migrative and invasive cells in the OAS3-OE
group compared to the vector group (Figure 5I,
5J).

Downregulating OAS3 led to reduced prolifera-
tion, migration, and invasion of ccRCC cells

To further confirm the roles of OAS3 in ccRCC
cell proliferation and migration, we established
an OAS3-downregulated cell model (Figure 6A,
6B). Functional assays were then performed.
Compared with the si-NC group, the si-OAS3
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Figure 1. Expression characteristics of OAS3 mRNA and protein in KIRC. A. The expression of OAS3 in human cancers was analyzed by TIMER3 (https://compbio.cn/
timer3/). B. The scatter plot shows the expression of OAS3 in kidney renal clear cell carcinoma (KIRC). C, D. OAS3 gene expression in KIRC was analyzed by UALCAN
(https://ualcan.path.uab.edu/). E, F. OAS3 protein expression in KIRC was analyzed by UALCAN. G. The protein level of OAS3 in normal tissue and KIRC tissues was
analyzed by the Human Protein Atlas (https://www.proteinatlas.org/).
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Figure 2. Association of OAS3 levels with the survival of patients with KIRC. The Kaplan-Meier plotter (http://kmplot.com/analysis/) was used for survival analysis.
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Figure 3. Mechanisms of OAS3 in ccRCC. LinkedOmics was used to analyze for mechanisms of OAS3 in ccRCC. (A,
B) The heatmaps how the top 50 genes with positive or negative associations. (C, D) The LinkInterpreter module was
used to perform enrichment analysis, and the enriched GO terms, including biological process (BP), cellular com-
ponent (CC), and molecular function (MF), are shown in (C). (D, E) The enriched KEGG pathways included Th1 cell
differentiation, Th1 and Th2 cell differentiation, cell adhesion molecules, and the NF-kappa B signaling pathway.
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Figure 5. Effects of OAS3 upregulation on the proliferation, migration, and invasion of ccRCC cells. An OAS3-overex-
pressing cell model was constructed in 786-0 and 0S-RC-2 cells. A, B. RT-PCR and WB were conducted to measure
OAS3 mRNA and protein levels, respectively. C, D. CCK8 assay for assessing cell proliferation. E, F. A colony forma-
tion assay was used to determine cell proliferation. G, H. An EdU staining assay was performed to test cell prolifera-
tion. I, J. Cell migration and invasion were was tested using the Transwell assay. Scale bar =200 uym. The data are

presented as the means + SDs. n=3. * indicates P<0.05, ** indicates P<0.01, *** indicates P<0.001.

group exhibited reduced cell proliferation,
migration, and invasion (Figure 6C-J). We con-
ducted in vivo experiments on C57BL/6 mice.
Compared with those in the si-NC group, the
tumor volume and weight in the si-OAS3
group were significantly lower (Figure 7A-C).
Ki67 and TUNEL staining suggested that down-
regulation of OAS3 reduced cell proliferation
and enhanced apoptosis (Figure 7D, 7E).

Downregulation of OAS3 enhances the antitu-
mor effects of anti-PD-1 therapy

We treated the tumor-bearing mice with an
anti-PD-1 antibody. The results revealed that
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the tumor volume and weight were decreased
by anti-PD-1 therapy (Figure 7A-C). Compared
to the anti-PD-1 group, the anti-PD-1+si-OAS3
group presented further reductions in tumor
volume and weight (Figure 7A-C). Moreover,
anti-PD-1 therapy attenuated the percentage
of Kl67-positive cells while increasing the
percentage of TUNEL-positive cells. Downre-
gulation of OAS3 further enhanced the effects
mediated by anti-PD-1 (Figure 7D, 7E). We
then conducted IHC to analyze the infiltration
of immune cells in the tumors. We found that
anti-PD-1 therapy increased the number of
CD45-, CD8-, and granzyme B-positive cells
while reducing CD163 and PD-1 expression.
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Moreover, combining anti-PD-1 and si-OAS3
further promoted these alterations through
anti-PD-1 therapy (Figure 7F-J). Considering
that OAS3 potentially affects the NF-kB path-
way in ccRCC, we analyzed the associations
between OAS3 levels and PDL1 or NFkB1
expression. The results revealed a positive
association (Figure 7K, 7L). IF was conducted
to measure p-p65 in the tumor tissues. Anti-
PD-1 therapy or downregulating OAS3 can
decrease p-p65 levels. Combining anti-PD-1
and si-OAS3 further reduced p-p65 expression
(Figure 7M).
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Discussion

The programmed cell death protein 1 (PD-1)
pathway has drawn significant interest because
of its involvement in triggering the immune
checkpoint response in T cells, enabling tumor
cells to escape immune surveillance and often
making them highly resistant to standard che-
motherapy. The use of anti-PD-1/PD-L1 anti-
bodies as checkpoint inhibitors is quickly
emerging as a promising strategy for cancer
treatment. Nonetheless, not all patients experi-
ence complete responses, and adverse events

Am J Transl Res 2026;18(1):124-139
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expression were analyzed via GEPIA. M. IF was conducted to measure p-p65 expression in the tumor tissues. Scale
bar =50 um. The data are presented as the means + SDs. n=5. * indicates P<0.05, ** indicates P<0.01, *** indi-

cates P<0.001, **** indicates P<0.0001.

have been reported [24, 25]. In this study, we
investigated the role of OAS3 in ccRCC progres-
sion. We found that OAS3 is upregulated in
ccRCC and is closely associated with patient
survival. We further performed a functional
assay and reported that OAS3 upregulation
increased cell proliferation, migration, and inva-
sion, whereas OAS3 downregulation had the
opposite effect. Moreover, the combination of
anti-PD-1 therapy and OAS3 downregulation
resulted in enhanced antitumor effects, sug-
gesting that targeting OAS3 is a strategy to
overcome anti-PD-1 resistance.

OAS3 has been found to be a diagnostic bio-
marker in human cancers. For example,
increased OAS3 is positively correlated with
advanced cancer stage and poor overall sur-
vival in patients with breast cancer and gastric
cancer [26, 27]. In bladder cancer, Gao et al.
reported that OAS3 expression was elevated in
tumor tissues compared to normal tissues.
However, a higher OAS3 level was associated
with better patient survival [28]. In this study,
we found that higher OAS3 levels predicted
better OS, but not RFS in ccRCC patients.
Interestingly, the predictive roles of OAS3 in
ccRCC differed significantly according to sex
and immune cell infiltration status. Higher
OAS3 levels predicted poorer OS in male ccRCC
patients, whereas female ccRCC patients had
better OS with higher OAS3 expression. In gen-
eral, the incidence of ccRCC is twice as high in
males as in females worldwide, and the progno-
sis is also worse in males. Biological sex may
be an important predictor, and sex-specific tai-
lored treatment may improve patient care in
patients with ccRCC [29]. Our data also sug-
gest that OAS3 is a sex-related gene involved in
ccRCC development.

OAS3 is regarded as a potential modulator in
the immune microenvironment of cancers [21].
Elevated OAS3 expression might promote the
infiltration of CD4+ T cells, CD8+ T cells, neutro-
phils, and dendritic cells in the microenviron-
ment of bladder cancer [28]. In this study, we
found that OAS3 downregulation repressed
the proliferation and growth of ccRCC cells.
Combining anti-PD-1 therapy with OAS3 down-
regulation further reduced tumor volume and
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weight by disrupting proliferation and enhanc-
ing apoptosis. OAS3 downregulation increased
the number of CD45-, CD8-, and granzyme
B-positive cells while reducing CD163 and PD-1
expression. Moreover, combining anti-PD-1 and
si-OAS3 further promoted these alterations
through anti-PD-1 therapy. Therefore, these
studies suggest that targeting OAS3 can induce
antitumor effects by modulating the immune
microenvironment of ccRCC.

The NF-kB pathway plays multiple essential
roles in the cancer immune microenvironment,
one of which is modulating the functions of
tumor-associated macrophages [30]. Targeting
this pathway may reverse the immunosuppres-
sive microenvironment [31]. Persistent NF-kB
activation in tumor cells or stromal cells up-
regulates the expression of immunosuppres-
sive molecules such as PD-L1, IDO1, and TGF-
B. It also promotes the recruitment and activa-
tion of Tregs, myeloid-derived suppressor cells
(MDSCs), and M2-type tumor-associated mac-
rophages (TAMs), creating a barrier that inhibits
antitumor immune cell infiltration and function
[32-35]. Constitutive NF-kB activation - often
caused by mutations in upstream regulators
such as NIK, IKKa/[3, or the loss of IkBa - direct-
ly upregulates PD-L1 transcription. This leads
to excessive PD-L1 expression on tumor cells,
overriding the blocking effect of anti-PD-1 anti-
bodies and reestablishing T-cell exhaustion
[36]. Therefore, combining NF-kB inhibitors
with anti-PD-1 therapy has shown synergistic
effects in preclinical models, highlighting the
potential of this combinatorial approach to
improve patient outcomes. Here, we found that
OAS3 positively regulates the NF-kB pathway.
In ccRCC, there are positive associations
between OAS3 levels and PDL1 or NFkBI1.
Both anti-PD-1 therapy and downregulating
OAS3 can decrease p-p65 levels, and combin-
ing anti-PD-1 therapy with si-OAS3 further
reduces p-p65 expression. Therefore, knocking
down OAS3 might promote the antitumor
effects of anti-PD-1 through repressing the
NF-kB pathway.

Several limitations remain in this study. First,
the expression characteristics of OAS3 need to
be confirmed in clinical samples. Considering
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that OAS3 predicts the OS of ccRCC patients in
a sex-dependent manner, it would be interest-
ing to pay special attention to OAS3 expression
in different sexes. Second, the downstream
mechanism, including the NF-kB pathway of
OAS3, should be further investigated.

Conclusion

Our bioinformatic analysis data suggested that
OAS3 expression is upregulated in ccRCC.
OAS3 downregulation inhibited ccRCC cell pro-
liferation, migration, and invasion, and enhanc-
ed the efficacy of anti-PD-1 therapy. OAS3 was
closely associated with immune cell infiltration
inthe tumor microenvironment. Downregulation
of OAS3 reduced the infiltration of “M2” macro-
phages and enhanced the infiltration of CD8+ T
cells, potentially by mediating the PD-1 and
NF-kB pathways. We propose and validate a
novel strategy to increase antitumor immunity
by downregulating OAS3, offering a clinically
actionable avenue to improve ccRCC therapy.
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