
 

 

INTRODUCTION 
 
Oxidative stress and free radicals  
 
Oxidative stress is defined as an imbalance in 
the formation and decomposition of reactive 
oxygen species, in favor of ROS increase. Reac-
tive oxygen species (ROS) are oxygen containing 
molecules which may be radical, for example, 
superoxide (O2•-) and hydroxyl radical (•OH) or 
non-radical, for example hydrogen peroxide 
(H2O2) and singlet oxygen (1O2).  Free radicals 
are defined as any chemical moiety capable of 
existing with a single electron in an orbital i.e. 
an unpaired electron (denoted as •).  It is this 
aspect which makes free radicals more reactive 

than non-radicals, since orbital pairing of elec-
trons increases stability. Formation of reactive 
oxygen (ROS) and nitrogen (RNS) species is in-
volved in many human pathologic conditions 
including certain types of human cancers, e.g., 
lung, breast and colon, as well as atherosclero-
sis, neurodegenerative diseases and aging [1, 
2]. ROS are generated in organisms by , X and 
UV radiation, biotransformation of dietary 
chemicals, some diet components, e.g. tran-
sient metal ions, inflammatory reactions and 
during normal cellular metabolism. The result-
ing disturbance of the pro-oxidant/antioxidant 
balance leads to a condition of oxidative stress, 
with subsequent oxidation of cellular compo-
nents, activation of cytoplasmic/nuclear signal 
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Abstract: DNA damage and DNA repair may mediate several cellular processes, like replication and transcription, 
mutagenesis and apoptosis and thus may be important factors in the development and pathology of an organism, 
including cancer. DNA is constantly damaged by reactive oxygen species (ROS) and reactive nitrogen species (RNS) 
directly and also by products of lipid peroxidation (LPO), which form exocyclic adducts to DNA bases. A wide variety of 
oxidatively-generated DNA lesions are present in living cells. 8-oxoguanine (8-oxoGua) is one of the best known DNA 
lesions due to its mutagenic properties. Among LPO-derived DNA base modifications the most intensively studied are 
ethenoadenine and ethenocytosine, highly miscoding DNA lesions considered as markers of oxidative stress and 
promutagenic DNA damage. Although at present it is impossible to directly answer the question concerning involve-
ment of oxidatively damaged DNA in cancer etiology, it is likely that oxidatively  modified DNA bases may serve as a 
source of mutations that initiate carcinogenesis and are involved in aging (i.e. they may be causal factors responsible 
for these processes). To counteract the deleterious effect of oxidatively damaged DNA, all organisms have developed 
several DNA repair mechanisms.  The efficiency of oxidatively damaged DNA repair was frequently found to be de-
creased in cancer patients. The present work reviews the basis for the biological significance of DNA damage, particu-
larly effects of 8-oxoGua and ethenoadduct occurrence in DNA in the aspect of cancer development, drawing atten-
tion to the multiplicity of proteins with repair activities. 
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transduction pathways, modulation of gene and 
protein expression and alteration of activities of 
DNA and RNA polymerases [3].  
 
Normal cellular metabolism appears to be a 
primary source for endogenous ROS. The most 
reactive ROS are hydroxyl radicals. Their cellular 
formation may be mediated by transition metal 
ions [4]. Labile iron and copper pools mediate 
production of •OH [1] in the metal-catalysed 
Haber-Weiss and Fenton reactions:  

 
2O2•- + 2H+ H2O2 + O2   (1) 
Me3+ + O2•- Me2+ + O2   (2) 
Me2+ + H2O2  Me3+ + OH• + OH-  (3,Fenton reaction)    

 
ROS attack all cellular components causing oxi-
dation and fragmentation of nucleic acids, pro-
teins and lipids.  
 
OXIDATIVELY-DERIVED DNA BASE MODIFICA-
TIONS 
 
The attack of hydroxyl radicals on DNA results in 
single or double strand breaks, generation of 
abasic sites, base and sugar lesions. Hydroxyl 
radicals cause ionization of DNA bases as well 
as of other cellular components. Free radical 
attack upon DNA generates a whole series of 
DNA damage, among them a large number of 
pyrimidine- and purine-derived lesions in DNA 
[5]. Some of these modified DNA bases have 
considerable potential to affect the integrity of 
the genome [6, 7]. The principal products in 
oxidatively damaged DNA include 8-oxo-7,8-
dihydroadenine (8-oxoAde), 8-oxo-7,8-
dihydroguanine (8-oxoGua); and its deoxynu-
cleoside equivalent, 8-oxodG, 5,6-dihydroxy-5,6-
dihydrothymine (thymine glycol, Tg) and ring-
opened lesions: 4,6-diamino-5-formamido-
pyrimidine (FapyAde) and 2,6-diamino-4-hydroxy
-5-formamidopyrimidine (FapyGua) [8, 9].  Ex-
amples of the most significant DNA lesions are 
presented in Figure 1.  
 
8-oxo-7,8-dihydroguanine is one of the most 
widely studied lesions. The presence of 8-
oxoGua residues in DNA leads to GCTA trans-
versions unless repaired prior to DNA replication 
[10]. Therefore, the presence of 8-oxoGua in 
cells may lead to point mutations. An elevated 
level of 8-oxoGua accompanies the develop-
ment of several human diseases. High concen-
trations of 8-oxoGua have been found in DNA of 
blood leukocytes and in the urine of lung and 
colon cancer patients. 8-oxoGua was also in-

creased in leukocytes of patients developing 
atherosclerosis and AIDS [11].  
 
Oxidized DNA bases may be derived either from 
the direct attack of ROS on DNA or may be in-
corporated from nucleotide pool by DNA poly-
merases. Purines and pyrimidines are 100 to 
1000-fold more susceptible to modification as 
mononucleosides and nucleotides or when they 
are present in ssDNA or RNA, than when they 
are protected in the ds helix structure. Nucleo-
tide pool modification is an important source of 
nucleic acid damage. Both DNA and RNA poly-
merases can discriminate unchanged and dam-
aged nucleotides, however, this discrimination 
is not complete and they incorporate damaged 
nucleotides into nucleic acids with a different 
frequency [12, 13].  
 
Unsaturated fatty acids also play an important 
role, since lipid peroxidation (LPO) yields a 
plethora of stable derivatives, which add to nu-
cleic acids forming exocyclic DNA adducts of 
high miscoding potential, as well as DNA-DNA 
and DNA-protein cross-links [14]. 
 
The major lipid peroxidation products are 
malondialdehyde, crotonaldehyde, trans-4-
hydroxy-2-nonenal (HNE) and many other prod-
ucts [15]. The most extensively studied are 1,N6

-ethenoadenine (A) and 3,N4-ethenocytosine   
(C) (Figure 1). Although the precise pathway of 
ethenoadducts formation in the cell is unknown, 

Figure 1. Major base lesions induced in DNA by   
oxidative stress and lipid peroxidation. 
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it is assumed on the basis of in vitro experi-
ments that they are the result of DNA bases 
interactions with LPO products. DNA-
ethenoadducts are lesions of high miscoding 
potential in mammalian cells [16, 17], inducing 
also recombination and chromosomal aberra-
tions [18], which are regarded as a good predic-
tive biomarker of cancer risk [19]. Exocyclic 
DNA adducts were found to be increased in in-
flammatory bowel disease, Crohn disease, and 
pro-cancerous metal storage diseases such as 
Wilson disease and primary hemochromatosis 
[14, 20]. Recently, increasing attention has 
been focused on bulky DNA adducts formed by 
the long-chain LPO products, such as HNE. An 
increased level of HNE accumulation was ob-
served in brain tissue and in the cerebrum of 
patients suffering from several neurodegenera-
tive disorders like Alzheimer’s (AD), Parkinson’s, 
Pick’s, amyotrophic lateral sclerosis and Hunt-
ington diseases [21]. Large amounts of HNE-
modified proteins were found in the brains 
(globus pallidus) of Cockayne Syndrome pa-
tients [22]. The level of HNE-dG adducts in hu-
man brains (post mortem) was evaluated as 
400 - 600 adducts per 109 normal nucleotides 
in the hippocampus [23]. These data unambigu-
ously point to the link between oxidative DNA 
damage and human pathologies. 
 
In view of the importance of DNA damage in 
carcinogenesis, it is conceivable that any agent 
capable of reacting with DNA and chemically 
modifying it could be carcinogenic. It is very 
likely that reactive oxygen species belong to this 
group. Moreover, many observations indicate a 
direct correlation between 8-oxoGua formation 
and carcinogenesis in vivo [6, 24] and that oxy-
gen-derived radicals are known to induce muta-
tions at hotspot codons of the human TP53 and 
Ha-ras genes [25, 26]. Therefore, oxidative 
damage to DNA may be critical to the develop-
ment of cancer. 
 
EFFECTS OF OXIDATIVELY DAMAGED DNA UPON 
THE CELL 
 
The effects of a significant number of DNA base 
modifications upon replication and transcription 
have been described. Many oxidative base le-
sions are mutagenic, irrespective of whether 
they are formed in situ, or arise by mis-
incorporation from the deoxynucleotide pool. 
Overall it seems that oxidatively-generated DNA 
lesions are best described as weakly mutagenic, 

for example, the frequency of mutations gener-
ated by 8-oxodG presence in mammalian cells 
DNA is 2.5 - 4.8%, although lesion formation, 
persistence and accumulation in vivo could in-
crease this value. At least two cellular proc-
esses may diminish 8-oxoGua mutagenic po-
tency: (i) DNA repair and (ii) translesion synthe-
sis by Y family DNA polymerases. 8-oxoGua con-
stitutes a moderate block for replicative DNA 
polymerases, which tend to incorporate A oppo-
site 8-oxoGua. Accurate and efficient replication 
through the 8-oxoGua is ensured by DNA poly-
merase  [27], which can substitute replicative 
DNA polymerases upon replication inhibition. 
Mutations are not the only effect of oxidative 
DNA damage. Literature data suggest that 
events at the DNA level other than mutations 
are potentially involved in pathogenesis. Oxi-
dants may affect gene expression either 
through ROS generation, or through interfering 
with transcription factor binding. Oxidants are 
known to modulate gene expression through 
alteration in cellular redox status. Redox status 
can alter transcription factor structure and bind-
ing of transcription factors to cognate DNA se-
quences through changes in cysteine reduction 
state and modification of zinc-finger domains 
[28]. Eucaryotic promoters usually contain GC-
rich regions, either flanking the TATA-box or rec-
ognized by transcription factors [29]. 8-oxoGua 
formation within this region may affect promoter 
methylation since it was shown that transfer of 
the methyl group by methyltransferases is inhib-
ited when the target sequence contains 8-
oxoGua [30]. Thus may also change the mRNA 
synthesis level.   
 
ROLE OF OXIDATIVELY DAMAGED DNA IN     
CARCINOGENESIS 
 
It is clear that one of the consequences of oxi-
dized base lesions persisting in DNA is muta-
tion. DNA mutation is a crucial step in carcino-
genesis and elevated levels of oxidatively-
generated DNA lesions have been noted in 
many tumors, strongly implicating such damage 
in the etiology of cancer. 
 
A potential role has been demonstrated for oxi-
dative mechanisms in the initiation, promotion 
and malignant conversion (progression) stages 
of carcinogenesis. Given that cumulative cancer 
risk increases with age and is associated with 
an accumulation of DNA damage, oxidatively 
damaged DNA has been investigated in cancer. 
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Lesions such as 8-oxodG are established bio-
markers of oxidative stress and coupled with 
their potential mutagenicity in mammalian cells. 
This has led to their proposed potential as inter-
mediate markers of a disease endpoint, for ex-
ample cancer. The findings that GCTA trans-
versions, potentially derived from 8-oxodG, have 
been observed in vivo, in the RAS oncogene and 
the TP53 tumour suppressor gene in lung and 
liver cancer [31, 32] support this proposal.  
 
Ethenoadducts in mammalian cells cause a 
broad spectrum of transversions and transi-
tions. A induces AT->GC, AT->TA, AT->CG [33], 
and C generates CG->AT, CG->TA, CG->GC base 
substitutions [34]. Such mutations are reported 
to be found in tumors associated with exposure 
to ethenoadduct forming chemicals in genes 
linked with cancer development e.g. TP53, Ha-
ras, Ki-ras [35, 36]. 
 
Numerous studies have attempted to establish 
a relationship between levels of oxidatively 
damaged DNA and cancer. Elevated levels of 
damage are reported to arise as a consequence 
of an environment in the tumor, which is low in 
antioxidant enzymes and high in ROS genera-
tion [37]. 
 
FACTORS THAT SHAPE THE BACKGROUND 
LEVEL OF 8-OXOGUA IN CELLULAR DNA AND 
THEIR RELEVANCE TO CARCINOGENESIS 
 
Antioxidant vitamins, uric acid versus the 8-
oxoGua level in cellular DNA 
 
Many epidemiological studies have reported an 
inverse association between vegetable and fruit 
consumption and occurrence of cancer and 
other degenerative diseases [38-40]. One of the 
possible mechanisms of this protective effect is 
by the antioxidative activities of such plant food 
constituents as vitamins A, C and E. These anti-
oxidant vitamins are effective free radical scav-
engers. They should protect biomolecules such 
as proteins, lipids and nucleic acids from oxida-
tive damage. Another effective scavenger of 
ROS is uric acid [41]. Uric acid at physiological 
concentration is regarded as the main antioxi-
dant and not only does it efficiently scavenge 
free radicals but it has also been shown to sta-
bilize ascorbic acid in human serum [42] and 
reduce consumption of α-tocopherol and β-
carotene [41]. 
 

One of the possible mechanisms of the protec-
tive effect of antioxidant vitamins against can-
cer development may be by decreasing the 
amount of potentially mutagenic oxidatively- 
modified DNA bases. Duthie et al. [43] found 
that supplementation of healthy volunteers with 
vitamin C (100 mg/day), vitamin E (280 mg/
day) and β-carotene (25 mg/day) significantly 
reduced base damage in lymphocyte DNA. 
Collins at al. [44] demonstrated a significant 
negative correlation between basal concentra-
tion of serum carotenoids and oxidatively modi-
fied pyrimidines. Supplementation of patients 
with carotenoids did not influence the level of 
oxidatively damaged DNA. The authors did not 
find any correlation between the damage and 
concentration of vitamins E and C. Moreover, 
the majority of intervention studies have failed 
to show clearly decreased oxidatively damaged 
DNA or cancer risk [45]. In our recently pub-
lished study, the relationship between the basal 
level of antioxidants (vitamins A, C and E and 
uric acid) and oxidatively damaged DNA repre-
sented by urinary excretion of 8-oxodG, 8-
oxoGua as well as the level of oxidatively dam-
aged DNA in leukocytes was analysed. Basal 
plasma levels of antioxidants may provide a 
better estimation of antioxidant status than sup-
plementation data, taking into account not only 
the consumption, which may reflect a transient 
state, but also the absorption and utilization. 
Our results revealed a weak, statistically signifi-
cant negative correlation between the analysed 
antioxidants and all the measured parameters 
of oxidatively damaged DNA. Therefore, the re-
sults suggest that the level of oxidative DNA 
lesions shows limited but significant response 
to antioxidants analysed in this study and is 
affected more by many other cellular functions 
like antioxidant enzymes or DNA repair enzymes 
as well as genetics [46]. 
 
In another study we have found that the en-
dogenous levels of the analyzed antioxidant 
vitamins in the plasma of colon cancer patients 
were significantly lower than that in the control 
group [47]. Members of the studied groups 
were chosen randomly and in a way to match 
feeding habits and living conditions. Therefore, 
it is rather unlikely that the different concentra-
tions of vitamins in their blood were the result of 
lifestyle. Severe oxidative stress, characteristic 
for colon cancer, resulting in the production of 
ROS is responsible for consumption of the anti-
oxidant vitamins. The decreased amount of uric 
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acid in blood plasma of colon cancer patients 
also supports this assumption. This prooxidative 
environment resulted in an increased amount of 
8-oxodG in lymphocyte DNA of cancer patients, 
where the level of this lesion was significantly 
higher (p=0.0034) than in the DNA of the con-
trol group [48]. These findings suggest that oxi-
dative stress may be characteristic not only for 
the diseased tissue but for some other tissues 
of the cancer patients. 
 
Iron as possible cause of 8-oxoGua and       
ethenoadducts accumulation 
 
Iron has the capacity to accept and donate elec-
trons easily, changing between ferric (Fe2+) and 
ferrous (Fe3+) iron. Due to this feature it is a 
useful component of cytochromes and oxygen 
binding molecules like hemoglobin and myoglo-
bin. However, inside the cell iron can exist in 
another form, as a “free” or “labile” iron (LIP, 
iron not bound to proteins). LIP- associated iron 
is in dynamic equilibrium with other seques-
tered iron forms in the cell and is bound to cyto-
solic low molecular weight ligands that have not 
yet been identified. This iron form is catalytically 
active and participates in the reaction involved 
in the production of harmful ROS (the Fenton 
reaction) and lipid peroxidation [49]. Iron ions 
circulate bound to plasma transferrin, whereas 
ferritin serves to accumulate them. We analyzed 
the broad spectrum of the components that 
affect iron metabolism and their possible asso-
ciation with the endogenous level of 8-oxodG 
[50,51]. No correlation has been found between 
the plasma concentration of ferritin or transfer-
rin saturation and the amount of 8-oxodG in the 
DNA of lymphocytes. On the other hand, a posi-
tive correlation has been observed between LIP 
and 8-oxodG [51]. This suggests that under 
physiological conditions LIP is available for cata-
lysing the Fenton type reaction in a close prox-
imity to cellular DNA. Neither the exact chemical 
nature of the complex between iron and DNA is 
known, nor is it established how iron can get 
into the nucleus. 
 
There are experimental data which demonstrate 
the existence of a free iron pool in patients with 
hemochromatosis [52]. Epidemiological data 
also show that elevation of the body iron level 
may increase the risk of liver cancer [53]. Iron 
overload may favor the persistence of harmful 
LIP, which can catalyse generation of the poten-
tially carcinogenic 8-oxodG, as well as ethe-
noadducts in cellular DNA [54]. 

ACCUMULATION OF 8-OXOGUA AND ETHENOAD-
DUCTS IN CANCER PATIENTS 
 
Analyses of 8oxoGua in human samples 
 
It is generally accepted that the products of 8-
oxoGua repair in cellular DNA are excreted into 
the urine without further metabolism [55, 56]. 
The presence of the modified nucleoside (8-
oxodG) in urine is commonly believed to repre-
sent either the primary repair product of the 
oxidative DNA damage in vivo, presumably via 
nucleotide excision repair (NER) [57-59] or is 
the effect of nucleotide pool sanitation by the 
MTH (Mut T Homolog) directed pathway (see 
also Nucleotide pool sanitation chapter). How-
ever, oxidatively damaged DNA bases probably 
appear in the urine as a consequence of the 
base excision repair (BER) activity [60, 61]. In 
our studies we have found that urinary excretion 
of 8-oxoGua and 8-oxodG does not depend on 
diet in the case of humans and may reflect in-
volvement of different repair mechanisms 
(respectively BER and NER) [62]. 
 
Since the level of the modified nucleosides/
bases in urine may be a general marker of oxi-
dative stress, we investigated whether the 
amount of 8-oxoGua and its nucleoside form (8-
oxodG) excreted into urine was higher in cancer 
patients than in the control group. The amount 
of the modified base, but not the nucleoside, 
excreted into urine was found to be approxi-
mately 50% higher in cancer patients suffering 
from lung, breast or prostate cancer than in the 
control group [63]. 
 
The higher level of 8-oxoGua in the urine of can-
cer patients may be explained by the reported 
oxidative stress in cancer tissue [37, 63-65]. 
However, the amount of the modified base/
nucleoside excreted into urine should represent 
the average rate of DNA damage in the whole 
body [56, 59]. It is doubtful that the elevated 
level of the base product in cancerous cells 
alone could account for the observed 50% in-
crease of 8-oxoGua in urine. Our results suggest 
rather that oxidative stress, represented by the 
increased amount of the compound in urine, 
may be characteristic not only for the diseased 
tissue but also for some other tissues (or the 
whole organism) of cancer patients. Although 
the precise mechanism(s) of oxidative stress is 
still unknown, it has been recently documented 
that cancer patients showed signs of extensive 
granulocyte activation with a release of reactive 
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oxygen species followed by a dramatic increase 
of 8-isoprostane, one of the biomarkers of oxi-
dative stress [66]. Malignant cells have also 
been found to produce hydrogen peroxide at 
levels as high as those characteristic for stimu-
lated polymorphonuclear leukocytes [67]. 
Therefore, one of the reasons for the observed 
oxidative stress in advanced stages of cancer 
may be the release of a large number of cancer 
cells into the blood stream [68] and their pene-
tration into other tissues. Another reason for the 
observed phenomenon could be that some tu-
mors may stimulate the defense systems of the 
body so that they react against the tumor to 
produce cytokines [69]. Some of the cytokines 
can be responsible for ROS production [70, 71]. 
On the other hand, it is also possible that a 
prooxidant environment is characteristic for 
advanced stages of cancer and that oxidative 
stress is rather a result of the disease develop-
ment. 
 
Cancer tissues 
 
Elevated levels of typical free radical-induced 
DNA base modifications have been found to 
exist in human cancerous tissues when com-
pared with the cancer-free surrounding tissue 
[63, 64, 72, 73]. The quantity of ethenoadducts 
in precancerous  tissues was observed to in-
crease in comparison to unaffected tissues. 
Polyps from FAP patients contain about twofold 
higher levels of A and C [74]. Significantly 
increased amounts of the abovementioned le-
sions have been reported in chronic pancreati-
tis, ulcerative colitis and Crohn’s desease, 
which all are inflammatory disorders that pre-
sent an elevated risk of cancer development 
[20]. 
 
It is not known whether these elevated levels of 
DNA lesions play a causative role in carcino-
genesis or are merely the result of the disease. 
However, a treatment of laboratory animals with 
carcinogenic agents causes a similar pattern of 
oxidative base modification in their target or-
gans before tumor formation occurs [75]. 
 
Our recent investigations of benign tumors 
showed that oxidative DNA damage might be a 
causative factor in cancer development. A 
higher endogenous level of 8-oxoGua in uterine 
myoma tissues was observed when compared 
to their respective tumor-free tissues [76]. One 
of the factors that may predispose to malignant 

transformation is the greater size of the tumor 
[77]. We have found a positive correlation be-
tween the size of the tumor and the amount of 
8‑oxoGua [76]. This suggests that the higher 
level of 8‑oxoGua and possibly other base le-
sions may be a risk factor that can determine 
the transformation of benign tumors to malig-
nant tumors. Conversely, the increased levels of 
modified DNA bases may contribute to the ge-
netic instability and metastatic potential of tu-
mor cells in fully developed cancer. 
 
REPAIR OF OXIDATIVELY DAMAGED DNA   
 
The major pathway to remove oxidized DNA 
bases and ethenoadducts is base excision re-
pair. BER can be divided into five steps: (i) exci-
sion of the damaged base by the specific DNA 
glycosylase and formation of an apurinic/
apyrimidinic (AP) site; (ii) cleavage of the phos-
phodiester bond at AP site by AP-endonuclease 
or AP-lyase; (iii) removal of chemical groups in-
terfering with gap filling and ligation; (iv) gap 
filling; (v) ligation [78]. The first step of the BER 
pathway, recognition and excision of the dam-
aged base by the specific DNA glycosylase, may 
be greatly influenced by the second BER path-
way enzyme, AP endonuclease. The major hu-
man enzyme APE1 in vitro stimulates excision of 
8-oxoGua and eC up to 400 fold by increasing 
enzyme turnover on damaged DNA [79, 80]. 
Other proteins that may affect the excision rate 
of oxidative DNA lesions are: XRCC1 (a platform 
protein, which is recruited to the site of damage 
by several DNA glycosylases and stays till liga-
tion, regulating consecutive stages of the BER, 
PARP1 (polyADP ribose polymerase), which 
binds to free DNA ends and protects them 
against degradation, participates in chromatin 
relaxation and modulates binding of repair pro-
teins to the site of damage by interaction with 
poly(ADP-ribose) chains [81-83]), PCNA 
(proliferating cell nuclear antigen, DNA poly-
merase processivity subunit in LP-BER), RFC 
(replication factor C, loading PCNA on DNA), 
WRN helicase (deficient in Werner syndrome, a 
premature aging disease [84]) or CSB 
(helicase/3’exonuclease, deficient in Cockayne 
syndrome, a neurodevelopmental and prema-
ture aging disease [85]).  
 
System “GO” for 8-oxoGua excision from DNA 
 
Repair of 8-oxoGua is a multi-step process, 
which includes the activity of three proteins 
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MTH, OGG1 and MYH acting in the so called 
“GO” system (Figure 2). MTH is pyrophospohy-
drolase, which eliminates 8-oxodGTP from the 
cellular nucleotide pool and prevents its incor-
poration into DNA. When 8-oxoGua arises via 
DNA base oxidation, it is removed by the BER 
glycosylase OGG1 that excises 8-oxoGua paired 
with C or T. If repair is not completed before 
replication, replicative DNA polymerases fre-
quently incorporate dA opposite 8-oxoGua, 
which results in GCTA substitutions. Mispairs 
8-oxoGua:A may be repaired via elimination of 
dA by MYH glycosylase. Subsequently DNA poly-
merase β fills the gap in the DNA strand with 
dCTP and generates an 8-oxoGua:C pair that 
can be processed by OGG1, leading to restora-
tion of the initial G:C pair. If 8-oxoGua is incorpo-
rated into DNA from the nucleotide pool, and 
paired with A, it can be excised by two proteins: 
OGG2 and NEIL2. However, mechanisms of dis-
tinguishing between template and new synthe-

sized DNA strand by repair glycosylases haven’t 
been proposed yet.   
 
Nucleotide pool sanitation 
 
All cells from bacteria to humans are equipped 
with phosphohydrolases that hydrolyse triphos-
phates of damaged nucleotides to monophos-
phates. Nucleotide monophosphate kinases can 
discriminate between damaged and unchanged 
nucleotides, and damaged nucleotides are not 
re-circulated to the cellular pool of nucleoside 
triphosphates, but instead they are dephos-
phorylated by nucleotidases and extruded from 
the cell, which prevents their incorporation into 
DNA by DNA polymerases [86].  
  
A role of MTH1 protein (8-oxodGTPase) 
 
In E.coli the MutT protein, is a pyrophosphohy-
drolase (i.e., 8-oxodGTPase) that hydrolyzes 8-

Figure 2. “GO” system  
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oxodGTP to 8-oxodGMP and inorganic pyrophos-
phate, thus eliminating this damaged dGTP 
from the dNTP pool and preventing it from being 
incorporated into the DNA [87]. An Escherichia 
coli strain carrying a knockout mutation in the 
mutT gene coding for this enzyme demonstrates 
a very strong mutator phenotype [88] character-
ized by at least 1000-fold increase in the fre-
quency of AT → CG point mutations [89, 90]. 
Maki and Sekiguchi found that MutT protein 
most effectively hydrolyzes 8-oxodGTP thereby 
preventing its incorporation into DNA during 
DNA replication [87]. Thus, an antimutagenic 
function of the MutT protein has been attributed 
to decomposing 8-oxodGTP which otherwise 
may cause AT → CG transversions. Mammalian 
homologues of the bacterial mutT gene have 
been cloned, characterized, and designated 
MTH1 genes (mutT homologue 1) [91]. Trans-
fection of the human MTH1 gene into mutT ¯  E. 
coli resulted in partial reversal of the mutator 
phenotype [92], and transfection of mouse and 
rat genes resulted in a complete reversal [93, 
94] of the high AT → CG point mutation rate, 
typical for incorporational mutagenicity of 8-
oxodGTP observed in these mutants. Therefore, 
the mammalian MTH1 proteins coded by these 
genes have been proposed to play the same 
role in sanitizing free nucleotide pools. Indeed, 
human [95], mouse [93, 96], rat [94, 97], and 
hamster [98, 99] MTH1 proteins are nucleoside 
5′-triphosphate pyrophosphohyrolases that very 
effectively decompose 8-oxodGTP. This is why 
these mammalian enzymes are most frequently 
called 8‑oxodGTPases. Although hMTH1 de-
composes most effectively 2-hydroxy-2′-
deoxyadenosine 5′-triphosphate (2-OH-dATP) 
[100], 2-hydroxyadenosine 5′-triphosphate (2-
OH-ATP) [101], 8‑oxodGTP [95], and 8-oxo-2′-
deoxyadenosine 5′-triphosphate (8-oxodATP) 
[100], it is also capable of hydrolyzing less ef-
fectively 8-oxoguanosine 5′-triphosphate (8-
oxoGTP) [102], 8-chloro-2′-deoxyguanosine 5′-
triphosphate (8-Cl-dGTP) [103] and canonical 
deoxyribonucleoside and ribonucleoside 5’-
triphosphates, such as dGTP [95]. Four isolated 
forms of hMTH1 protein (p18, p21, p22 and 
p26) demonstrate equal activity towards 8-
oxodGTP [104]. Human 18-kDa 8-oxodGTPase 
was shown to be located mostly in cytosolic and 
mitochondrial soluble fractions [105], although 
rat tissues also revealed an apparent nuclear 
localization of the MTH1 protein [106].  
 
MTH1 and carcinogenesis   
 

Recent models of cancer development assume 
a formation of the mutator cell in the early stage 
of the cell transformation. A knockout of the 
MTH1 gene was anticipated to generate a mam-
malian mutator cell. However, such a knockout 
mutation in the MTH1 gene has not been dis-
covered in mammalian cancer cells. Surpris-
ingly, instead of that, a characteristic overex-
pression of MTH1 has been noticed in different 
cancer cells and tissues as compared to their 
healthy counterparts [107-111]. Since this over-
expression in the cancer cells was most fre-
quently assigned to a state of persistent oxida-
tive stress in these cells, it has also been pro-
posed that MTH1 overexpression might be a 
marker of oxidative stress [107, 109]. Although 
an induction of MTH1 expression by high con-
centrations of hydrogen peroxide [111] and the 
free radical-generating crocidolite asbestos 
[112] has been recently demonstrated, different 
aspects of MTH1 gene expression regulation in 
normal and cancer cells still remain unclear. 
 
A better insight into the role of the MTH1 pro-
tein has been acquired by the creation of MTH1 
nullizygous cell lines and mice [113]. These 
transgenic mice, defective in MTH1 gene and 
devoid of 8-oxodGTP pyrophosphohydrolase 
activity, demonstrated higher incidence of lung, 
liver, and stomach cancers accompanied by a 2-
fold increase in spontaneous mutation fre-
quency in the Hprt gene, as compared to wild 
type mice [114]. Nevertheless, this slightly 
higher mutation rate has not been confirmed in 
a more recent study that showed the same level 
of mutation frequency in the rpsL reporter gene 
of E. coli, introduced into both MTH1+/+ and 
MTH1¯ /¯ backgrounds [115]. 
 
In our recent study we have found that the 8-
oxoGua level in human DNA is determined not 
only by its excision rate, but also by the fre-
quency of its incorporation from  the oxidatively 
modified  nucleotide pool into DNA by DNA poly-
merases, and the latter may be the most impor-
tant contributor [116]. When studying the 8-
oxoGua level in DNA, OGG1 repair activity and 
MTH1 activity in tumors and surrounding lung 
tissue, without histological changes (normal 
lung) of lung cancer patients, we found that the 
8-oxoGua level was lower in tumor than in nor-
mal lung tissue, OGG1 activity was also lower in 
tumor, but MTH1 activity was higher in tumor 
than in normal lung. The activity of MTH1 was 
three orders of magnitude higher than that of 
OGG1. This great difference can be attributed 
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mostly to differences in the turnover of these 
enzymes, since the expression of MTH1 and 
OGG1 mRNAs is similar [117]. The role of MTH1 
protein is further highlighted by the observation 
that overexpression of MTH1 protein in mis-
match repair deficient cell lines decreased the 
mutation rates to normal and reduced microsa-
tellite instability which was accompanied by 
reduction of the 8-oxodG level in DNA [118]. 
Also the expression levels of MTH1 mRNA were 
inversely proportional to the levels of 8-oxodG in 
DNA in 11 human lung cancer cell lines and SV-
transformed non-tumorigenic human bronchial 
epithelial cells [109]. The higher activity of 8-
oxodGTPase also coincided with lower back-
ground levels of 8-oxodG in DNA of fetal com-
pared with maternal mouse organs [96]. 
 
BASE EXCISION REPAIR AS A RISK FACTOR IN 
CARCINOGENESIS 
 
Functional studies 
 
Epidemiological studies suggest that the etiol-
ogy of some types of human cancers is closely 
related to chronic inflammations and infections. 
We have studied repair of oxidative DNA dam-
age in lung cancer patients. Lung cancer is the 
most frequent cancer type all over the world 
[119, 120]. In the Caucasian population ap-
proximately 80 % of lung cancer cases are 
caused by tobacco smoking [119, 120]. To-
bacco smoke contains over 4,000 compounds, 
and generates the formation of ROS as well as 
chronic lung inflammation [121]. ROS and RNS 
can cause lipid peroxidation, oxidation of DNA 
and protein thiols, as well as protein nitrosyla-
tion [15]. 
 
We have investigated repair of three oxidative 
DNA lesions, 8-oxoGua and two, which were 
induced by interaction of lipid peroxidation prod-
ucts with DNA, 1,N6-ethenoadenine (A) and 
3,N4-ethenocytosine (C). These DNA lesions 
show high miscoding potential in mammalian 
cells [16, 17, 122] also inducing recombination 
and chromosomal aberrations [18].  
 
In humans the major 8-oxoGua DNA glycosylase 
is OGG1 [123], while A is eliminated from DNA 
by alkylpurine-DNA-N-glycosylase (ANPG) [124] 
and C by mismatch specific thymine-DNA-
glycosylase (TDG) [125]. Both latter enzymes 
are monofunctional DNA-glycosylases and re-
quire AP-endonuclease to incise DNA at the site 

of the removed base, while OGG1 is glycosy-
lase/AP-lyase. OGG1 AP-lyase activity is, how-
ever 10-fold lower than that of N-glycosylase, so 
strand incision is mostly dependent on the avail-
ability of APE1 [79, 80]. 
 
TDG excises C from the whole genome [125]. 
CpG sites are additionally processed by MBD4 
glycosylase, which removes C and T from G:T 
mismatches specifically from CpG sites [126]. It 
has also been suggested that ethenoadducts 
may also be repaired via oxidative dealkylation 
catalyzed by AlkB type protein(s) [127]. AlkB 
contribution to overall repair yield of this type of 
DNA damage has not been elucidated.  
 
We have measured the level, and repair rates of 
8-oxoGua, A and C in blood leukocytes of lung 
cancer patients, as well as in blood leukocytes 
of healthy individuals, matched with cancer pa-
tients for age, gender and lifestyle habits.  
 
When comparing repair activities between can-
cer patients and controls, we have observed 
that repair capacity for 8-oxoGua and A was 
significantly lower in blood leukocytes of lung 
cancer patients than in leukocytes of healthy 
volunteers [128, 129]. Studies of Livneh and 
coworkers also demonstrate decreased 8-
oxoGua repair capacity in lung as well as in 
head and neck cancer patients [130, 131]. Con-
sistently, the 8-oxoGua level in DNA from leuko-
cytes of cancer patients was higher than that in 
healthy controls. Urinary excretion of 8-oxoGua 
was higher in smoking individuals, regardless of 
their health status, than in non-smokers. Since 
oxidatively-generated DNA insults represented 
by urinary excretion of oxidatively-derived DNA 
lesions was similar in both groups of subjects 
with similar smoking status, it appears likely 
that a higher rate of oxidative damage genera-
tion in cellular DNA of lung cancer patients is 
the result of the deficiency of repair mechanism
(s) in this group.  
 
Lung adenocarcinoma (AD) is a histological type 
of cancer whose etiology is linked to prolonged 
inflammation and healing of scars [132]. Repair 
activities for C were lower than in healthy vol-
unteers only in individuals with AD. Also the dif-
ference in A repair rate between healthy volun-
teers and cancer patients was much greater for 
AD than for all cancer patients (Figure 3) No 
differences were observed in repair rates of 8-
oxoguanine. This suggests that the etiology of 



DNA damage and repair in cancer and aging  

 
 
263                                                                                                             Am J Transl Res 2010;2(3):254-284 

lung adenocarcinoma may be related to ineffi-
cient repair of exocyclic DNA adducts, derived 
from lipid peroxidation (LPO). In only two other 
studies LPO has been linked to progression of 
lung cancer [133, 134]. However, this suggests 
that the development of different histological 
types of lung cancer occurs by different path-
ways, and that in the development of lung ade-
nocarcinoma the deficiency of repair of lipid 
peroxidation derived DNA damage is one of the 
risk factors. 
 
These functional studies show that decreased 
efficiency of BER to eliminate from DNA oxida-
tively-generated DNA lesions, 8-oxoGua, A and 
C may be a risk factor for the development of 
lung and other cancers. Molecular mechanisms 
responsible for this phenomenon are, however, 
only partially elucidated, and may include repair 
genes polymorphism, transcriptional activation/
down-regulation of specific repair genes by in-
flammatory processes and certain nutrients, 

post-translational modifications of repair en-
zymes and possibly other factors.  
 
Polymorphism of Base Excision Repair genes  
 
Several polymorphisms of DNA glycosylases 
responsible for excision of 8-oxoGua are known, 
and their presence in human genomes has 
been linked to the risk of developing specific 
types of cancers. It has been suggested that 
polymorphism in DNA repair genes may be asso-
ciated with differences in the repair efficiency of 
DNA damage [135]. Some studies suggest in-
volvement of the hOGG1 polymorphism in sev-
eral human cancers [136]. 
 
Few hOGG1 polymorphisms have been de-
scribed and the most common Ser326Cys. 326 
Cys allele is found in approximately 40% of the 
Caucasian population. 326Cys OGG1 binds DNA 
lesions with significantly lower affinity and ex-
cises 8-oxoGua from duplex DNA and cleaves 

Figure 3. Base excision activity toward ethenoadducts: (A,C) A; (B,D) C in lung cancer patients. SQ squamous cell 
carcinoma; AD – adenocarcinoma. 
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abasic sites at rates 2- to 6-fold lower than the 
wild-type enzyme, depending upon the base 
opposite the lesion. In contrast to the wild type 
enzyme the OGG1 326 Cys variant binds dam-
aged DNA as a dimer, both in vitro and in hu-
man cells and is not significantly stimulated by 
the presence of AP-endonuclease [137], and it 
is not relocalized to nucleus during the S-phase 
of the cell cycle [138]. The altered substrate 
specificity, lack of stimulation by AP-
endonuclease 1 (APE1) and anomalous DNA 
binding conformation of 326Cys OGG1 may be 
responsible to its linkage to cancer incidence 
[137]. A recent finding of Bravard and cowork-
ers [139] indicates that the OGG1 Cys variant is 
more sensitive to inactivation by oxidizing 
agents than the Ser variant, and a reducing en-
vironment may restore excision activity of the 
Cys variant to that of Ser one. This might sug-
gest that under oxidative stress individuals with 
the OGG1 326 Cys/Cys genotype may be under 
increased risk of cancer development. 
 
It was suggested that the presence of two 
hOGG1 326Cys alleles confers a 2-fold in-
creased risk of lung cancer [140, 141], and also 
an elevated risk of prostate cancer and naso-
pharyngeal carcinoma [142, 143], but not of 
colon cancer [144]. However, the results of 
other studies are contradictory. The 8-oxoGua 
excision rate probably depends on many other 
factors, since excision activities in human lym-
phocytes were reported not to be affected by 
the polymorphic status at codon 326 of the 
hOGG1 gene [145]. Since excision activity of 
OGG1 glycosylase may depend on several pro-
tein interactions among partners of the BER 
pathway, e.g. XRCC1 and APE1, further studies 
are needed to determine whether the polymor-
phism of Ser326Cys of hOGG1 is a significant 
risk factor for human cancers associated with 
oxidative DNA damage. 
 
Less frequent OGG1 polymorphisms are 
Arg46Gln and Arg154His [146]. Both variants 
were found in human lung and gastric cancers, 
respectively, and the latter in blood leukocytes. 
Both have a reduced activity for excision of 8-
oxoGua. In addition, the Arg 154 change to His 
relaxes the OGG1 requirement for a pyrimidine 
opposite 8-oxoGua. Since replicative DNA poly-
merases readily incorporate A opposite 8-
oxoGua, such a change in substrate specificity 
confers a mutator character on this OGG1 vari-
ant. Due to the rarity of both polymorphisms 

their relation with human cancers was not es-
tablished.  
 
Bacterial MutY glycosylase and its human ho-
molog hMYH excise adenine incorporated into 
DNA opposite 8-oxoGua by replicative DNA poly-
merases. In bacteria lack of MutY protein in-
creases the spontaneous mutation rate 1000-
fold, indicating the enzyme’s role in correcting 
replicative errors [147]. In humans alternative 
splicing gives type 1 (535 amino acids) protein, 
which localizes in mitochondria and type 2 (521 
amino acids) lacking the mitochondrial trans-
port signal and localizing in nucleus. Seven dif-
ferent polymorphisms of the hMYH gene are 
known [146]. Polymorphisms Gln324His of type 
1 protein and Gln310His of type 2 do not 
change the enzyme activity. Two other base sub-
stitutions Gly328Asp and Tyr165Cys diminish 
the glycosylase activity towards 8-oxoGua:A and 
are risk factors for colorectal tumors. These 
hMYH polymorphisms in colorectal tumors were 
associated with GC→TA transversions in the 
APC gene [146]. Two nonsense mutations, 
Tyr90 to stop and Glu466 to stop are also asso-
ciated with a possible risk of colorectal tumors. 
Two intronic polymorphisms were also found: G/
C in intron 1, which induces alternative splicing 
and reduces translation efficiency and A/G in 
intron 10, inducing production of truncated pro-
tein, which is not localized in the nucleus.  
 
Surprisingly, very few polymorphisms were 
found in human genes coding for DNA glycosy-
lases excising exocyclic DNA adducts A (ANPG) 
and C (TDG). The ones which were found are 
rare and do not change the efficiency of exci-
sion [148, 149]. 
 
Several sequence variants were identified in the 
APE1 gene, the major ones are Gln51His, 
Ile64Val and Asp148Glu. Asp148Glu was asso-
ciated with hypersensitivity to ionizing radiation 
[150], and the presence of Ile64Val decreased 
lung cancer risk [151]. Association of the 
Asp148Glu polymorphism with lung and other 
cancers has not been demonstrated [152, 
153]. 
 
More than 60 validated single nucleotide poly-
morphisms in the XRCC1 gene are listed in the 
Ensembl database. The most extensively stud-
ied are three genetic changes Arg194Trp, Ar-
g280His, Arg399Gln [152]. The XRCC1 
Arg399Gln genotype was linked with increased 
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risk of tobacco-related cancers among light 
smokers, but decreased risk among heavy 
smokers. There are also controversial data on 
association of XRCC1 Arg280His and 
Arg399Gln polymorphisms with increased levels 
of benzo[a]pyrene and other DNA adducts as 
well as increased frequency of chromosomal 
aberrations [19, 152], a biomarker of cancer 
risk.  
 
Extensive search for SNPs revealed that cancer 
risk may be increased in individuals bearing not 
one, but multiple polymorphisms in DNA repair 
genes, which if present separately have no ef-
fect on the frequency of cancer development. 
For example simultaneous presence of APE1 
Asp148Glu and XRCC1 Arg194Trp polymor-
phisms increase the risk of pancreatic cancer, 
while each of these variants separately has no 
effect [153]. 
 
Transcriptional regulation of BER 
 
Transcription of BER genes is regulated in the 
cell cycle and may also be affected by increased 
oxidative stress [154]. The mRNA level of al-
kylpurine-DNA-N-glycosylase (ANPG), human 
thymine glycol-DNA-glycosylase (NTH), uracil-
DNA-glycosylase (UDG), and human AP-
endonuclease (APE) increase 2.5 – 3.5-fold dur-
ing the G1 phase of the cell cycle, remain con-
stant during the S phase, and decrease to the 
basal level after mitosis. In contrast, expression 
of the hOGG1 gene is not regulated during the 
cell cycle [155]. 
 
BER genes may be also activated by hydrogen 
peroxide and other ROS. Oxidative stress in-
creases hMTH1 mRNA expression 2-3-fold and 
enzyme activity in cultured human fibroblasts 
[111], as well as hOGG1 mRNA and 8-oxoGua 
excising activity [112]. Transcription of the ma-
jor human AP-endonuclease, APE1 is also aug-
mented in response to ROS [156]. Since APE1 
stimulates in vitro excision activity of OGG1 and 
TDG glycosylases several-fold [79, 80] stimula-
tion of APE1 transcription will also stimulate 8-
oxoGua and C excision rate. Thus, inflamma-
tions and infections may exert a stimulatory 
effect on DNA repair by stimulating transcription 
of the BER system genes [157]. 
 
Cancer patients are usually characterized by 
increased oxidative stress, and one of the rea-
sons is the depletion of antioxidant vitamins in 

these individuals [158]. Wilson and coworkers 
[159] showed that repair of 8-oxoGua was in-
duced 5-6-fold by simultaneous treatment of 
cells with ascorbate and α-tocopherol. This in-
crease was accompanied by the increase of the 
level of DNA polymerase β and this could result 
from induced de novo synthesis of the enzyme. 
Dietary vitamins intake and/or individual vita-
min absorption limitations may then influence 
an individual's oxidative DNA damage repair 
capacity. Additional studies are necessary to 
elucidate the importance of antioxidant vitamin 
intake/absorption for repair of oxidative DNA 
damage in the whole organism.  
 
Post-translational modifications of BER proteins 
 
Several model studies demonstrate that repair 
activity of BER enzymes may be modulated by 
post-translational modifications, both non-
enzymatic and enzymatic. The major enzymatic 
modifications include phosphorylation, acetyla-
tion and sumoylation. 
 
OGG1 is phosphorylated by protein kinase C, 
Cdk4 and c-Abl kinases at several positions. Ser 
326 phosphorylation triggers relocalisation of 
OGG1 from the cytoplasm to nucleoli during S-
phase, but does not affect the enzyme’s exci-
sion activity [138]. Phosphorylation by Cdk 
kinase increases 8-oxoGua excision rate over 2-
fold [123]. Phosphorylation of hMYH increases 
excision rate of A from 8-oxoGua:A pair. Defec-
tive phosphorylation of wild type hMYH was ob-
served in colon cancer cell lines [160]. Phos-
phorylation of UNG2 glycosylase at Thr6 and 
Thr126 occurs 2 hrs after UV irradiation of 
mammalian cells and increases enzyme activity 
to remove from DNA uracil formed by UV-
induced cytosine demination. Dephosphoryla-
tion is catalysed 8-10 hrs after UV treatment by 
TP53-induced magnesium dependent protein 
phosphatase 1D [161]. 
 
Acetylation by p300 protein is a common 
mechanism regulating the activity of several 
BER proteins, namely OGG1, TDG, NEIL2, polβ 
and APE1. OGG1 acetylation (Lys41 and 
Lys338) decreases OGG1 affinity for AP-sites 
and increases enzyme turnover, as well as in-
creases its stimulation by APE1 [162]. In HeLa 
cells about 20% of OGG1 molecules are acety-
lated. The level of OGG1 acetylation is doubled 
upon oxidative stress. Acetylation of TDG occurs 
in an enzyme region responsible for interaction 
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with APE1 and abolishes its stimulation by 
APE1, but not DNA binding [163]. TDG acetyla-
tion releases it from the complex CBP/p300 
and may play the role of a molecular switch be-
tween two functions of TDG protein, DNA repair 
and the role of a transcription factor [163]. Ace-
tylation of NEIL2 at Lys49 significantly de-
creases glycosylase and AP-lyase activity of the 
enzyme [164]. Acetylation of polβ at Lys47 de-
creases its dRP-lyase activity, but not DNA poly-
merase activity [165]. It is speculated that polβ 
acetylation may play a role in BER directing to-
wards SP- or LP-BER. 
 
Sumoylation is an important mechanism chang-
ing conformation and activity of TDG glycosy-
lase. Unsumoylated TDG has high affinity for 
DNA containing G:T and G:U mismatches as well 
as C and excises T, U and C from DNA. The 
enzyme also has high affinity to AP-sites and 
does not leave the reaction product. Binding of 
SUMO1 and SUMO2/3 proteins at Lys 330 in C-
terminal domain of the TDG glycosylase 
changes enzyme conformation in the N-terminal 
part. Change of conformation decreases en-
zyme affinity for DNA and facilitates its stimula-
tion by APE1 [166]. 
 
The major known non-enzymatic modification of 
repair proteins is nitrosylation. Exogenous nitric 
oxide and peroxynitrite were shown to inhibit 
OGG1 [167], DNA ligase [168] formami-
dopyrimidine-DNA-glycosylase [169] and O6-
alkylguanine-DNA-alkyltransferase by direct ni-
trosylation [170]. Inflammatory processes may 
then, on the one hand stimulate transcription, 
and on the other, directly inactivate some repair 
enzymes. 
 
Although currently nothing is known whether the 
above mentioned modifications play a role in 
carcinogenesis induction or progression, such 
mechanisms cannot be excluded since  the 
level of MutY protein phospohorylation can af-
fect its activity within the cell. MutY is adenine 
glycosylase that removes adenines from A:8-
oxoGua mispairs. Experiments using colon can-
cer cell lines which did not exhibit mutations in 
the MutY gene, showed that defective repair of 
A:8-oxoGua may be at least in part the conse-
quence of alterations in endogenous phosphory-
lation of the MutY protein [160]. 
 
The influence of post-translational modifications 
of BER enzymes on repair efficiencies in the 

whole organism awaits further research. 
 
DNA REPAIR IN CANCER TISSUES 
 
Cancer cells are characterized by increased 
oxidative insult and great genomic instability, 
which results in changed metabolism, cell cycle 
frequency and loss of heterozygosity (LOH). We 
have analyzed the DNA damage level and the 
rate of A, C and 8-oxoGua repair in lung tu-
mours and unaffected lung tissues from lung 
cancer patients. No difference in A and C level 
between tumor and unaffected lung was re-
corded, however, a significant increase in the 
excision rate of these two modified bases was 
observed in the tumor tissue, suggesting that 
oxidative stress is increased in cancer cells and 
that repair mechanisms may compensate it. 
Similarly, in colon benign adenomatous polyps 
the level of A and C was augmented, reflect-
ing increased oxidative stress in disease devel-
opment. However, disease progression to carci-
noma is accompanied by a drastic decrease of 
the ethenoadduct level in DNA of tumors, even 
below that in unaffected colon [171]. Tumors 
have a higher content of cells in the S-phase. 
Expression of some DNA-glycosylases and AP-
endonuclease genes was shown to be cell cycle 
dependent [155]. The mRNA levels of al-
kylpurine-DNA-N-glycosylase (ANPG), human 
thymine glycol-DNA-glycosylase (NTH), uracil-
DNA-glycosylase (UDG), and human AP-
endonuclease (APE) increase 2.5 – 3.5-fold dur-
ing the G1 phase of the cell cycle, remain con-
stant during the S phase, and decrease to the 
basal level after mitosis. However, expression 
levels of the TDG gene is not regulated during 
the cell cycle [155]. It is thus possible that the 
increase of εC repair capacity in tumors was 
due to an increase in AP-endonuclease expres-
sion during the S phase of the cell cycle [155]. 
The enzyme transcript levels have been found 
to be elevated in a number of cancers [154, 
172-174].  
 
Surprisingly we observed decreased 8-oxoGua 
excision activity in tumor lung tissue in compari-
son with unaffected surrounding areas. The 
mechanism of this decrease is not known, but 
probably is not related to mutations in the 
OGG1 gene in the tumor, since they have been 
found in only 4% of human kidney cancers, and 
were also sporadic in lung cancers [175]. Some 
studies have shown frequent allelic loss in can-
cer tissue of chromosome fragments in the posi-
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tion, in which the OGG1 gene is located. Accord-
ingly, a decrease of OGG1 expression was ob-
served, e.g. in head and neck squamous cancer 
cases [176]. However, loss of heterozygosity in 
the OGG1 locus may vary between cancer types. 
No differences in OGG1 expression were ob-
served between tumor and unaffected sur-
roundings in human lung and kidney cancers 
[175]. In model systems OGG1 activity is stimu-
lated by at least two proteins, APE and XRCC1 
[79, 177]. Deregulation in tumor tissue of OGG1 
cooperation with downstream partners of the 
BER pathway cannot be excluded, although APE 
expression was shown to increase in tumors.  
 
The decrease of OGG1 activity may also be tu-
mor-specific, driven by the loss of OGG1 activa-
tors in tumor tissue. One such gene may be a 
tumor suppressor protein – tuberin.  In tuberin 
deficient Ekert rats, which spontaneously de-
velop renal cancers, OGG1 expression and ac-
tivity was reduced 3-fold [178]. Tumor-specific 
regulation of 8-oxoGua excision activity may 
also be due to mutations in the tumor suppres-
sor gene TP53. It was recently shown that TP53 
plays a central role in the cellular response to 
genotoxic stress and is associated with the DNA 
repair machinery which involves base excision 
repair (BER). In TP53 temperature-sensitive (ts) 
mutants of murine and human origin cell ex-
tracts overexpressing TP53 were found to ex-
hibit an augmented BER activity measured in an 
in vitro assay. Depletion of TP53 from the nu-
clear extracts abolished this enhanced activity 
[179]. TP53 may also interact directly with the 
BER complex. For example it was found that 
recombinant TP53 protein stimulated an in vitro 
reconstituted BER assay, potentially by binding 
APE-1 and regulating DNA polymerase β (pol β) 
loading onto AP-sites [180]. On the other hand 
TP53 may also regulate genes involved in BER 
[181]. TP53 null cells treated with the base 
damaging alkylating agent, MMS exhibited slow 
BER, as measured in vivo using an alkaline 
comet assay. In this experimental system, pol β 
protein levels correlated with wild type TP3 
status, though APE1 levels and activity were 
unaffected. In fact, previous studies have identi-
fied polβ as a DNA damage inducible gene 
[182], thus raising the possibility that it is tran-
scriptionally regulated by TP53. 
 
Another signaling protein that might regulate 
repair of oxidative DNA damage in cancer tis-
sues is APC protein. APC tumor suppressor pro-

tein inhibits long patch BER (LP-BER, e.g. en-
gaged in repair of A and C) via direct interac-
tion with DNA polymerase β and FEN-1 
endonuclease [183]. BER activity was inversely 
associated with APC expression in several 
breast cancer cell lines [184]. Since mutations 
in the APC gene are early events in colorectal 
carcinogenesis, and they are found in about 37 
% of colon tumors [185], this mechanism may 
be important in regulating repair of 
ethenoadducts in colon tumors. Over-
stimulating and un-balancing of BER may in turn 
favor genomic instability and in consequence 
cancer progression. It was shown that in tissues 
from non-cancerous colons of ulcerative colitis 
patients, methylpurine-DNA glycosylase (ANPG) 
and abasic site endonuclease (APE1) were 
significantly increased, and microsatellite 
instability (MSI) was positively correlated with 
their imbalanced repair enzymatic activities. 
These latter results were supported by 
mechanistic studies using yeast and human cell 
models in which overexpression of Mpg and/or 
Ape1 was associated with frameshift mutations 
and MSI [186].  
 
Unbalanced expression of DNA repair enzymes 
may also affect cellular availability of signaling 
molecules. APE1 is a redox factor for several 
transcription factors including AP-1, HIF1-alpha, 
and TP53 [187]. Thymine-DNA glycosylase 
(TDG) also stimulates transcription of TP53 fam-
ily proteins, TP53 and TP73, and stimulates 
growth repression, mediated by these proteins 
[188]. So overexpression of some BER en-
zymes, like APE1, on the one hand will stimulate 
genome instability, and on the other will repress 
cell growth to enable DNA repair.  
 
OXIDATIVE PROCESSES IN AGING 
 
Lipid peroxidation as an endogenous source of 
degeneration and aging  
 
Lipid peroxidation is implicated in aging as well 
as in the pathogenesis of numerous human 
diseases, including atherosclerosis, cancer, 
diabetes and arthritis [189]. A significant in-
crease in the LPO level was found in skeletal 
muscle of old individuals [190], as well as in 
hepatocytes isolated from old ovariectomized 
rats [191].   
 
Peroxidation of cellular membrane lipids, or 
circulating lipoprotein molecules generates 



DNA damage and repair in cancer and aging  

 
 
268                                                                                                             Am J Transl Res 2010;2(3):254-284 

highly reactive aldehydes among which one of 
most important is 4-hydroxynonenal (HNE, Fig-
ure 4). The level of HNE is increased in brain 
tissue and cerebrospinal fluid of Alzheimer dis-
ease patients, and in the spinal cord of amyotro-
phic lateral sclerosis (ALS) patients. Increased 
levels of HNE in neurodegenerative disorders 
and immunohistochemical distribution of HNE 
in brain tissue indicate the pathophysiological 
role of oxidative stress in these diseases, and 
especially HNE in formation of abnormal fila-
ment deposits [21]. 
 
Physiological concentrations of HNE vary from 
0.1-3 µM, and can increase up to 50 µM or 
even millimolar values under oxidative stress 
[192, 193]. Within cells, HNE binds primarily to 
thiols and proteins, depleting glutathione levels 
and forming protein-protein cross-links, which 
may accelerate formation of deposits [192]. 
Glutathione depletion by HNE is probably an 
important mechanism of aging. Lifespan and 
stress resistance of Caenorhabditis elegans are 
increased by expression of glutathione trans-
ferases capable of metabolizing HNE [194]. 
 
HNE also forms bulky adducts to DNA bases. 
These are exocylic propano- and etheno-type 
adducts, which bear six or seven carbon atom 
side chains (Figure 4) [195]. These adducts are 
relatively unstable, and may rearrange, forming 

DNA intra- and interstrand cross-links [196], as 
well as DNA-protein cross-links [197]. HNE-dG 
adducts were detected in DNA of unexposed 
humans and rodents, which indicates their en-
dogenous origin [198, 199].  
 
We have shown that HNE-DNA adducts block 
replication, trigger recombination, base substi-
tutions and frameshift mutations in a model 
system, ssM13 phage [195, 200]. Other studies 
showed that in mammalian cells HNE increases 
the frequency of micronuclei, chromosomal ab-
errations, sister-chromatid exchanges [201-
203] and point mutations [204], already at low, 
physiological concentrations of 0.1-10 µM. HNE 
also exerts a clastogenic effect in human cells, 
possibly via inactivation of the functional SH 
groups in DNA polymerases [205].  
 
Several degenerative diseases are related to 
malfunctioning of DNA repair. One of such dis-
eases is Cockayne syndrome (CS), which is 
characterized by traits reminiscent of normal 
aging, such as neurological degeneration, cata-
racts and systemic growth failure. The majority 
of CS cases are caused by defects in the CS 
complementation group B (CSB) protein. The 
CSB gene encodes a 168 kDa protein belonging 
to the SWI2/SNF2 protein family. The CSB pro-
tein participates in both sub-pathways of nu-
cleotide excision repair (NER), mainly in tran-

Figure 4. Examples of HNE and its epoxide adducts to deoxyguanosine. 
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scription-coupled repair (TCR), but also in global 
genome repair (GGR). CSB is also engaged in 
base excision repair (BER) of certain types of 
oxidative DNA damage, e.g. 8-oxoGua [206], in 
the poly(ADP-ribose) polymerase-1 (PARP-1) 
mediated response to oxidative DNA damage 
[207], in strand annealing and exchange, which 
might be engaged in mitotic recombination 
[208], as well as in general transcription.  
 
We have found [209] that human CSB-deficient 
cells are hypersensitive to physiological concen-
trations (1-10 µM) of HNE, and in response to 
HNE they develop a higher level of sister 
chromatid exchanges in comparison to the wild 
type cells. We have also demonstrated that HNE
-DNA adducts block in vitro transcription by T7 
RNA polymerase, as well as by HeLa cell-free 
extracts. Transcription inhibition leads to 
stabilization of TP53 protein and, thus, triggers 
apoptosis [210]. This might at least partially 
explain accelerated aging and degeneration in 
CS patients. Treatment of wild type cells with 
low HNE concentrations, 1-20 µM, caused 
dephosphorylation of the CSB protein, which 
stimulates its ATPase activity necessary for TCR. 
However, high HNE concentrations (100-200 
µM) inhibit in vitro CSB ATPase activity as well 
as the transcription machinery in HeLa cell-free 
extracts. These results suggest that HNE-DNA 
adducts are extremely toxic endogenous DNA 
lesions, and that their processing involves CSB. 
When these lesions are not removed from the 
transcribed DNA strand due to CSB gene 
mutation or CSB protein inactivation by high, 
pathological HNE concentrations, they may 
contribute to accelerated aging.  
 
Inhibition of removal of UV dimers and benzo[a]
pyrene adducts from DNA (performed mainly by 
the NER pathway) by the products of lipid per-
oxidation, HNE, malondialdehyde and acrolein 
was already reported [211-213]  
What is the contribution of this mechanism in 
aging process on the level of the whole organ-
ism still is not clear.   
 
Age-related changes in oxidative DNA damage 
in humans (see also Olinski R. et al. [214]) 
 
A number of research groups have reported the 
effects of aging on DNA oxidation in animal 
models [215, 216]. However, a summary of 
these kinds of studies shows no clear effect. It 
is difficult to explain why in some studies age-
related increase in oxidative DNA damage was 

observed [217], whereas in others no effect 
was described [218]. It is possible that one rea-
son for the discrepancies may be the reliability 
of the biomarkers used. Moreover, to date no 
comprehensive studies concerning age-related 
oxidative DNA damage in humans have been 
conducted.  
 
Therefore, the purpose of our recently published 
work [219] was to assess age-related changes 
in oxidative DNA damage in humans. For the 
first time, the broad spectrum of oxidative DNA 
damage biomarkers was analysed; urinary ex-
cretion of 8-oxodG and 8‑oxoGua as well as the 
level of oxidative DNA damage in leukocytes. All 
parameters were determined in 255 healthy 
subjects divided into four age groups: group A - 
children (mean age 13), group B - adults (mean 
age 31), group C - middle age (mean age 50), 
and group D - elderly (mean age 67). 
 
Antioxidant vitamins (A, C and E) and uric acid 
are effective free radical scavengers therefore 
they should protect biomolecules such as DNA. 
In addition to the aforementioned analyses the 
concentration of antioxidant vitamins A, C, E 
and uric acid was determined in blood serum.  
 
There was a highly significant increase in the 
background level of 8-oxodG in leukocyte DNA 
in elderly and middle age groups in comparison 
with adults (Figure 5), and a statistically signifi-
cant, positive correlation between age and 8-
oxodG levels in leukocyte DNA.  
 
However, a steady increase of 8-oxodG levels in 
DNA isolated from leukocytes with age was seen 
only when the youngest group was excluded 
(Figure 6), since the level was significantly ele-
vated in the group of youngest subjects (group 
A) when compared with the group representing 
“adults” (group B). It is likely that the unexpect-
edly high level of oxidative DNA damage in 
group A may reflect the higher metabolic rate of 
children. Children who are growing fast have a 
higher metabolic rate than adults. High meta-
bolic rate, in turn, requires a high level of mito-
chondrial respiration and subsequent elevated 
production of ROS, which are responsible for 
the formation of DNA modifications analyzed in 
our work. Indeed in our previous study highly 
significant, positive correlations between spe-
cific metabolic rates and urinary excretion rates 
for 8-oxodG and 8-oxoGua were found [220]. 
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The obvious question is why does oxidative DNA 
damage increase with age? The background 
level of 8-oxoGua in cellular DNA represents a 
dynamic equilibrium between the rate of oxida-
tive DNA damage formation, and the rate of 
repair of the damage. Therefore, the observed 
age-related increase may be a result of defi-
ciency in the ability of the cells from older sub-
jects to remove the damage or it may mirror an 
intensification of processes responsible for the 
damage formation or both.  
 
An age-related decrease in DNA repair capacity 
has been demonstrated mostly for nucleotide 
excision repair (NER) [221, 222]. However, base 
excision repair (BER) is primarily responsible for 
the removal of oxidatively-generated DNA base 

damage, and age-dependent reduction of 
hOGG1, the major enzyme involved in the re-
moval of 8-oxoguanine, was also reported 
[223]. 
 
Urinary excretion rate, especially that measuring 
the level of 8-oxoGua is the most sensitive 
marker of the average oxidative stress to DNA of 
all body cells [224, 225]. Therefore besides 
analyses of the background level of 8-oxodG in 
leukocyte DNA also urinary excretion of the 
modified base and nucleoside was determined. 
Since both parameters showed a similar age-
related pattern it is likely that their changes re-
flect, at least in part, age-dependent intensifica-
tion of oxidative stress which resulted in DNA 
damage. However, since urinary excretion rates 
may also represent repair processes (see 
[226]), we cannot entirely exclude the possibility 
that the observed less distinct changes in age-
dependent urinary excretion rates than of the 
background level of 8-oxodG in DNA (compare 
Figure 5 and 7A, 7B) may also reflect some de-
terioration of the repair mechanism(s). Hence, 
age-related increase of oxidative stress appears 
to elevate oxidative DNA damage and the rate 
of repair represented by 8-oxoGua excretion 
although the activation of the repair process 
does not prevent accumulation of 8-oxodG in 
cellular DNA. 
 
Impaired mitochondrial function is a factor 
which may be responsible for increased ROS 
production and therefore predispose to oxida-
tive stress and DNA damage in the aged sub-
jects. Indeed, several studies of the mitochon-
drial respiratory chain function in humans and 
animals have demonstrated an age-related de-
crease in respiration and increased production 
of ROS during aging [227, 228]. Further support 
for the age-related decline in mitochondrial 
function is provided by the demonstration that 
the amount of COX deficient muscle fibers in-
creases in healthy aging humans [229]. 
 
Another source of age-related increase of oxida-
tive stress may be the decline of antioxidant 
defense and age-dependent decline in the con-
centration of vitamin C in plasma was also ob-
served (Figure 8). Vitamin C is a major aqueous-
phase antioxidant. It should also be remem-
bered that vitamin C acts in synergy with toco-
pherol by regenerating tocopheroxyl radical to 
tocopherol. One of the plausible explanations of 
the above-presented changes in vitamin con-

Figure 5. The mean level of 8-oxodG in leukocyte DNA 
in different age groups.  

Figure 6. Correlation between the level of 8-oxodG in 
leukocyte DNA and age with exclusion of group A. 
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centrations is the sequential consumption of 
these antioxidants as a result of age-dependent 
intensification of oxidative stress. It was shown 
that during free radical mediated oxidation a 
decrease in vitamin E concentration in plasma 
can only be seen after the complete consump-
tion of vitamin C. The sequential consumption of 
these antioxidants was also shown by the use of 
ESR spectroscopy [230].  
As can be seen in Figure 5 the “adult” group 
exhibits the lowest values of oxidative DNA dam-
age in leukocytes. Evolution theory assumes 
that organisms are not programmed to age, 
instead evolution selects for survival and repro-
duction [231]. Therefore, it is possible that the 
lowest values of this harmful, potentially 
mutagenic, oxidatively-modified DNA in the 

aforementioned group may constitute proof of 
“specific concern” of evolution for humans of 
reproductive age. Individuals differ greatly in 
their rate of aging. There are also quite substan-
tial inter-individual differences in the level of 8-
oxodG in DNA (Fig 5 and 6). These differences 
can also be seen within the “adult” group with a 
subgroup where the values are around 2 modifi-
cations per 106 unmodified bases and a second 
subpopulation where the values are much 
higher than the mean level (Figure 5 and 6). It 
has been postulated that different factors which 
may affect the genome in adult life may influ-
ence the rate of subsequent functional decline 
of the organism [232]. Therefore, it is possible 
that one of these factors is oxidative DNA dam-
age with genome destabilizing properties. 
 
Why do different mammalian species age at 
different rates? 
 
One of the intriguing issues concerning the ag-
ing process is the question why different mam-
malian species age at different rates. One    
hypothesis that has attempted to explain these 
differences is once again the free radical theory 
of aging [233, 234]. All aerobic organisms    
utilize oxygen which is linked to the production 
of reactive oxygen species (ROS). The above 
mentioned differences may be explained, at 
least partially, by different metabolic rates that 
in turn are connected with oxygen consumption 
and ATP production during oxidative phosphory-
lation. The more ATP is required, the more oxy-
gen must pass through the mitochondria and 

Figure7. The mean levels of 8-oxoGua (A) and 8-
oxodG (B) in urine in the different age groups. 

Figure 8. Relationship between the level of vitamin C 
and age in all studied subjects.  
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the more oxygen radicals are likely to be gener-
ated. The more oxygen radicals the greater will 
be the damage to cellular components including 
DNA. Oxidative DNA damage is removed via dif-
ferent repair pathways. Following excision from 
DNA, the oxidatively induced lesions are re-
leased into the blood stream and consequently 
into the urine, where their measurement has 

been acknowledged to be reflective of overall 
oxidative stress [235].  
 
In our study we decided to analyze urinary ex-
cretion of possible repair products of oxidative 
DNA damage: 8-oxoGua, 8-oxodG and 5-
(hydroxymethyl)uracil (5-HMUra), in mammalian 
species that differ substantially in metabolic 
rate and longevity, namely mice, rats, rabbits, 
dogs, pigs and humans [236].  
 
The analyzed excretion rates should depend on 
oxygen consumption and metabolic rate. In turn, 
the metabolic rate may be described by specific 
metabolic rate (SMR) values [237, 238]. In 
agreement with these assumptions we have 
found good positive correlations between SMRs 
of different species and the excretion rates of 
all analyzed modifications (Figure 9).  
 
Since metabolic rate may be associated with 
maximum life span (MLSP), we also determined 
whether there is some relationship between 
excretion rates of all analyzed modifications and 
the life span. Only 8-oxoGua excretion rate was 
found to significantly correlate with MLSP). 8-
OxodG and 5-HMUra were also inversely corre-
lated with MLSP. However, these relationships 
were not statistically significant (Figure 10). This 
in turn suggests that urinary excretion of 8-
oxoGua reflects oxidative DNA damage better 
than the two other modifications. Likewise, in 
the case of cancer patients only urinary 8-
oxoGua reflects oxidative stress associated with 
the disease [240, 241]. 

 
The correlation of the excretion rate of 8-
oxoGua with MLSP, found in our work, is in good 
agreement with previous studies, which demon-
strated that oxidative damage to DNA is in-
versely related to MLSP of different mammals. 
However, in the aforementioned studies no hu-
mans were included and the assessment of 
DNA damage was restricted to certain organs 
[242-244]. In contrast, the analyses of the uri-
nary base/nucleoside products presented in 
this work are reflective of oxidative DNA dam-
age at the level of the whole organism. Our re-
sults demonstrated that ROS continually dam-
age DNA and that this damage in vivo, in normal 
conditions is lower in long-lived species than in 
short-lived species. Incomplete repair of such 
damage would lead to its accumulation over 
time and eventually result in age-related dete-
rioration. 

Figure 9. Relationship between the urinary excretion 
rates of the analyzed modifications and specific 
metabolic rates (SMR) of six different mammalian 
species.  
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Expression of the urinary excretion rates in 
nmol/kg/24h enables measurement of the 
number of the repaired lesions per day per cell 
[245]. Interestingly, urinary level of all meas-
ured modifications found in our study ac-
counted for about 28,200 repaired events per 
average mouse cell per day and fits well with 

the estimation of Hamilton and co-workers who 
calculated that the DNA of the liver cell in 
mouse is exposed to about 47,000 8‑oxoGua 
lesions in a 24 hour period [246] (taking into 
consideration that the liver is a high metabolic 
rate organ and that our values are an average 
for the whole organism). In contrast, the number 
of all lesions analyzed in our work, in humans 
accounts for about 2,800 repair events in the 
average cell per day. It is therefore possible that 
the high metabolic rate in mouse (or other short 
lived animals) may be responsible for severe 
everyday oxidative DNA insult that may be accu-
mulated faster than in long-lived species. It is 
also noteworthy that the difference in urinary 
excretion of 8-oxoGua between mice and hu-
mans is very similar to the difference in re-
ported oxygen consumption between these spe-
cies /10 fold and 11 fold respectively [247]. 
 
To conclude, on the basis of the results pre-
sented above showing that urinary 8-oxoGua as 
well as the other modifications in different spe-
cies is higher in rapidly aging mammalian spe-
cies and the presented correlative association 
between oxidative DNA damage parameters and 
age in humans it seems reasonable to state 
that this damage may be one of the substantial 
factors in mammalian (including human) aging.  

 
CONCLUSIONS 
 
It is becoming increasingly apparent that oxida-
tive damage plays a role in numerous pathologi-
cal conditions [49]. However, greater knowledge 
of whether oxidative DNA damage initiates the 
disease process or is merely a by-product of 
disease development is of critical importance. 
On the basis of the presented data and litera-
ture reports it seems reasonable to postulate 
that oxidative DNA damage/oxidative stress is 
probably a contributing factor to aging. How-
ever, mechanisms that underlie aging are highly 
complex and may depend on different factors 
like genetic background, dietary behavior, life 
style, to name a few. Thus, oxidative stress may 
contribute to a limited extent to the aging of 
some individuals and could be a major factor in 
others. It should be also remembered that asso-
ciation between oxidative stress and aging is 
complicated by the considerations that there is 
no general agreement as to what aging is, when 
aging begins and what triggers its onset and 
that oxidative stress occurs by multiple mecha-
nisms.  

Figure 10. Relationship between the urinary excretion 
rates of the analyzed modifications and natural loga-
rithm of maximum life span (MLSP) of six different 
mammalian species. 



DNA damage and repair in cancer and aging  

 
 
274                                                                                                             Am J Transl Res 2010;2(3):254-284 

 
While many details regarding the role of ROS 
induced DNA damage, in the etiology of complex 
multifactoral diseases like cancer are yet to be 
discovered, it is evident that oxidants act at sev-
eral stages in malignant transformation since 
they can induce permanent DNA sequence 
changes [248]. In the light of the presented 
data it is likely that severe oxidative stress is a 
consequence of development of many types of 
cancer. However, at present it is impossible to 
directly answer the question concerning involve-
ment of oxidative stress in the origin of cancer 
since full development of the disease in re-
sponse to carcinogen exposure takes 20-40 
years. Therefore, it is very difficult to prove di-
rectly that the DNA lesion responsible for car-
cinogenic process is the lesion present in tu-
mors many generations later. Nevertheless, it 
should be remembered that DNA damage, al-
tered gene expression and mutations are re-
quired participants in the process of carcino-
genesis. Although these events may be driven 
by different mechanisms a commonality is the 
involvement of oxidants in all these phenom-
ena. 
 
ABBREVIATIONS 
 
8-oxoGua – 8-oxo-7,8-dihydroguanosine; 8-oxodG - 8-
oxo-7,8-dihydrodeoxyguanosine; A – 1,N6-etheno-
adenine; C – 3,N4-ethenocytosine 
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