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Abstract: Although significant progress in bypass surgery and catheter intervention against peripheral artery dis-
ease, the number of severe critical limb ischemia (CLI) patients is increasing. Thus, it is crucial to develop new, 
non-invasive therapeutic strategies. The purpose of this study was to determine the mechanism of therapeutic 
ultrasound (TUS) on ischemic angiogenesis using mouse model of hindlimb ischemia and the cellular/molecular 
mechanisms underlying TUS-related neovascularization. The hindlimb ischemic mice were exposed to extracorpo-
real TUS for 3, 6, 9 minute per day (1 MHz, 0.3 W/cm2) until day 14 after left femoral artery ligation. Increased blood 
perfusion and capillary density were determined following 9 min of TUS compared with ischemic group. Moreover, 
TUS treatment increased the protein levels of vascular endothelial growth factor (VEGF), hypoxic inducible factor-
1α (HIF-1α), endothelial nitric oxide synthase (eNOS) and p-Akt in vivo. TUS promoted capillary-like tube formation, 
migration and motility of human umbilical venous endothelial cells (HUVECs). Furthermore, the protein expressions 
of VEGF, eNOS and p-Akt were increased after TUS treatment. In conclusion, TUS therapy promotes postnatal neo-
vascularization through multiple angiogenic pathways in mice model of ischemic hindlimb. 
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Introduction 

About one third of peripheral artery disease 
(PAD) would develop to critical limb ischemia 
(CLI) when the arterial blood flow to the part or 
entire foot markedly reduced, in most cases as 
a result of progressive obstructive atheroscle-
rosis. Although bypass surgery or catheter 
intervention have made tremendous advance 
against refractory PAD, the long-term outcome 
of revascularization therapy for infrapopliteal 
lesions remains unsatisfactory [1]. According to 
a report of the American College of Cardiology 
Foundation/American Heart Association Task 
Force (ACCF/AHA) on practice guidelines [2], 
there will be approximately 500 to 1000 new 
cases of CLI every year within 1 million Eu- 
ropean/North American population, among 
which about 25% of the patients with CLI under-

go primary foot amputation even in developed 
countries, and amputation seems to be the 
common first-line therapy in developing coun-
tries, where there is lack of specialized podiatry 
program [2]. Thus, non-invasive therapeutic 
strategies for severe CLI remain to be develo- 
ped. 

Ultrasound is a form of sound whose frequency 
is higher than the natural audible range for 
humans (> 20 kHz) and ultrasonography has 
been widely used as diagnostic devices for sev-
eral decades. In addition to diagnostic purpos-
es, ultrasound is clinically used for therapeutic 
applications, including tumor ablation, throm-
bolysis, bone regeneration, and facilitated drug 
delivery [3]. Recently, therapeutic angiogenic 
effects of low-intensity ultrasound have been 
reported in endothelial cells, chick chorioallan-
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toic membrane, and a rat model of hind limb 
ischemia [4, 5]. However, the underlying mech-
anism remains modest clarified. In the present 
study, we thus examined whether low intensity 
therapeutic ultrasound (TUS) (1 MHz, 0.3 W/
cm2) amplifies endothelial functions in vitro and 
how TUS augments ischemia-induced angio-
genesis using a mouse model of hindlimb isch-
emia in vivo.

Material and methods

Animals

All animal procedures were conducted with 
prior institutional ethical approval under the 
requirements of the Chinese Prevention of 
Cruelty to Animals Act and the institutional 
guidelines for health and care of experimental 
animals of Shanghai Jiaotong University School 
of Medicine. Male adult C57BL/6 mice weigh-
ing 18-22 g were randomly divided into 4 
groups (n = 6 mice/group). All animals were 
subjected to left femoral artery resection to 
develop hindlimb ischemia. Post ischemic TUS-
treated groups received TUS exposure 3, 6 or 9 
minute per day. Ischemic group was treated 
equally without receiving TUS therapy. Mice 
were sacrificed on day 14. 

Hind limb ischemia

Male C57BL/6 mice were subjected to unilat-
eral femoral artery ligation as described [6, 7]. 
Briefly, left femoral artery was ligated and 
excised between the inguinal ligaments and 
proximal to the branching into saphenous and 
popliteal artery using 7-0 polypropylene sutures 
(Ethicon, USA). For sample collection, the whole 
adductor muscle was harvested and split in 
half resulting in a proximal and distal portion. 
The middle part around the former femoral 
artery was used for analysis to avoid sampling 
variances of regions with greater or lesser is- 
chemia. 

TUS treatment

Animals received therapeutic ultrasound thera-
py immediately after excision of the femoral 
vessels and skin closure, still under anesthesia 
at the area above the adductor muscles. 
Common ultrasound gel was used for coupling. 
TUS were generated by a device with transduc-
er designed and produced by Institute of Aco- 

ustics, Tongji University (Shanghai, China). The 
diameter of the transducer’s membrane is 2.0 
centimeters. Ultrasound was delivered to the 
ischemic area with an energy flux density of 0.3 
W/cm2 at a frequency of 1.0 MHz. Post isch-
emic TUS-treated groups were exposed to TUS 
for different time as indicated (3, 6 or 9 minute) 
per day, while the ischemic group received the 
same procedures without TUS exposure. The 
safety and the efficacy of low-frequency level of 
ultrasound wave to the organism have been 
examined in the pre-experiment.

Infrared thermal imaging analysis

The blood induced temperature variation of 
local shin area can be well measured with the 
development of infrared and even Terahertz 
detection technology [8, 9]. The large blood 
flow will induce a high skin temperature near 
the blood vessel. Here the blood flow measure-
ments were performed pre hind-limb ischemia, 
directly after femoral artery ligation (day 0) and 
14 days after ischemic surgery by infrared ther-
mal imaging analyzer (Prism-DS 50137, FLIR 
Systems, USA). To minimize data variables 
attributable to ambient temperature mice were 
kept on a heating plate at 37°C for 10 minutes 
before measurement. Blood perfusion is indi-
rectly shown as changes in the local skin tem-
perature using different color pixels represent-
ing the ratio of left (operated, ischemic leg) 
versus right (not operated, not-ischemic leg) 
limb blood flow. A ratio of 1 prior to surgery indi-
cated equal blood perfusion in both legs, 
whereas after femoral artery excision this ratio 
drops to values between 0.2-0.3, indicating 
severe attenuation of leg blood supply in the 
operated hindlimb.

Necrosis score

Necrosis score was assessed as previously 
described [10]. Briefly, mice were investigated 
at 0 and 14 days after hind limb ischemia sur-
gery and scored with 0 points if no necrosis or 
defect was observed, with 1 point if skin necro-
sis was present, with 2 points if below ankle 
amputation was present and with 3 points if 
above ankle amputation was observed. Two 
researchers evaluated the necrosis score in a 
blinded manner and the average scores for 
each animal were used for quantitative anal- 
ysis.
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Immunofluorescence staining

Immunofluorescence staining was performed 
as described previously [11]. Briefly, muscle 
samples were fixed in 4% paraformaldehyde 
and subsequently embedded in paraffin. Prior 
to the staining procedure, heat-mediated anti-
gen retrieval was performed in sodium-citrate 
buffer (10 mM sodium-citrate, 0.05% Tween 
20, pH 6.0) followed by fixation in methanol for 
10 min at 4°C. After blocking for 30 min, with 
2% BSA in PBS, samples were incubated with 
rabbit anti-mouse CD31 antibody (5 μg/ml, 
Becton-Dickinson Biosciences, Franklin Lakes, 
NJ, USA), and followed by a secondary antibody 
(Invitrogen, Carlsbad, CA, USA). Ten fields were 
randomly selected from each section for calcu-
lation of capillary density and the result was 
expressed as numbers of capillary/field (x 400 
magnification) [12, 13]. 

Western blotting 

Ischemic muscle samples were homogenized 
and processed for western blotting as described 
[14, 15]. HUVECs were resolved and prepared 
according to the protocol provided by the man-
ufacturer. The primary antibodies used were as 
follows: anti-VEGF (Proteintech, Chicago, IL, 
USA); anti-eNOS (Sigma, St. Louis, MO, USA); 
anti-Akt, anti-p-Akt (Ser473), anti–hypoxic-
inducible factor (HIF)-1α and anti-GAPDH (Cell 
Signaling Technology, Danvers, MA, USA). 
Bands were visualized with a FluorChem E data 
system (Cell Biosciences, Santa Clara, CA, USA) 
and quantified by densitometry using Quantity 
One 4.52 (Bio-Rad). 

Cell culture

HUVECs (San Diego, CA, USA) in passage 6-8 
were cultured in DMEM low-glucose medium 
supplemented with 10% inactivated fetal bo- 
vine serum and 100 U/ml penicillin and 100 
μg/ml streptomycin under standard culture 
conditions (37°C, 95% humidified air and 5% 
CO2). HUVECs were reseeded into plates over-
night and stimulated for different time of TUS 
exposure (3, 6 or 9 min per day, 1 MHz, 0.3 W/
cm2) per day for 3 days. Supernatant and cell 
lysates were collected on day 3 after reseed- 
ing.

Tube formation assay

To examine the angiogenic effect of TUS in 
vitro, tube formation assay was performed as 

previously described [16]. Matrigel-Matrix (BD 
Biosciences, Franklin Lakes, New Jersey, USA) 
was pipetted into pre-chilled 96-well plates (50 
µL matrigel per well) and polymerized for 45 
min at 37°C. HUVECs (2 × 104 per well) in com-
plete media were simultaneously seeded in 
Matrigel coated plates. Then culture plates 
were exposed to TUS for different time (3, 6 or 
9 min, 1 MHz, 0.3 W/cm2). After 6 h of incuba-
tion, tubular structures were photographed. 
Images were acquired under a fluorescent 
microscope (IX-71; Olympus, Tokyo, Japan) with 
12.8 M pixel recording digital color cooled cam-
era (DP72; Olympus). The control sample was 
defined as 100% tube formation, and the in- 
crease or decrease in tube formation relative to 
the control was calculated for each sample. 
Each experiment was triply repeated under sim-
ilar conditions. 

Scratch assay

HUVECs were allowed to grow to 100% conflu-
ence in six-well plates. Cells were mechanically 
wounded by scraping with a 200 µl pipette tip 
at time zero, denuding a strip of the monolayer 
300 µm wide. The boundary of the wound was 
marked. The cells were rinsed three times with 
PBS to remove dislodged cells and cellular 
debris and cultured with DMEM without FBS. 
Then, cells were treated with TUS for different 
time as indicated (3, 6 or 9 min, 1 MHz, 0.3 W/
cm2). The wound was observed 24 h and 48h 
later with an Olympus microscope at x 40 mag-
nification fitted with an ocular grid. Images 
were taken with an Olympus DP72 digital cam-
era under phase contrast microscope. We mea-
sured the width of each denuded area and cal-
culated the average. The migration ability was 
quantified by the formula: 100% - (width24 h or 48 h 
/width0 h) x 100%.

Transwell migration assay

The chemotactic motility of HUVECs was deter-
mined using Transwell migration chambers (BD 
Biosciences) with 6.5-mm-diameter polycar-
bonate filters (8-µm pore size) [17]. In brief, the 
bottom chambers were filled with 600 µL of 
DMEM media containing all supplements. 
HUVECs (3 × 104 per well) were seeded in top 
chambers in 100 µL DMEM media without 
serum. Thereafter, cells were treated with 
external TUS for different time as indicated (3, 
6 or 9 minute, 1 MHz, 0.3 W/cm2). Cells were 
allowed to migrate for 8 h. Non-migrated cells 
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were removed with cotton swabs, and migrated 
cells were fixed with ice cold ethanol and 
stained with 0.01% crystal violet. Images were 
captured with x 100 magnification and invasive 
cells were quantified by manual counting.

Statistic analysis

Data are expressed as means ± SEM. Multiple 
groups were analyzed by one-way ANOVA test 
followed by post hoc tests to determine statisti-
cal significance. Probability values < 0.05 were 
considered statistically significant. SPSS soft-
ware version 17.0 (SPSS Inc., Chicago, IL, USA) 
was used. All experiments were repeated at 
least in triplicate.

Results

TUS improve ischemia-induced angiogenesis

Blood perfusion of hind limbs was measured by 
infrared thermal imaging before ischemia, 
directly (day 0) as well as 14 days after femoral 
artery excision (day 14). Although untreated 

ischemic animals showed a notable self-regen-
eration potential, significant improvements of 
wound healing and blood perfusion could be 
observed in the 9 min-TUS treatment group on 
day 14 (Figure 1A and 1B). We also investigat-
ed the necrosis score of the ischemic limb on 
day 14, which showed a marked improvement 
in 9 min-TUS group to compare with untreated 
ischemic group (Figure 1C), which indicated 
that 9 min-TUS treatment effectively improved 
the blood perfusion after ischemic episode. 
This was further supported by the quantitative 
data of capillary density in TUS group, which 
indicated that the microcirculation was signifi-
cantly improved in 9 min-TUS treated mice than 
in ischemic mice (Figure 2A and 2B). However, 
there was not significant difference in compari-
son with other 2 TUS-treated groups. 

TUS increase of angiogenic factors expres-
sions in vivo 

To further examine the mechanisms underlying 
the TUS-induced angiogenesis in mice, we eval-

Figure 1. TUS improved blood perfusion and ameliorated hindlimb necrosis. Mice were separated to 4 groups, 
control group without TUS stimulation, and TUS treated groups with different time (3, 6 and 9 min, n = 6 per group). 
Mice were subjected to left femoral artery resection to develop hindlimb ischemia. A. Photographs of hindlimbs were 
observed on day 14 after induction of ischemia. B. Infrared thermal imaging data were analyzed and illustrated as 
an ischemic/normal hindlimb temperature ratio. C. Necrosis score was also assessed on day 14. All data are shown 
as means ± SEM, *P < 0.05, **P < 0.01, versus control group.
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Figure 2. TUS increased capillary density in ischemic muscle. A. Representative images of microphotomicrographs 
of anti-CD31 immunohistochemical staining among all groups (magnification x 400, bars represent 50 μm). B. 
Quantitative data of capillary density (capillaries/field) among all groups. All data are shown as means ± SEM, **P 
< 0.01, versus control group.

Figure 3. Angiogenic effect of TUS in ischemic hind limbs. Western blotting assay to determine the expression of (A) 
eNOS, (B) VEGF, (C) phospho-Akt (p-Akt), total Akt (t-Akt) and (D) HIF-1α contained in the ischemic muscle on day 14 
(n = 6 per group). All data are shown as means ± SEM, *P < 0.05, **P < 0.01, versus control group.
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uated levels of eNOS, VEGF, p-Akt and HIF-1α 
protein expressions in local tissue among the 4 
groups of mice at day 14 after induction of isch-
emia. We found that all these protein level were 
significantly increased in response to 9 min of 
TUS treatment compared with other groups 
(Figure 3).

TUS induced tube formation

We next determined the effect of TUS treat-
ment on the tubulogenesis using HUVECs on 
Matrigel in vitro. Six hours after reseeded into 
dishes, the TUS-treated HUVECs exhibited 
more extensive interconnecting tubes than oth-
ers groups (Figure 4A). TUS promoted HUVECs 
tube formation in a dose-dependent manner. 
The tube length of the HUVECs exposed to TUS 
was significantly extended in comparison with 
control group (Figure 4B).

TUS enhances migration and motility in vitro 

Tube formation in vitro requires both cell attach-
ment to extracellular matrix (ECM) and cell 
migration. Cell motility was assessed with a 
scratch assay, in which migration was initiated 
in a confluent layer of cells by mechanical 
denuding. A wound healing assay was per-
formed to evaluate endothelial migration under 
TUS treatment. After culture under different 
conditions, HUVEC monolayers were mechani-
cally wounded by scraping with a pipette tip 

(Figure 5A) and wound healing was observed 
24 h and 48 h later. TUS treatment increased 
wound healing in comparison with control in a 
dose-dependent manner (Figure 5B). Cell motil-
ity was assessed with transwell migration 
assay. After 8 h, we observed that the presence 
of TUS in the lower chambers results in higher 
invasion of HUVECs through polyester layer 
compared to control (Figure 5C). In the 9 min-
TUS group, the number of HUVECs invasion 
through polyester layer was significantly in- 
creased (Figure 5D). Overall, these results 
clearly showed that TUS treatment promotes 
the migration and motility of HUVECs. 

TUS up-regulates angiogenic factors in vitro 

To maintain the integrity of this study, the effect 
of TUS on eNOS, VEGF, t-Akt and p-Akt protein 
expression was detected by western blotting 
analysis in HUVECs (Figure 6A-C). Except for 
t-Akt, other protein expression was up-regulat-
ed in response to TUS following a dose-depen-
dent manner. These results indicated that TUS 
stimulated eNOS expression in HUVECs and 
that may be a promoter of VEGF expression. 

Discussion

The most significant finding addressed in this 
manuscript is that TUS induces postnatal neo-
vascularization in the ischemic muscle through 
enhancing endothelial cells migrate and enha- 
ncing multiple angiogenic pathways. 

Figure 4. Effect of TUS on tube formation. Pro-angiogenic benefit of TUS on the tube formation of HUVEC was ex-
amined using Matrigel assay. Tubular structures were photographed at 100x magnification (A) and tube length was 
measured (B). All data are shown as means ± SEM, **P < 0.01, versus control group.
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We demonstrated that TUS rescued necrotic 
limbs through augmenting microvascular 
growth and blood perfusion recovery after isch-
emic attack. Moreover, the protein expressions 
of VEGF, eNOS and p-Akt increased after the 9 
min of TUS treatment in vivo and in vivo. 
Meanwhile, the extent of an increase of the 
three proteins expression by other dose (3 and 
6 min) TUS therapy was rather small. These 
results suggest that sufficient TUS exposure 
triggers angiogenic action.

The cell-to-cell interaction between endothelial 
cells and other types of cells is important in 
enhancing multiple angiogenic pathways [18]. 

Previous study has demonstrated that ultra-
sound wave exposure might increase the pos-
sibility of cell-cell interaction so that triggered 
cell proliferation and regeneration [1]. App- 
lication of ultrasound wave exposure was 
reported to stimulate various regenerative cells 
such as bone marrow-derived progenitor cells 
and residential stem cells to regenerate dam-
aged tissue [19]. Toyama et al. reported that 
application of ultrasound to circulating angio-
genic cells augmented their generation and 
migration capacities [20]. Xu et al. reported 
that ultrasound stimulated hematopoietic 
stem/progenitor cell viability, proliferation and 
differentiation in vitro [5]. Thus, it is possible 

Figure 5. TUS accelerated migratory ability of HUVECs. A, B. An in vitro wound-healing assay was performed to 
evaluate the migration ability of HUVECs treated with different time of TUS treatment. The migration ability was de-
termined by measuring the width of each denuded area and by calculating through the formula: 100%-(width24 h or 48 

h/width0 h) x 100%. C, D. Effect of TUS on the migratory potential of HUVECs was examined using Transwell migration 
chambers. All data are shown as means ± SEM, *P < 0.05, **P < 0.01, versus control group. Scale bars = 200 μm.
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that the ultrasound directly and/or indirectly 
affects the function and dynamics of immature 
cells, such as bone marrow derived mononucle-
ar cells and residential vascular regenerative 
cells [14, 21]. Except for those, previous stud-
ies have shown that the low-energy short wave 
therapy exerts multiple effects, including angio-
genic, anti-inflammatory, anti-oxidant and anti-
apoptotic effects [22-25]. Thus, as in the case 
with the low-energy short wave therapy, the 
mechanisms other than angiogenesis may also 
contribute to the beneficial effects of ultra-
sound in the present study. 

Previous reports demonstrated that TUS deliv-
ered mechanical energy to tissues, which plays 
a central role in regulating eNOS, to the dam-
aged tissues [4, 26]. Endothelial cells normally 
sustain several mechanical stresses, including 
shear tension and compression. Due to their 
unique location between tissues and flowing 
blood, any changes of these mechanical forces 
can alter their morphology, proliferative activity 
and secretion of vasoregulatory mediators 
including endothelin-1 [27], prostacyclin [28] 
and NO [29]. In particular, fluid shear stress 
causes a rapid, large and sustained increase in 
eNOS activity [30], stimulating both an early 
calcium-dependent activation as well as an 
Akt-dependent phosphorylation [31] and in- 
creased transcription [32]. Additionally, HIF-1α, 
one of the most potent angiogenic transcription 
factors [33-35], could be activated by intracel-
lular NO which secondary to the PI3K-Akt-eNOS 

signaling pathway [13, 36]. Moreover, Kuwabara 
et al. reported that NO increased the VEGF pro-
tein expression and secretion through HIF-1α 
regulation in cardiomyocytes [37]. Together wi- 
th the current study that TUS could up-regulat-
ed the protein expression of eNOS, VEGF, p-Akt 
and HIF-1α, it could be summarized that TUS 
increasing eNOS might in part be a result of the 
cell signaling through PI3K-Akt, and also in part 
a result of the angiogenic signaling through HIF-
1α-VEGF (Figure 3D). 

Mechanical stimuli are known to affect endo-
thelial cell function via mechanosensors embe- 
dded in endothelial cell membranes, such as 
integrins and caveolins [38]. Ultrasound irradia-
tion has been reported to produce shear stress 
on endothelial cells [39]. In this study, using the 
well-established Matrigel assay, we demon-
strated that TUS dramatically enhance tube for-
mation of HUVECs. We carried out an in vitro 
wound healing experiment and transwell assay 
to evaluate the effects of TUS on endothelial 
cell function. Our results showed that TUS en- 
hanced endothelial migration. Our data obta- 
ined here are in agreement with previous re- 
ports [40]. In addition, ultrasound has been 
shown to induce sonoporation on endothelial 
cell membrane leading to influx of calcium ion 
[41]. Increased intracellular Ca2+ produced by 
TUS may lead to increase of NO through the 
action of eNOS, which is dominant modulator to 
enhance revascularization in vivo. Thus, it is 
conceivable that several mechanisms, such as 

Figure 6. Pro-angiogenic effect of TUS on HUVECs. Quantitative results of protein expression of (A) eNOS, (B) VEGF, 
(C) p-Akt and total Akt. TUS stimulated vascular endothelial growth factors secretion concentration dependently. 
9 min-TUS significantly promoted the expressions of eNOS, VEGF and p-Akt protein. Data of Western blotting were 
represented as fold of control. All data are shown as means ± SEM, *P < 0.05, **P < 0.01, versus control group. 
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triggering of mechanosensors, activation of 
endothelial cell growth and sonoporation-acti-
vated alterations, contribute to the ultrasound 
induced angiogenesis.

In conclusion, our findings indicate that nonin-
vasive extracorporeal TUS treatment enhances 
multiple angiogenic pathways, effectively nor-
malizes blood perfusion, decreases necrosis 
and promotes angiogenesis. These findings 
suggest that TUS deserves further consider-
ation of investigation in its regulation on the 
angiogenic signaling pathway and new clinical 
strategies for CLI.
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