
Am J Transl Res 2014;6(6):625-630
www.ajtr.org /ISSN:1943-8141/AJTR0002907

Review Article 
Neural mechanisms and potential treatment of epilepsy 
and its complications

Tao-Tao Liu, Zhi-Gang He, Xue-Bi Tian, Hong-Bing Xiang

Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of 
Science and Technology, Wuhan 430030, Hubei, PR China

Received September 30, 2014; Accepted October 30, 2014; Epub November 22, 2014; Published November 30, 
2014

Abstract: The factors underlying epilepsy are multifaceted, but recent research suggests that the brain’s neural 
circuits, which play a key role in controlling the balance between epileptic and antiepileptic factors, may lie at the 
heart of epilepsy. This article provides a comprehensive review of the neural mechanisms and potential treatment 
of intractable epilepsy from neural inflammatory responses, melanocortin circuits in brain and pedunculopontine 
tegmental nucleus. Further studies should be undertaken to elucidate the nature of neural circuits so that we may 
more effectively apply these new preventive and symptomatic therapies to the patient suffering from medically re-
fractory seizures and its complications.
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Introduction 

It has long been known that epilepsy is a com-
mon chronic brain disorder. The factors under-
lying epilepsy are multifaceted, but recent 
research suggests that the brain’s neural cir-
cuits, which play a key role in controlling the 
balance between epileptic and antiepileptic 
factors, may lie at the heart of epilepsy. This 
article provides a comprehensive review of the 
neural mechanisms and potential treatment of 
intractable epilepsy from experimental and 
clinical studies.

Epilepsy and neural inflammatory responses

Increasing evidence shows that neural inflam-
matory responses in the epileptic focus contrib-
ute to the pathophysiology of seizure-induced 
brain damage. It is well known that there is a 
direct relationship between epileptic activity 
and CNS inflammation [1, 2], which is charac-
terized by accumulation, activation, and prolif-
eration of microglia and astrocytes. Early stud-
ies of intractable epilepsy concentrated on 
astrocyte activation and regional changes, but 
recent work has emphasized its microglial func-

tion [3, 4]. Najjar et al reported that microglial 
activation and proliferation were prevalent in 
resected human epilepsy tissue from a consec-
utive series of 319 surgically treated epilepsy 
cases, suggesting that microglia may initiate a 
cycle of inflammation-induced seizures and sei-
zure-induced inflammation, and microglia-driv-
en epilepsy may be a primary pathogenic pro-
cess [5]. Studies from Mayo clinic health system 
support the pathogenic role of neuroinflamma-
tion in medically intractable epilepsy [6]. Further 
studies are needed to clarify the effects of neu-
ral inflammatory responses on intractable epi-
lepsy and seizure-induced brain damage.

Epilepsy and melanocortin circuits in brain

A very close relationship between astrocyte 
activation and medically intractable epilepsy 
has attracted much scientific interest in the 
past few decades. The central melanocortin 
signaling is a key regulator of energy metabo-
lism and glucose metabolism, and this effect is 
mainly mediated by the melanocortinergic re- 
ceptor (MCR) expressed in the brain [7, 8]. A 
number of studies have verified that MC4R in 
the central nervous system plays an important 
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role in regulating the release of insulin via the 
activity of sympathetic neurons [9]. Otherwise, 
being the predominant MCR subtype in the 
brain, the MC4R is demonstrated to specifically 
express in astrocytes [10-12]. Because of its 
roles in controlling between astrocyte activity 
and energy balance in many brain regions, 
MC4R on astrocytes has been a focus of inter-
est [10].

It was known that stimulation of the subthalam-
ic nucleus was proposed as a therapeutic 

approach to alleviate refractory epilepsy [13-
16]. Of interest, Accumulating evidence from 
functional imaging and clinical neurophysiology 
have demonstrated that therapeutic mecha-
nisms of subthalamic nucleus stimulation are 
closely related to the changes in cerebral glu-
cose metabolism and blood flow [17, 18]. The 
understanding of neuroanatomical connec-
tions in subthalamic nucleus is very important 
for studying the possible mechanism of subtha-
lamic nucleus (STN) stimulation to refractory 
epilepsy. We had characterized different neuro-

Figure 1. Summary diagram of the neural bases involving in visual, auditory and gastrointestinal complaints in pa-
tients with intractable epilepsy. A. Sagittal view of the mouse brain. PRV-614 spreads from infected retinal ganglion 
cells through the optic nerve to second-order neurons in the supracharismatic nucleus, dorsal and ventral aspects 
of the geniculate nuclei [dorsal aspect of the lateral geniculate nucleus (LGN) and ventral aspect of the lateral 
geniculate nucleus], intergeniculate nucleus, and pPPTg. Transport of PRV-614 is restricted to retrograde-only path-
ways. Although cells of the retinal ganglia are infected with PRV-614, this virus is restricted from anterograde spread 
through the optic nerve to retinorecipient neurons. Instead, retrograde spread of infection to first-order neurons in 
the ciliary ganglion leads to transport through the oculomotor nerve to second-order neurons in the Edinger-West-
phal nucleus (EW) and pPPTg. Figure adapted from QX Hong (Epilepsy Behav, 2014); B. It is showing that the central 
circuits from the subthalamic nucleus to the stomach wall. PRV-614 injected into the ventral stomach wall is taken 
up by vagal terminals and enteric neurons, and then is retrogradely transported to the dorsal motor nucleus of the 
vagus (DMV), the nucleus of the solitary tract (NST) the area postrema (AP). Further replication and retrograde trans-
synaptic transport to regions of interest, including STN and most of the CNS including the STN, pedunculopontine 
tegmental nucleus (PPTg), paraventricular nuclei of the hypothalamus (PVN), and cortex thalamus. DVC, the dorsal 
vagal complex; STN, subthalamic nucleus. Figure adapted from HB Xiang (Brain, 2013; Parkinsonism Relat Disord, 
2014). C. An overview of the binaural pathway from the outer ear to the auditory cortex via the eighth cranial nerve 
(the auditory nerve). The central auditory system receives the neural coding from the organ of Corti via the eighth 
cranial nerve (the auditory nerve). PRV-614 was injected into the ear canal in MC4R-GFP transgenic mouse, and the 
distribution patterns of PRV-614-positive neuronal labeling were analyzed in the auditory cortex, inferior colliculus, 
caudal PPTg (cPPTg), and olivary complex. PRV-614/MC4R-GFP dual labeled neurons were detected in the auditory 
cortex, inferior colliculus and cPPTg, suggesting direct melanocortinergic neuronal circuit from ear canal to the 
cPPTg. In contrast to the cPPTg, we didn’t detect PRV-614/MC4R-GFP neurons in the rostral PPTg (rPPTg).
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nal populations of the subthalamic nucleus 
neurons in adult transgenic mouse line express-
ing green fluorescent protein (GFP) under the 
control of the MC4R promoter [19]. We 
observed the expression of glial fibrillary acidic 
protein (GFAP)-immunoreactive cells in the 
MC4R-GFP reporter mouse by using fluores-
cence immunohistochemical detection, and 
found that GFAP-positive neurons were mainly 
labeled in the dorsal STN and sparsely distrib-
uted in the ventral STN, suggesting the dorsal 
STN is the principal subregion to participate in 
the regulation of astrocytic activity. Supporting 
the hypothesis of STN activation is the observa-
tion that STN stimulation induced different 
changes of the local cerebral blood flow (rCBF) 
responses as assessed by [15O] H2O positron 
emission tomography during dorsal STN versus 
ventral STN stimulation by astrocyte activation, 
suggesting STN stimulation acts through dis-
tinct neuronal pathways dependent on stimula-
tion location [20]. Meanwhile, we also found 
that MC4R-GFP was mostly co-localized with 
GFAP-positive cells in the dorsal STN but sel-
dom coexpressed in the ventral STN. Supporting 
the hypothesis of STN activation is the observa-
tion that STN stimulation increased the region-
al cerebral metabolic rate of glucose (rCMRGlc) 
in the middle frontal gyrus and the right anteri-
or lobe of the cerebellum by employing FDG-
PET study [21]. These results showed the mela-
nocortinergic receptor mechanism of the 
modulation of astrocyte activity in the subre-
gions of subthalamic nucleus. 

Epilepsy, rapid eye movement sleep and pe-
dunculopontine tegmental nucleus

Many lines of evidence show that susceptibility 
to epilepsy is increased during nonrapid eye 
movement (NREM, slow-wave) sleep whereas 
rapid eye movement (REM) sleep suppresses 
seizure occurrence [22-25]. Shouse et al report-
ed that the neural generators of different sleep 
components can provoke seizure discharge 
propagation during NREM sleep, and can sup-
press it during REM sleep [26], suggesting that 
REM sleep may be a natural antiepileptogenic 
system in the body during the wake-sleep cycle. 
Therefore, intervening REM sleep may exert 
anti-epileptogenic influence. 

The pedunculopontine tegmental nucleus (PP- 
Tg), which is in the lower midbrain, is consid-
ered a part of the reticular activating system 

[27, 28], and exhibits a wide heterogeneity in 
terms of the neurochemical properties (cholin-
ergic, catecholaminergic, serotonergic, gluta-
matergic-containing neurons, and GABAergic 
interneurons) and connectivity (afferent and 
efferent connections to the thalamus, cere-
brum and spinal cord) [29-33]. Report from 
Hayashi et al showed that acetylcholinergic 
neurons in the PPTg were involved in mental 
development, and disruption of neuronal nico-
tinic acetylcholine receptors led to epilepsy 
[34]. It is demonstrated that stimulation of uni-
lateral PPTg can selectively promote nocturnal 
REM sleep [35-38], and PPTg has been recently 
highlighted as an effective target of deep brain 
stimulation for seizure treatment in patients 
with intractable epilepsy who are unsuitable 
candidates for epilepsy brain surgery [39, 40]. 
Otherwise, data from Schwartz et al showed 
that cholinergic agonist microinjection to the 
pontine produced polygraphic features of REM 
sleep [25]. So, the activation of specific pontine 
focus by nerve stimulation may induce REM-
like state and suppress seizure occurrence.

Transneuronal tracing with neurotropic pseudo-
rabies viruses (PRV) has greatly advanced our 
understanding of multisynaptic circuits bet- 
ween the PPTg and peripheral tissue. It has 
been shown previously that there is strong cho-
linergic innervation from PPTg to the thalamus 
and pons, which is involved in the generation of 
muscle tone and REM sleep [34, 39]. These 
neural bases may partly explain many clinical 
symptoms that there exist visual, auditory and 
gastrointestinal complaints in patients with 
intractable epilepsy (Figure 1). Knowledge on 
the neural bases of minor gastrointestinal 
symptoms may help to describe those systems 
associated with the gastrointestinal phenome-
na in epilepsy. The past two decades have wit-
nessed an explosion in the recognition that the 
CNS cell groups that project to the gastric sym-
pathetic preganglionic neurons were identified 
by the viral retrograde transneuronal labeling 
method [41-43]. Card et al used synapse-
dependent retrograde transneuronal transport 
of pseudorabies virus (PRV) to trace autonomic 
emotional motor circuit development from the 
stomach wall to CNS [44]. Banihashemi et al 
also reported that repeated brief postnatal 
maternal separation enhanced hypothalamic 
gastric autonomic circuits in juvenile rats [41]. 
Gao et al used PRV-152 expressed EGFP to 
inject into the stomach wall, and found that 
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neurons expressed EGFP 60-72 h subsequent 
to PRV-152 inoculation of vagal terminals in the 
stomach wall were targeted in transverse brain-
stem slices [42]. In our experiment, PRV-614 
was injected into the stomach wall, and after 5 
days survival, the animals were perfused and 
their brains processed for immunohistochemi-
cal detection of PRV-614 [31, 45, 46]. We found 
that neurons of the STN and PPTg were retro-
gradely labeled with PRV-614 (Figure 1B), sug-
gesting that neurons in STN and PPTg are tight-
ly linked to the regulation of gastric functions.

Potential treatment of epilepsy

Collectively, the neural mechanisms play an 
important role in controlling the pathogenic 
development of pharmacologically resistant 
epilepsy. The past three decades have wit-
nessed an explosion in the recognition of the 
safety and effectiveness of vagus nerve, STN 
and responsive cortical stimulation as an 
adjunctive therapy for partial onset seizures in 
adults with medically refractory epilepsy [47-
49]. Further studies should be undertaken to 
elucidate the nature of vagus nerve, STN and 
responsive cortical stimulation so that we may 
more effectively apply these new preventive 
and symptomatic therapies to the patient suf-
fering from medically refractory seizures and its 
complications.
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