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Abstract: It should be urgently better understood of the mechanism that contributes cancer aggressiveness. 
Epithelial-mesenchymal transition (EMT) plays a fundamental role in tumor progression and metastasis formation 
by invasion, resistance to cell death and senescence, resistance to chemotherapy and immunotherapy, immune 
surveillance, immunosuppression and inflammation, confers stem cell properties. Tumor-associated macrophages 
(TAMs) are key orchestrators and a set of macrophages in tumor microenvironment. They are major players in the 
connection between inflammation and cancer. TAMs could promote proliferation, invasion and metastasis of tumor 
cells, stimulate tumor angiogenesis, and inhibit anti-tumor immune response mediated by T cell followed by promot-
ing tumor progression. Recently, studies showed that TAMs played critical role in the regulation of EMT in cancer, 
although the underlying mechanism of TAMs-mediated acquisition of EMT has been largely unclear. This review will 
discuss recent advances in our understanding of the role of TAMs in the regulation of EMT during tumorigenesis and 
summarize the recent ongoing experimental and pre-clinical TAMs targeted studies. 
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Introduction

Cancer is a major public health problem in the 
United States and many other parts of the 
world. A quarter of the deaths in the United 
States is due to cancer [1]. It is the leading 
cause of death in developed countries and the 
second leading cause of death in developing 
countries [2]. Currently, one third of women  
and half of men in the United States develop- 
ed cancer during their lifetime [3]. In the Uni- 
ted States, it was estimated that there was 
1,660,290 new cancer cases and 580,350 
cancer deaths in 2013. The five-year relative 
survival rate is approximately 65% for all human 
cancers due to the lack of understanding of the 
exact mechanism underlying cancer develop-
ment and progression [1]. Therefore, a better 
understanding of the mechanism which con-
tributes cancer aggressiveness is urgently 
needed.

In 1968, Elizabeth Hey first defined the concept 
of epithelial-mesenchymal transition (EMT). It 
is an essential embryonic process during which 

epithelial cells loose contact with their neigh-
bors and gain mesenchymal properties, this 
could enable them to break through the base-
ment membrane which separates different tis-
sues from the embryo [4]. Later researchers 
discovered aberrant reactivation of EMT could 
promote tumor cell migration and invasion by 
disruption of apical-basal polarity and loss of 
E-cadherin expression [5-7]. Hence, it will great-
ly benefit our understanding of tumor migration 
and invasion that clarifying the regulation of 
EMT.

Tumor-associated macrophages (TAMs) are key 
orchestrators and a set of macrophages of the 
tumor microenvironment [8, 9]. They are major 
players in the connection between inflamma-
tion and cancer [10]. TAMs could promote prolif-
eration, invasion and metastasis of tumor cell, 
stimulate tumor angiogenesis, and inhibit anti-
tumor immune response mediated by T cell, fol-
lowed by promoting tumor progression [11, 12]. 
Accumulated evidences have demonstrated 
that TAMs plays critical role in the regulation of 
EMT in cancer [13-16]. This review will summa-
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rize what is known about TAMs in cancer devel-
opment and progression and the role of TAMs 
in the regulation of EMT, so as to get a better 
understanding of the mechanism that contrib-
utes to cancer aggressiveness. Lastly, we will 
describe potential application of TAMs as tar-
gets for the prevention and/or treatment of 
human cancers in the future.

Epithelial-mesenchymal transition 

In 1968, Elizabeth Hey first proposed the con-
cept of EMT. It is an essential embryonic pro-
cess, during which polarized epithelial cells 
convert to motile mesenchymal cells. The typi-
cal characters of this process are lossing of 
cell-cell adhesions and apical-basal polarity in 
epithelial cells, and the acquisition of migratory 
and invasive properties [5]. Later reseachers 
discovered aberrant reactivation of EMT could 
promote tumor cell migration and invasion 
[5-7]. By suppressing the expression of epithe-
lial markers such as E-cadherin, and by incre- 
asing the expression of mesenchymal mark-
ers, including Vimentin, Slug, Snail, Fibronectin, 
zinc-finger E-box binding homeobox 1 (ZEB1), 
ZEB2, and α-smooth muscle action (SMA), the 
cells acquire the ability to migrate and invade, 
which could lead to tumor progression and 
metastasis [5].

EMT plays a fundamental role in tumor progres-
sion and metastasis formation by invasion, 
resistance to cell death and senescence, resis-
tance to chemotherapy and immunotherapy, 
immune surveillance, immunosuppression, and 
inflammation, and confers stem cell properties 
[5]. So far, many growth factors, cytokines and 
cellular signaling pathways have been found in 
EMT regulating in cancer, incluing transforming 
growth factor beta (TGF-β), forkhead box pro-
tein M1 (FoxM1), hepatocyte growth factor 
(HGF), epidermal growth factor factor (EGF), 
NFκB, Notch, and Wnt [5, 17-19]. Recently, the 
growing body of literature strongly suggested 
that TAMs played a critical role in regulation of 
EMT in cancer [13-16]. Therefore, we will high-
light the function of TAMs in the regulation of 
EMT in human cancers.

The promotion role of TAMs in cancer 

The polarization of macrophages in cancer

Macrophages can be divided schematically in- 
to two main classes in line with the Th1/Th2 

dichotomy [10]. They are simplified as either 
classical ‘M1’ or alternative ‘M2’ [20]. Microbial 
stimuli such as lipopolysaccharides (LPS) and 
Th1 cytokines such as interferon gamma (IFN-
γ) drive macrophages to the classically activat-
ed state. The characters of these cells are 
increased expression of inflammatory cyto-
kines, chemokines, and reactive nitrogen/oxy-
gen intermediates (RNI/ROI). The functions of 
these cells including promoting Th1 effector 
response, anti-microbial ability, protection aga- 
inst various types of bacteria and viruses, and 
tumoricidal functions. In contrast, Th2 cyto-
kines such as IL-4 and IL-13 drive macrophages 
to the alternatively activated state [21]. The 
characters of these cells are increased expres-
sion of scavenging receptors and scavenging 
activity, reduced expression of inflammatory 
cytokines, and preferentially metabolized argi-
nine to ornithine via arginase. The functions of 
these cells including anti-inflammatory, the pro-
motion of Th2 response, tissue repairing and 
remodelling, protection from parasite infection, 
and tumor promotion. M1- and M2-polarized 
macrophages have been indicated in tumors 
[22]. TAMs resemble M2-polarized macropha- 
ges [23].

Origin of TAMs

The historic description of tissue macrophages 
is that they are solely derived from bone mar-
row (BM). However, evidences from recent stud-
ies suggest that most tissue macrophages ori-
gin from yolk sac progenitors [24]. Evidence 
indicate macrophages involved in pathogen 
responses originate from circulating BM mono-
cytes [25]. Evidences from several recent stud-
ies demonstrate that most TAM subpopulations 
derived from the Ly6C+ population of circulating 
mouse moncytes in primary mouse mammary 
tumors, grafted tumors and lung metastases 
[26-28]. It is reported that TAMs are solely 
derived from BM as the primary source of 
monocytes in the Lewis lung carcinoma synge-
neic transplant model [29].

Various soluble factors have been reported to 
regulate the orginal of macrophages at the 
molecular level. CSF1 is the master regulator 
and chemotactic factor of most populations of 
macrophages whether they are derived from 
the yolk sac or BM [30]. High CSF1 expression 
in cancer is associated with poor prognosis; 
while knocking-out CSF-1 receptor (CSF-1R) in 
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cancer shows delayed initation, progression, 
and metastasis by the depletion of TAMs [12, 
31]. Many tumors and their stroma could 
release abundant CSF-1. Tumors could orches-
trate the recruitment and differentiation of BM 
into TAMs by releasing CSF-1 and other mo- 
nocyte/macrophage chemoattractants [24]. 
IL-34, the second ligand for CSF-1R, is reported 
expressing in breast cancer cells following cyto-
toxic therapy and is associated with the recruit-
ment of TAMs [32, 33]. In a xenograft model of 
skin cancer, VEGFA could recruit macrophage 
progenitors and then differentiate into TAMs in 
the presence of IL-4, and the lossing of these 
TAMs  inhibited tumor growth, tumor invasion, 
proliferation and tumor angiogenesis [34]. In 
the Polyoma Middle T oncoprotein (PYMT) 
model, the binding of CCL2 to its receptor CCR2 
directly mediates the monocyte recruiment to 
the primary tumor and metastases in the pres-
ence of CSF-1 [26, 28, 35]. In human breast 
cancer models, CCL18 binding to its receptor 
PITPNM3 mediates TAMs recruitment in col-
laboration with GM-CSF [13]. In colon cancer 
models, CCL9 bindsto its receptor CCR1 and 
mediates the immature myeloid cells recrui-
ment [36]. The ablation of these chemokines 
got in the loss of monocytes and/or TAMs and 
the inhibition of malignancy.

The origins of TAMs in many cancers is still 
uncertain. Further study characterizing TAMs in 
different human cancers and their relationship 
to the possibly existing different macrophages 
is now warranted.

Roles of TAMs in cancer initiation and promo-
tion

TAMs are key orchestrators and a set of macro-
phages of the tumor microenvironment [8, 9]. 
They are major players in the connection be- 
tween inflammation and cancer [10]. In 2009, 
Colotta firstly defined cancer-related inflamma-
tion (CRI) as the seventh hallmark of cancer 
[37]. CRI is one of the ten redefined hallmarks 
of cancer [38]. The reason why CRI associates 
with increaseing cancer risk is that chronic 
infection or persistent irritation is often called 
“smoldering inflammation” [39]. Activated mac-
rophages work in concert with other immune 
cells in this type of immune response as major 
players [40]. Evidences show inflammatory 
microenvironment promote genetic instability 

within the developing tumor epithelial cells, the 
infiltrating or resident immune cells in inflam-
matory microenvironment including macro-
phages [37]. Studies have demonstrated the 
essential role for macrophages in promoting 
tumor progression through NF-κB-induced ex- 
pression of cytokines such as TNF and IL-6 [41, 
42]. Recently, evidences showed TAMs-derived 
proinflammatory cytokine IL-23 and the Th17 
pathway were associated with progression of 
spontaneous colon cancer [43].

Roles of TAMs in cancer angiogenesis

Tumor and its stromal cells produce differernt 
mediators that promote angiogenesis. Growth 
factors such as VEGF, TGF-β, PDGF and mem-
bers of the FGF family released from TAMs pos-
sess proangiogenic role in many tumors [44-
47]. TAMs secrete angiogenic factor thymidine 
phosphorylase and produce several angiogen-
esis modulating enzymes including MMP-2, 
MMP-7, MMP-9, MMP-12, and cyclooxygen-
ase-2 [48-51]. Tie-2 expressing monocytes/
macrophages (TEMs) have been reported to 
possess proangiogenic role in many human 
and mice tumors [52, 53]. TAMs release many 
chemokines involved in angiogenic processes 
such as CXCL12, CCL2, CXCL8, CXCL1, CXCL13, 
and CCL5 [54, 55]. Hypoxia is a major driver of 
angiogenesis. The hypoxic areas of the tumor 
can see the accumulation of macrophages, 
particularly in necrotic tissue [56]. HIF1α, which 
is expressed in macrophages, modulates the 
recruitment of macrophages to hypoxic regions 
of the tumor. This recruitment is through CCL-2, 
endothelins and other chemokines [56, 57]. 
HIF1α regulates the transcription of a large 
panel of genes associated with angiogenesis at 
the hypoxic site including VEGF [56, 58]. TAMs 
are also involved in lymphangiogenesis, and 
the lymphatic endothelial growth factors sec- 
reted by TAMs are associated with peritumoral 
lymphangiogenesis [59, 60]. 

Roles of TAMs in cancer invasion and metas-
tasis 

Evidences from a study in the PyMT mouse 
model and in breast cancer cell xenografts 
show that TAMs are required for tumor cell 
migration and invasion [61]. The mechanism is 
that CSF-1 synthesized from tumor cells stimu-
lates TAMs to move and produce EGF, after-
ward activates migration in the tumor cells [62]. 
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Co-culture of tumor cells with TAMs increases 
invasiveness of cancer cells through TNF-α 
dependent MMP induction in TAMs [63, 64]. 
Evidences from tissue culture experiments 
show Wnt5a acting through the noncanonical 
pathway in organoids and TNF-α via NFκB in co-
culture promote tumor cell invasion [65, 66]. 
Reduction of the number of TAMs by genetic 
methods or inhibition of EGF or CSF-1 signaling 
in wild-type mice bearing mammary tumors 
reduces the number of circulating tumor cells 
[67, 68]. TAMs produces the most Urokinase/
Plasminogen activator (uPA), and in the PyMT 
model its loss inhibits metastasis [69]. A CSF1-
EGF paracrine loop between TAMs and tumor 
cells has been implicated in breast cancer cell 
invasion and intravasation [61]. Evidence show 
macrophages are essential for malignant pro-
gression and metastasis in a spontaneous 
model of skin carcinoma [70]. An in vivo study 
indicates high cathepsin activity in TAMs medi-
ates tumor growth, angiogenesis, and invasion 
in pancreatic cancer [68]. 

Roles of TAMs in cancer immunoregulation

Macrophages are the major immonoregulatory 
cells in tumors, and they take great part in 
immune responses in tumors [12]. In 1988, 
Fidler first reported that activated macro-
phages could kill tumor cells and eliminate 
metastases [71]. Later evidences show activat-
ing macrophages by either overexpressing 
GM-CSF or treating tumors with CpG plus anti-
IL-10 could inhibit tumor growth in xenograft 
models [72, 73]. The characters of these 
immonoregulatory TAMs are downregulation of 
IL-12, IL-18, and TLR signaling pathway and 
upregulation of arginase [74, 75]. This is in 
agreement with TAMs are M2-polarized popula-
tion [47]. GM-CSF controll TAMs differentiate to 
trophic TAMs and then apart from immunologi-
cally activated ones in the presence of high 
concentrations of CSF-1 [39, 76]. TAMs could 
also inhibit cytotoxic T cell responses. The pro-
duction of IL-10 from TAMs can induce the 
expression of costimulatory molecule pro-
grammed death ligand (PD)-L1 in monocytes, 
these monocytes could inhibit cytotoxic T cell 
responses [77]. In human ovarian cancers the 
production of CCL22 from TAMs regulates the 
influx of reulatory T cells that inhibit cytotoxic T 
cell responses [78]. TAMs in mammary tumor 
xenografts cytotoxic T cell responses by the 

synthesis of PGE2 and TGF-β [79]. These facts 
indicate the immunoregulation roles of TAMs in 
cancer (Table 1).

Roles of TAMs in regulating cancer EMT

EMT plays a fundamental role in tumor progres-
sion and metastasis formation, clarifying the 
regulation of EMT will greatly benefit our under-
standing of tumor migration and invasion. 
Increasing evidences have revealed that many 
growth factors, cytokines and cellular signaling 
pathways play great roles in initiation and exe-
cution of EMT, including TGF-β, FoxM1, HGF, 
EGF, NFκB, Notch, Snail, ZEB1, ZEB2, Twist1, 
KLF4, KLF8, Sox9 and Wnt [5, 17-19, 80]. 
Accumulated evidences have demonstrated 
that TAMs played critical role in the regulation 
of EMT in cancers [13-16]. In the following sec-
tions, we will discuss the crosstalk between 
TAMs and selected signaling pathways, includ-
ing which play critical roles in EMT.

Crosstalk between TAMs and NFκB

NFκB is a major inflammation mediator and an 
oncogenic key transcription factor, it is activat-
ed in breast cancer and its activation leads to 
direct suppression of miR488, an anti-meta-
static microRNA; and the downregulation of 
miR488 subsequently increased the expres-
sion of SATB1 and Twist1, which are two major 
EMT initiators leading to the acquisition of mes-
enchymal phenotype [81]. Resveratrol inhibit 
LPS-induced EMT in mouse melanoma through 
the down-regulation of NF-κB activity [82]. In 
oral squamous cell carcinoma (OSCC), TAMs 
play a protumor role and promote EMT through 
activation of Gas6/Axl-NF-κB [83]. Pterostil- 
bene, a natural stilbene isolated from blueber-
ries, possesses anti-cancer effects in a variety 
of cancer types [84]. In breast cancer, a recent 
study demonstrates that pterostilbene effec-
tively suppresses the generation of CSCs and 
metastatic potentialunder the influence of M2 
TAMs via modulating EMT associated signaling 
pathways, specifically NFκB/miR488 circuit 
[85].

Crosstalk between TAMs and TLR4/IL-10

Toll-like receptors (TLRs) play critical roles in 
innate immunity and are primarily expressed on 
macrophages and dentritic cells. The activation 
of TLRs in these cells induce cytokine secretion 
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and inflammatory responses. TLR4, one of this 
class of receptors, has been demonstrated 
closely to the connection between inflamma-
tion-mediated carcinogenesis and tumor pro-
gression [86]. The inhibition of TLR4 signaling 
in TAMs reduced cytokines and weakened their 
tumor-promoting activity in experimental lung 
metastasis [87]. In human hepatocellular car- 
cinoma, evidence indicated that TLR4/JNK/
MAPK signaling was required for LPS-induced 
EMT [88, 89]. IL-10, a type II cytokine, has been 
demonstrated to play a critical role in regulat-
ing macrophages. It is produced by monocytes, 
a subtype of dendritic cells, and activated mac-
rophages [90]. Besides, additional sources of 
IL-10 in cancers include the alternatively acti-
vated M2 TAMs [91]. The local production of 
IL-10 results in a tumor microenvironment fa-
vors cancer cells survival and metastases [91-
94]. Evidence indicates the activation of TLR4 
signaling on M2-polarized TAMs stimulates an 
increased release of IL-10 [95]. Recently, the 
potential role of TLR4/IL-10 signaling in the 
EMT of pancreatic cancer is clarified, M2-po- 
larized TAMs promoted EMT in pancreatic can-
cer cells partially through TLR4/IL-10 signaling 
[15].

Crosstalk between TAMs and TGF-β1

Transforming growth factor-β (TGF-β) influenc-
es cell differentiation, proliferation, motility, 
and apoptosis as a multifunctional cytokine 
[96, 97]. The expression of TGF-β is abundant 
in chronic inflammatory diseases and cancer 
[98]. TGF-β1 is one of the most important mem-
bers of TGF-β. TGF-β1 plays critical roles in can-
cer progression and metastasis [99, 100], 
which induces epithelial plasticity leading to 
EMT in cancer cells [98, 101]. TGF-β1/Smad 
signaling directly activates the expression of 

EMT transcription factors, including ZEB1, 
ZEB2, Snail, Slug and Twist. In breast cancer, 
evidence shows the Ras effector Blimp-1 play 
an essential role in TGF-β1-induced EMT via 
repression of BMP-5 [102]. KLF8 involves in 
TGF-β1-induced EMT and promotes invasion 
and migration in gastric cancer cells [98]. 
MiRNA-200b represses TGF-β1-induced EMT 
and fibronectin expression in kidney proximal 
tubular cells [103]. TAMs can induce EMT in 
intratumoral cancer cells through TGF-β signal-
ing and activation of the β-catenin pathway 
[104]. Two double-negative feedback loops: 
one between the transcription factor SNAIL1 
and miR-34 family and the other between the 
transcription factor ZEB1 and miR-200 family, 
have been found involved in TGF-β1-induced 
EMT of MCF10A cells [105]. NFκB signalling is 
involed in TGF-β1-induced EMT [106-108].

A recent study showed that TAMs promote 
hepatocellular carcinoma CSC-like properties 
via TGF-β1-induced EMT. Depletion of TGF-β1 
blocked acquisition of CSC-like properties 
through inhibition of TGF-β1-induced EMT [14]. 
In human cholangiocarcinoma (CCA) cell lines, 
the various cytokines secreted by TAMs includ-
ing TGF-β1 induced EMT [109]. Evidence sh- 
owed that TAMs co-culture enhanced invasion 
of gastric cancer cells via TGF-β and BMP path-
ways [110]. These findings provided convincing 
evidence that there was a tight crosstalk 
between TAMs and TGF-β1 signaling pathways, 
and TAMs may play a central role in tumor EMT 
through interaction with TGF-β1 signaling.

Crosstalk between TAMs and FoxQ1

Forkhead box Q1 (FoxQ1) is a member of the 
forkhead transcription factor family [111]. 
FoxQ1 plays critical roles in hair follicle morpho-

Table 1. Role of TAMs in cancer
Role of TAMs in cancer Mechanism References
Cancer initiation and promotion Through NF-κB-induced expression of cytokines such as TNF 

and IL-6, proinflammatory cytokine IL-23 and the Th17 pathway
[41-43]

Cancer angiogenesis Through secrete VEGF, TGF-β, PDGF, members of the FGF 
family, MMP-2, MMP-7, MMP-9, MMP-12, cyclooxygenase-2, 
CXCL12, CCL2, CXCL8, CXCL1, CXCL13, CCL5 and HIF1α

[44-51, 54-57]

Cancer invasion and metastasis CSF-1 signal, TNF-α dependent MMP induction, secrete EGF, 
Urokinase/Plasminogen activator (uPA), high cathepsin activity

[62-64, 67-69]

Cancer immunoregulation Downregulation of IL-12, IL-18 and TLR signaling pathway and 
upregulation of arginase, inhibit cytotoxic T cell responses, the 
production of CCL22

[74-75, 77, 78]
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genesis and gastric epithelial differentiation 
[112]. Evidences from studies demonstrated 
that increased FoxQ1 expressionis correlated 
with metastasis and poor prognosis for colon 
cancer, lung cancer, and breast cancer [113-
116]. FoxQ1 induces an EMT change, gain of 
stem cell-like properties, and acquisition of 
resistance to chemotherapy-induced apoptosis 
[114]. FoxQ1 represses E-cadherin expression 
via binding to the E-box in its promoter region, 
and the knockdown of FoxQ1 blocks TGF-β-
induced EMT in breast cancer cells [116]. The 
suppression of FoxQ1 is implicated in benzyl 
isothiocyanate-mediated inhibition of EMT in 
human breast cancer cells [117]. In bladder 
cancer, it has been demonstrated short hair- 
pin RNA targeting FoxQ1 inhibit invasion and 
metastasis of cancer cells via the reversal of 
EMT [118]. In Hela cells, evidence show FoxQ1 
promote TGF-β1 expression and induce EMT 
[119]. In NSCLC, FoxQ1 is implicated in regulat-
ing EMT and increasing chemosensitivity, down-
regulation of FoxQ1 promotes the expression of 
epithelial markers, decreases several mesen-
chymal markers in vitro and in vivo, and increas-
es resistance to conventional chemotherapeu-
tic agents [120]. Versican V1 is an aggregating 
chondroitinsulfate proteoglycan, which is sec- 
reted by both tumor cells and TAMs [121]. It is 
an important proinflammatory mediator in the 
tumor microenvironment, and the increased 
expression of Versican V1 correlates with me- 
tastasis and poor survival in many human  
cancers [122-124]. Recently a study reported 
FoxQ1 expression is an independent and sig-
nificant risk factor for hepatocellular carcino-
ma. FoxQ1 induces EMT via the transactivation 

ciprocal interaction between TAMs and FoxQ1 
signaling, which may contribute to the develop-
ment of EMT in cancer.

TAMs as a cancer therapeutic target

Since TAMs plays a critical role in the develop-
ment and progression of human cancer, it also 
plays a critical role in the regulation of EMT in 
cancer. Targeting TAMs could be a novel strat-
egy for the treatment of human cancers. TAMs 
could be either tumor killing (M1 or activated) 
or tumor promoting (M2 or alternatively acti-
vated) [126, 127]. Large-scale transcriptome 
analysis results revealled macrophages have a 
mixed phenotype expressing both M1 and M2 
markers [12]. Several recent studies indicated 
the approach of block macrophage trophic phe-
notypes together with their immunosuppres-
sive behaviors and enhance their activation, 
and antitumoral activities is feasible and thera-
peutic [128, 129]. The major strategy targeting 
TAMs for cancer therapy based upon genetic 
experiments is inhibition of CSF-1 signaling by 
anti-CSF1 receptor-neutralizing antibodies or 
small-molecule inhibitors [128]. The inhibition 
of CSF-1R causes TAMs to repolarize to a state 
regulated by GM-CSF in glibastoma, cervical 
and breast cancer models have been demon-
strated to be antitumoral [8, 130]. Small-
molecule inhibitors to CSF1R could deplete 
some populations of TAMs and enhance tumor 
responses to chemotherapy by the removal  
of macrophage-mediated immunosuppression 
during the tumor recovery period [33, 131]. 
Study results showed low-dose irradiation of 
tumors programs macrophages to an activated 
state could orchestrate T cell immunotherapy 

Figure 1. A proposed model for TAMs that controls the processes of EMT. 
TAMs triggers EMT through regulation of TLR4/IL-10, Versican V1, TGF-β1, 
Gas6/Ax1, miR488, FoxQ1 and NFκB.

of ZEB2 expression by directly 
binding to the ZEB2 promo- 
ter; Versican V1 was identifi- 
ed as a direct transcriptional  
target of FoxQ1, the inhibition 
of Versican V1 inhibits FoxQ1-
mediated TAMs migration; an- 
imal studies show the up-reg-
ulation of FoxQ1 in HCC cells 
promote HCC metastasis and 
intratumor TAMs infiltration; 
in human HCC tissues, FoxQ1 
expression is positively cor- 
related with ZEB2 and Versi- 
can V1 expression and intra-
tumoral TAM infiltration [125]. 
Taken together, there is a re- 
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[132]. Macrophages could also enhance mono-
clonal antibodies therapeutic efficacy of mono-
clonal antibodies [129]. Trabectedin could 
directly kill monocytes and/or macrophages 
and could be a therapeutic agent against 
tumors in mice models [133]. Recently a study 
indicated amphotericin B could enhance mac-
rophage-mediatedinhibition of glioma tumor-
initiating cells [134]. Striking, using a neutraliz-
ing antibody to the CSF1R in a single-molecule 
approach has been applied in diffuse-type 
giant cell tumors that overexpress CSF1 in a 
recent clinical trial [135].

Conclusions and future directions

In conclusion, TAMs play critical roles in the 
development and progression of human can-
cer, in which it is mediated through regulation 
of cancer intiation and promotion, cancer 
angiogenesis, cancer invasion and metastasis, 
cancer immunoregulation. EMT plays a funda-
mental role in tumor progression and metasta-
sis formation by invasion, resistance to cell 
death and senescence, resistance to chemo-
therapy and immunotherapy, immune surveil-
lance, immunosuppression and inflammation, 
and confers stem cell properties [5]. Accu- 
mulated evidences have demonstrated that 
TAMs plays critical role in the regulation of EMT 
in cancer [13-16]. This review discussed the 
role of TAMs in regulation EMT with signaling 
pathways, including NFκB, TLR4/IL-10, TGF-β1 
and FoxQ1 (Figure 1). Therefore, targeting TAMs 
could be a promising strategy for the treatment 
of cancers. Therecent ongoing experimental 
and pre-clinical TAMs targeted studies have 
indeed made some encouraging progress. We 
believe that TAMs targeted strategy will be 
applied in clinic for cancer patients in the 
future.
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