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Abstract: Coagulation proteases have been suggested to trigger a diversity of inflammatory responses in addition 
to their critical role in the coagulation cascade. It has been well established that the inflammatory and coagula-
tion pathways are invariably linked. However, the mechanisms through which coagulation protease factor Xa (FXa) 
causes inflammation remain unclear. Thus, we assessed the pro-inflammatory effects of FXa in RAW 264.7 macro-
phages. We show that FXa elicits signal transduction in RAW 264.7 macrophages. FXa-induced signal transduction 
was dependent on the activation of protease-activated receptor 2 (PAR-2), PAR-2 desensitization but not PAR-1 
desensitization abolished FXa-induced ERK1/2 phosphorylation. The PAR-2-dependent cellular effects of FXa led to 
the expression of pro-inflammatory cytokines IL-6, IL-8, TNF-α and IFN-γ in RAW 264.7 macrophages. Furthermore, 
a specific inhibitor of the ERK1/2 pathway, U0126, decreased the FXa-induced pro-inflammatory cytokines expres-
sion significantly. Taken together, our data indicate that FXa induces PAR-2-dependent pro-inflammatory activity in 
RAW 264.7 macrophages through the ERK1/2 pathway. 
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Introduction

Inflammation is a physiological response of a 
body to stimuli, including infections and tissue 
injury, and protects a body from these inflam-
matory stimuli [1]. Macrophages play critical 
roles in immune reaction, allergy, and inflam-
mation. These cells induce inflammatory reac-
tion, and initiate and maintain specific immune 
responses by releasing different types of cyto-
kines [2, 3]. Over-expression of the inflamma-
tory mediators in macrophages is involved in 
many inflammation related diseases, such as 
atherosclerosis, rheumatoid arthritis, chronic 
obstructive pulmonary disease, and autoim-
mune diabetes [4-6].

It has been well established that the inflamma-
tory and coagulation pathways are invariably 
linked. Various coagulation proteases trigger a 
diversity of pro-inflammatory responses, in 
addition to their critical role in the coagulation 
cascade [7]. Such as factor Xa (FXa) and throm-
bin, can induce multiple cellular effects via acti-

vation of protease activated receptors (PARs). 
PARs are the family of G-protein–coupled recep-
tors that are activated by proteolytic cleavage. 
PAR-1, -3, and -4 are cleaved by thrombin, 
whereas FXa can activate both PAR-1 and PAR-2 
[8-11]. It has been demonstrated that coagula-
tion protease-dependent activation of PARs 
contributes to inflammation in many vascular 
disorders [12-14]. FXa triggers signaling path-
ways involved in the regulation of inflammation, 
it can induce the expression of pro-inflammato-
ry mediators, such as IL-6, IL-8, and MCP-1 [15].

PAR-2 occupies a crucial position in inflamma-
tion and regulates vascular function [16, 17]. 
Pro-inflammatory mediators, such as TNF-α 
and IFN-γ, can induce the expression of PAR-2, 
in turn, PAR-2 activation promotes the produc-
tion of TNF-α, IFN-γ, IL-8 and IL-18 in various cell 
types [18]. Indeed, The expression of IFN-γ and 
IL-18 is significantly decreased in PAR-2 knock-
out mice [18, 19], whereas endotoxin-stimulat-
ed macrophages show significantly greater 
IL-10 expression and enhanced IL-4 secretion in 
PAR-2 knockout mice [20, 21].
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Taken together, these data support the hypoth-
esis that FXa-induced intracellular signaling is 
associated with inflammation. Therefore, in this 
study, we sought to investigate the pro-inflam-
matory effect of FXa in RAW 264.7 macro-
phages. We showed that FXa enhanced the 
expression of pro-inflammatory cytokines in 
RAW 264.7 macrophages. The pro-inflammato-
ry effect of FXa in RAW 264.7 macrophages 
was found to be largely dependent on PAR-2 
activation through the ERK1/2 pathway.

Materials and methods

Cell culture

The murine macrophage cell line RAW 264.7 
was purchased from Lonza (Walkersville, USA). 
RAW 264.7 macrophages were cultured in 
Dulbecco’s modified Eagle’s medium (DMEM) 
supplemented with 100 μg/ml of penicillin, 
100 μg/ml of streptomycin and 10% fetal 
bovine serum (FBS). The cells were incubated 
in an atmosphere of 5% CO2 at 37°C and were 
routinely passaged every 3 days. For all experi-
ments, cells were washed twice with phos-
phate-buffered saline (PBS), serum-starved in 
DMEM with 0.1% FBS for 24 hours and subse-
quently stimulated as described. 

Reagents

DMEM, FBS and PBS were obtained from 
Invitrogen (Carlsbad, USA). Thrombin, Hirudin, 
ERK1/2 inhibitor U0126 and the antibiotics 
(penicillin and streptomycin) were purchased 
from Sigma-Aldrich (Shanghai, China). Human 
FXa was purchased from Merck Group 
(Darmstadt, Germany). Tick anticoagulant pep-
tide (TAP) was purchased from American 
Custom Chemicals Corporation (San Diego, 
USA). PAR-1 neutralizing antibody (ATAP-2) and 
PAR-2 neutralizing antibody (SAM11) were ob- 
tained from Santa Cruz Biotechnology (Santa 
Cruz, USA). Antibodies: Phospho-p44/42, total 
p44/42 and β-actin antibodies were purchased 
from Cell Signaling Technology (Beverly, USA). 
Goat anti-mouse IRD 700 and goat IRD anti-
rabbit 800 were purchased from LI-COR Bio- 
technology (Lincoln, USA).

Western blot

Cells were rinsed with ice-cold Dulbecco’s 
phosphate buffered saline (dPBS) and lysed in 
100 ml of cell lysis buffer containing proteina- 
se inhibitor cocktail and phosphatase-inhibitor 

cocktail followed by scraping with a cell scrap-
er. Cell debris was removed by centrifugation 
(12000 rpm for 15 min) and protein was quanti-
fied by the Bradford method using bovine 
serum albumin as standard. Samples contain-
ing equal amounts of total cell protein were 
separated by 10% SDS-PAGE, and transferred 
onto a nitrocellulose membrane using the Bio-
Rad wet transfer system at 100 v for 1 hour. 
The membranes were blocked with 2.5% skim 
milk in TBST (50 mM Tris, pH 7.6, 0.15 mM 
NaCl, 0.1% Tween 20) for 1 h at room tempera-
ture. Membranes were then incubated with 
antibodies against phospho-p44/42 MAPK, 
total p44/42 MAPK over night at 4°C with gen-
tle shaking. After several washes in TBST, mem-
branes were incubated with goat anti-mouse 
IRD 700 and goat IRD anti-rabbit 800 for 1 hour 
at room temperature. Fluorescent signal was 
imaged using the Li-COR Odyssey Infrared 
imaging system (Li-COR biosciences, Lincoln, 
USA). Densitometry was used to quantify all 
bands. Membranes were then re-probed with 
mAb β-actin for 1 hour at room temperature 
and incubated with goat anti-mouse IRD 800 
for 45 minutes. The relative levels of phospho-
p44/42 MAPK is expressed as the ratio to 
β-actin.

RNA extraction and relative quantitative PCR 
assay

After the treatment, the total RNA of the RAW 
264.7 macrophages was extracted with the 
TRIzol reagent (Invitrogen, Carlsbad, USA), 
according to the manufacturer’s guidelines. 
The RNA pellets were suspended in RNase-
Free water, and the DNA contamination of  
the RNA was removed by DNase treatment 
(Promega, Madison, USA). cDNA was obtained 
from 4 μg of RNA by reverse transcription using 
AMV reverse transcriptase and the oligo-dT 
primer (300 pmol) in a total reaction volume of 
40 μl. Relative quantitative PCR was performed 
to measure the mRNA levels of pro-inflamma- 
tory cytokines (IL-6, IL-8, TNF-α, and IFN-γ) 
using a SYBR green PCR Kit (Roche, Basel, 
Switzerland) and the ABI ViiA 7 instrument. 
Glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH) was used as the reference gene.

Statistics

All statistical analyses were carried out using 
the statistical analysis software package SPSS 
19. Data are presented as mean ± standard 
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deviation. Two-tailed t-test was used to com-
pare treatment groups with the controls. 
P<0.05 was considered as a statistical signi- 
ficance.

Results

PAR-1 and PAR-2 are expressed and functional 
in RAW 264.7 macrophages

As shown in Figure 1A, the RAW 264.7 macro-
phages used in this study constitutively ex- 
pressed PAR-1 and PAR-2. As we all know, the 
activation of the cellular receptors is the essen-
tial condition for FXa-induced efficient signal 
transduction. Therefore, we next assessed 
whether the expression of PAR-1 and PAR-2 
was involved in functional responses in RAW 
264.7 macrophages. Cells were serum-starved 
for 24 hours, then stimulated with PBS (nega-
tive control), 1 U/mL thrombin (specific PAR-1 
agonist) and 200 nmol/L trypsin (specific PAR-2 
agonist), respectively. Finally, we examined the 
phosphorylation of ERK1/2, which is widely 
used as a surrogate marker for PAR-1 and 
PAR-2 activation [22]. As shown in Figure 1B, 
both thrombin and trypsin induced strong phos-
phorylation of ERK1/2 as compared to the neg-
ative control. Hence, we conclude that both 
PAR-1 and PAR-2 are functionally active in RAW 
264.7 macrophages.

FXa elicits signal transduction in RAW 264.7 
macrophages

We next determined whether FXa could induce 
signal transduction in RAW 264.7 Macrophages. 

We examined FXa-induced phosphorylation of 
ERK1/2 to assess the capacity of FXa. As 
shown in Figure 2, the phosphorylation of 
ERK1/2 was detectable after stimulation with 
0.25 U/mL FXa, whereas maximal level was 
obtained at a concentration of 0.75 U/mL. To 
verify that FXa-induced ERK1/2 phosphoryla-
tion is specific, cells were pre-incubated with 
200 nmol/L TAP (specific FXa inhibitor) or 100 
nmol/L hirudin (specific thrombin inhibitor), 
then stimulated with 0.75 U/mL FXa. As shown 
in Figure 3, pretreatment with TAP, but not with 
hirudin, almost completely inhibited FXa-indu- 
ced ERK1/2 phosphorylation. Hence, we con-
clude that FXa elicits signal transduction in 
RAW 264.7 macrophages and the intracellular 
signaling is specific, independent of thrombin 
formation.

FXa signals via PAR-2 activation

We next determined which receptor was essen-
tial in FXa-induced signal transduction. First, 
we tested whether the activation of PAR-1 is 
required for FXa-induced signal transduction. 
Cells were pre-incubated with PBS (negative 
control) or 5 μg/mL ATAP2 (PAR-1 neutralizing 
antibody), then treated with 0.75 U/mL FXa or 1 
U/mL thrombin. As shown in Figure 4, both FXa 
and thrombin induced the phosphorylation of 
ERK1/2 strongly as compared to the negative 
control. The PAR-1 neutralizing antibody didn’t 
impact the strong phosphorylation of ERK1/2 
induced by FXa. In contrast, pretreatment with 
ATAP2 almost completely inhibited thrombin-
induced ERK1/2 phosphorylation. These re- 

Figure 1. PAR-1 and PAR-2 are expressed and functional in RAW 264.7 macrophages. A. Western blot analysis on 
cell lysates of RAW 264.7 macrophages shows that macrophages constitutively express PAR-1 and PAR-2. B. Serum-
starved cells (24 hours) treated with PBS, thrombin (1 U/mL), or trypsin (200 nmol/L) for 30 minutes. Western blot 
analysis of phospho-ERK1/2 indicates that expression of PAR-1 and PAR-2 in macrophages was functional. ERK1/2 
phosphorylation is used as a surrogate marker for PAR-1 and PAR-2 activation. Protein loading was verified and 
normalized using β-actin.
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sults suggest that PAR-1 activation is essenti- 
al in thrombin-induced signal transduction, but 
not required for FXa-mediated signaling. Then, 

we identified whether PAR-2 was involved in 
FXa-induced signal transduction. To verify the 
specificity of FXa-mediated PAR-2 activation, 
we used 1 U/mL thrombin (high affinity ligand 

Figure 2. FXa elicits signal transduction in RAW 
264.7 macrophages. Cells were exposed to PBS and 
different concentrations of FXa ranging from 0.25-1 
U/mL for 30 minutes. Western blot analysis of phos-
pho-ERK1/2 indicates that signal transduction was 
detectable after stimulation with 0.25 U/mL FXa, 
whereas maximal level was obtained at a concentra-
tion of 0.75 U/mL. Relative levels of ERK1/2 phos-
phorylation are expressed as a ratio of phospho-
ERK1/2 to total ERK1/2. Protein loading was verified 
and normalized using β-actin. Data represent mean 
± SEM. *P<0.05.

Figure 3. Specificity of FXa-induced ERK1/2 phos-
phorylation. Cells were pretreated with TAP (200 
nmol/L) or hirudin (100 nmol/L) for 30 minutes prior 
to incubation with FXa (0.75 U/mL) for 30 minutes. 
Western blot analysis of phospho-ERK1/2 indicates 
that TAP but not hirudin almost completely inhibited 
FXa-induced ERK1/2 phosphorylation. Relative lev-
els of ERK1/2 phosphorylation are expressed as a 
ratio of phospho-ERK1/2 to total ERK1/2. Protein 
loading was verified and normalized using β-actin. 
Data represent mean ± SEM. *P<0.05.
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for PAR-1) and 200 nmol/L trypsin (high affinity 
ligand for PAR-2) to desensitize PAR-1 and 
PAR-2 prior to exposure to FXa. First, we veri-
fied the specificity of our desensitization experi-
ments. As shown in Figure 5, PAR-1 desensiti-
zation with thrombin abolished subsequent 
stimulation by thrombin but not by trypsin. 
Reciprocally, PAR-2 desensitization with trypsin 
prevented subsequent ERK1/2 phosphoryla-
tion induced by trypsin but not by thrombin. 
Hence, we conclude that thrombin and trypsin 
can desensitize PAR-1 and PAR-2 specifically. 
Next, we assessed FXa-induced signal trans-
duction in thrombin-desensitized or trypsin-
desensitized cells. As shown in Figure 6, FXa 
still induced ERK1/2 phosphorylation in th- 
rombin-desensitized cells. In contrast, trypsin-
desensitized cells failed to respond to subse-
quent FXa stimulation, indicating that FXa and 
trypsin activate the same receptor, PAR-2. 
Based on above results, we conclude that 
PAR-2 mediates FXa-induced signal transduc-
tion in the RAW 264.7 macrophages.

FXa enhances the expression of pro-inflamma-
tory mediators

To determine the potential pro-inflammatory 
effect of FXa, the gene expression of TNF-α, 
IFN-γ, IL-6 and IL-8 in RAW 264.7 macrophages 
stimulated with FXa were determined. As shown 
in Figure 7, FXa enhanced the gene expression 
of TNF-α, IFN-γ, IL-6 and IL-8 at a concentration 
of 0.75 U/mL. To verify that FXa-induced pro-
inflammatory effect is specific, cells were pre-
incubated with TAP for 2 hours and subse-
quently incubated with FXa for 24 hours. As 
shown in Figure 7, TAP pretreatment almost 
completely inhibited the FXa-induced expres-
sion of pro-inflammatory mediators. Further- 
more, we verified the involvement of ERK1/2 in 
FXa-induced pro-inflammatory effect by pre-
treatment with the ERK1/2 inhibitor U0126. As 
shown in Figure 7, ERK1/2 inhibition abolished 
FXa-induced expression of pro-inflammatory 
mediators. To assess the role of PAR-2 in FXa-
induced pro-inflammatory effect, cells were 
pre-treated with the PAR-2-blocking antibody 
SAM11 for 30 minutes and subsequently incu-
bated with FXa for 24 hours. As shown in Figure 
7, SAM11 blocked FXa-induced expression of 
pro-inflammatory mediators.

Discussion

It is generally recognized that activation of 
coagulation is closely linked to immune and 

Figure 4. FXa-induced signal transduction is not me-
diated by PAR-1. Cells were incubated with the PAR-1 
neutralizing antibody ATAP-2 (5 μg/mL) for 30 min-
utes prior to incubation with thrombin (1 U/mL) or 
FXa (0.75 U/mL) for 30 minutes. Western blot analy-
sis of phospho-ERK1/2 indicates that both FXa and 
thrombin induced the phosphorylation of ERK1/2, 
moreover, PAR-1 neutralization didn’t impact the 
strong phosphorylation of ERK1/2 induced by FXa, 
but inhibited thrombin-induced ERK1/2 phosphory-
lation. Relative levels of ERK1/2 phosphorylation 
are expressed as a ratio of phospho-ERK1/2 to total 
ERK1/2. Protein loading was verified and normalized 
using β-actin. Data represent mean ± SEM. *P<0.05.
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inflammatory responses. It has become evi-
dent that, in addition to their critical role in 
coagulation and fibrinolytic processes, plasma 
serine proteases trigger a diversity of cellular 
responses, including inflammatory reactions. 
For instance, FXa, increasing evidence has 
shown that FXa induces inflammatory respons-
es, it increases the expression of adhesion  
molecules and pro-inflammatory cytokines in 
human endothelial cells [7], smooth muscle 
cells [23] and atrial tissue [24]. In mouse fibro-
blasts, FXa also can induce the secretion of 
pro-inflammatory cytokines [25]. Moreover, the 
inhibition of FXa has already been proved to 
have anti-inflammatory effect independent of 
the antithrombotic actions [26, 27]. Such as 
rivaroxaban, the direct FXa inhibitor, it can 
reduce the expression of inflammatory media-
tors [24, 28]. Fondaparinux, the indirect FXa 

mediates cellular signaling via PAR-1, or PAR-2, 
or both, depending on cell type and cofactor 
expression. In fact, studies on dermal fibro-
blasts and endothelial cells have demonstrated 
that FXa induced secretion of cytokines via 
activation of both receptors [7, 15]. However, in 
lung fibroblasts, PAR-1 played a dominant role 
in FXa-induced responses [23]. In contrast, in 
human vascular smooth muscle cells, FXa 
increased only transcriptional expression of 
PAR-2 [30]. Moreover, recent studies have 
shown that multiple serine proteases exert pro-
inflammatory actions by signaling via PAR-2 
[31, 32].

In the present study, to examine whether FXa 
induces the expression of pro-inflammatory 
cytokines in RAW 264.7 macrophages through 
the cleavage and subsequent activation of 

Figure 6. FXa-induced signal transduction is mediated by PAR-2. Cells were 
exposed to PBS, thrombin (1 U/mL, PAR-1 desensitization) or trypsin (200 
nmol/L, PAR-2 desensitization) for 150 minutes prior to stimulation with 
0.75 U/mL FXa for the indicated time points. Western blot analysis of phos-
pho-ERK1/2 indicates that FXa induced ERK1/2 phosphorylation in PAR-1 
desensitization cells, but not PAR-2 desensitization cells. Protein loading was 
verified and normalized using β-actin.

Figure 5. PAR-1 and PAR-2 desensitization. Cells were exposed to thrombin (1 U/mL, PAR-1 desensitization) or 
trypsin (200 nmol/L, PAR-2 desensitization) for 150 minutes, subsequently stimulated with 1 U/mL thrombin or 
200 nmol/L trypsin for the indicated time points. Western blot analysis of phospho-ERK1/2 indicates that thrombin 
and trypsin can desensitize PAR-1 and PAR-2 specifically. Protein loading was verified and normalized using β-actin.

inhibitor, also has showed the 
anti-inflammatory potency in 
our previous study. In the 
present study, we have shown 
that FXa enhanced the ex- 
pression of pro-inflammatory 
cytokines (IL-6, IL-8, TNF-α, 
and IFN-γ) in RAW 264.7 ma- 
crophages.

Increasing evidence shows 
that FXa acts as a signaling 
molecule mediating cellular 
responses by activating PARs 
[22, 29], in addition to its cen-
tral role in the coagulation 
cascade linking the extrinsic 
and intrinsic pathway. FXa 
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PARs, we used antibodies to specifically block 
PAR-1 and PAR-2 cleavage sites. We found that 
incubation with the PAR-1 neutralizing antibody 
(ATAP-2) had no significant impact on the FXa 
response, suggesting that PAR-1 was not in- 
volved in FXa-mediated cellular effects. To fur-
ther verify the specificity of FXa-mediated 
PAR-2 activation, we showed that desensitiza-
tion of PAR-2 with trypsin decreased the level  
of ERK1/2 phosphorylation elicited by subse-
quent application of FXa markedly, while desen-
sitization of PAR-1 with thrombin didn’t affect 
FXa-mediated cellular effects, suggesting that 
PAR-2 activation mediated FXa-induced signal-
ing. Finally, to assess definitely the role of PAR-
2, we used PAR-2 neutralizing antibody (SAM- 

11) and showed that SAM11 completely sup-
pressed the FXa-induced expression of pro-
inflammatory cytokines. We demonstrated that 
FXa induced the expression of pro-inflammato-
ry cytokines in RAW 264.7 macrophages via 
activation of PAR-2.

FXa induces ERK1/2 phosphorylation in sever-
al cell lines, the phosphorylation of ERK1/2 is 
widely used as a surrogate marker for PAR-1 
and PAR-2 activation [22]. Indeed, FXa induced 
PAR-2 cleavage results in phosphorylation of 
ERK1/2 also in our study. The activation of 
ERK1/2 is closely associated with a wide range 
of PAR-mediated cellular processes including 
hypertrophy [33], cellular proliferation, fibrosis 

Figure 7. FXa enhances the expression of pro-inflammatory mediators in RAW 264.7 macrophages. Cells were pre-
treated with PBS, TAP (200 nmol/L, 2 hours), SAM11 (25 μg/mL, 30 minutes), U0126 (10 μmol/L, 2 hours), then 
stimulated with 0.75 U/mL FXa for 24 hours. Total RNA of cells was then extracted and analyzed for IFN-γ (A), TNF-α 
(B), IL-6 (C) and IL-8 (D) expression by relative quantitative PCR. Data represent relative fold of mRNA expression as 
compared to the control group. Data represent mean ± SEM. *P <0.05.
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and inflammatory signaling [25]. ERK1/2 phos-
phorylation is accompanied by the secretion of 
pro-inflammatory cytokines in fibroblasts after 
stimulation with FXa [4], which reveals that 
ERK1/2 pathway is critically involved in mediat-
ing the pro-inflammatory response of FXa. In 
fact, in the present study, the ERK1/2 inhibitor, 
U0126, completely suppressed the FXa-in- 
duced mRNA expression of pro-inflammatory 
cytokines strongly suggests that the pro-inflam-
matory response induced by FXa is ERK1/2- 
dependent.

In conclusion, our findings provide evidence 
that FXa is capable of inducing pro-inflammato-
ry cytokine expression in RAW 264.7 macro-
phages through the activation of PAR-2 and the 
ERK1/2 pathway is essential to this process. 
These findings could be important for improv-
ing our understanding of the inflammation 
induced by FXa, targeting FXa may be a poten-
tial therapeutic strategy to reduce PAR-2-me- 
diated inflammation.
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