
Am J Transl Res 2015;7(11):2364-2378
www.ajtr.org /ISSN:1943-8141/AJTR0014859

Original Article 
Cross regulation between hypoxia-inducible  
transcription factor-1α (HIF-1α) and transforming 
growth factor (TGF)-ß1 mediates nickel oxide  
nanoparticles (NiONPs)-induced pulmonary fibrosis

Fenghua Qian1,2*, Mindi He2*, Weixia Duan2, Lin Mao2, Qian Li2, Zhengping Yu2, Zhou Zhou2, Yong Zhang1

1Department of Hematology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; 
2Department of Occupational Health, Third Military Medical University, Chongqing 400038, China. *Equal con-
tributors.

Received August 21, 2015; Accepted October 13, 2015; Epub November 15, 2015; Published November 30, 
2015

Abstract: Numerous analyses including in vivo and in vitro experiments have demonstrated that inhalation exposure 
of NiONPs can result in pulmonary fibrosis. However, the potential mechanisms of this pathological process remain 
elusive. Here, we investigate the role of HIF-1α and TGF-ß1 in NiONPs-induced pulmonary fibrosis with a focus on 
the interplay of the above two proteins. In vivo, male Sprague&Dawley rats were exposed to NiONPs and pulmonary 
fibrosis was demonstrated using H&E staining and immunochemistry of αSMA. In vitro, NiONPs contributed to cell 
proliferation and increased expressions of collagen-1 and αSMA in human fetal lung fibroblasts. Both HIF-1α and 
TGF-ß1 were upregulated by NiONPs treatment. Inhibition of HIF-1α reduced TGF-ß1 expression and downregulation 
of TGF-ß1 reduced HIF-1α protein level. Mechanism investigation revealed that TGF-ß1 affects nuclear translocation 
activity of HIF-1α. Taken together, these finding provide evidence that HIF-1α and TGF-ß1 act in synergy to foster 
NiONPs-induced pulmonary fibrosis, and the cross talk between them is a pivotal mechanism of pulmonary fibrosis.
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Introduction

Pulmonary fibrosis is a progressive and lethal 
disease [1]. Exposure to chemicals, radiation, 
smoking and airborne pollutants have been 
reported to have a contribution to the progres-
sion of pulmonary fibrosis [2-5]. Recently, there 
is an increasing interest in the profibrotic risk  
of fine particles. Nanoparticles, at least one 
dimension of less than 100 nm, have been 
demonstrated to be correlated with oxidative 
stress, inflammatory response and fibrogene-
sis in vivo and in vitro [6-12]. A few evidence 
showed that inhalation exposure of NiONPs 
which were widely used industrial materials 
could result in pulmonary inflammation [13, 
14]. However, there is lacking of direct evidence 
to prove that NiONPs exposure can induce pul-
monary fibrosis.

HIF-1α is a subunit of HIF-1 which is a transcrip-
tional activator functioning as a global oxygen 
homeostasis [15]. HIF-1α can be recognized 
and ubiquitinated by von Hippel-Lindau tumor 
suppressor (pVHL) and ultimately degraded by 
proteasome under normixic conditions [16]. But 
hypoxia can prevent degradation of HIF-1α by 
inhibiting the activity of prolyl hydroxylase (PHD) 
by which HIF-1α could be recognized by pVHL 
[17-20]. Recently, HIF-1α has been identified as 
a key regulator of hypoxia-induced fibrosis in 
numerous organs, such as kidney, liver, derma 
and lung [21-25]. Furthermore, the HIF-1α path-
way was demonstrated to be activated by 
NiONPs treatment in human lung epithelial cells 
[26]. 

Fibroblast-to-myofibroblast transition (FMT) is a 
critical mechanism to fibrogenesis [27]. Recent 
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studies have confirmed the effect of EMT on 
pulmonary fibrosis [28, 29]. TGF-ß1 can stimu-
late fibroblasts to produce collagen and pro-
mote fibroblasts to differentiate into myofibro-
blasts [30-32]. In addition, activation of TGF-
ß1/Smad3 can contribute to collagen accumu-
lation in kidney disease [33, 34]. And TGF-ß/
Smad3 signaling also plays a role in derma, 
breast, liver and lung fibrosis [35-38]. Accor- 
dingly, TGF-ß1 is definitely of great importance 
to organ fibrosis.

Some studies demonstrated that HIF-1α medi-
ates the function of TGF-ß1 in pulmonary and 
liver fibrosis [39-41]. However, others reported 
that TGF-ß1 might contribute to tumor angio-
genesis via HIF-2α signaling [42, 43]. On the 
other hand, TGF-ß1 was reported to induce HIF-
1α stabilization through selective inhibition of 
PHD2 expression [44, 45]. And inhibition of 
TGF-ß1 could significantly counteract the TGF-
β1-stimulated HIF-1α overexpression in renal 
epithelial cells [33]. Moreover, there are several 
identical target genes in renal fibrogenesis of 
HIF-1α and TGF-ß1 [45-47]. However, potential 
cross talk between HIF-1α and TGF-ß1 is still 
not well described.

In this study, we used male Sprague and Dawley 
rats and human fetal lung fibroblasts to evalu-
ate the profibrotic effect of NiONPs. We first 
confirmed the lung toxicity of NiONPs treatment 
and demonstrated NiONPs-induced pulmonary 
fibrosis is HIF-1α and TGF-ß1 dependent. Then 
we showed that HIF-1α and TGF-ß1 potentiate 
each other to foster pulmonary fibrosis.

Materials and methods

Reagents

NiONPs were purchased from Sigma-Aldrich 
(St. Louis, MO, USA). 2-DG was purchased from 
Sangon biotech (China). SB431542 (ALK5 
inhibitor) was obtained from Selleck Chemicals 
(Houston, TX, USA). Recombinant human TGF-
ß1 was purchased from R&D systems (Minne- 
apolis, MN, USA).

Preparation of NiONPs

NiONPs were prepared as we described previ-
ously [48]. Briefly, to ensure drying and sterility 
of NiONPs, NiONPs were baked in a drying oven 
for 24 h and then disposed by ultraviolet steril-
ization for 30 min. For cellular experiments, 
NiONPs suspensions were prepared by diluting 

them to 2 mg/mL stock solution in cell culture 
medium which was then sonicated for 1 h in ice 
bath. For optimal suspension, the stock solu-
tions were re-sonicated for 10 min and diluted 
into required concentrations with fresh medium 
before administration to cells. For animal ex- 
periments, stock concentration of NiONPs sus-
pensions was 2 mg/ml. 0.4 ml (800 μg) NiONPs 
suspension solution was administered to rats 
by a single intratracheal instillation. Rats in the 
control group underwent the same volume of 
physiological saline simultaneously.

Animals

Male Sprague and Dawley rats of 8 weeks  
old were purchased from and kept in the 
Laboratory Animal Center of the third military 
medical university (Chongqing, China). All han-
dling and treatments were in line with the ethi-
cal standards set out by the Third Military 
Medical University Institutional Animal Care 
and Use Committee. To observe time-depen-
dent change, at least 8 rats were treated per 
time point. On day 28 and day 60 after expo-
sure, rats were anesthetized by pentobarbital 
sodium. Subsequently, the left lung was ob- 
tained for histopathological and immunohisto-
chemistry analysis after the blood was per-
fused from the lung by right ventricle lavage 
with saline.

Cell culture and treatments

Human fetal lung fibroblasts were obtained 
from the Cell Bank of the Institute of Bio- 
chemistry and cell Biology (Shanghai, China). 
Cells were cultured in Ham’s F-12K (Kaighn’s) 
medium (Gibco, Invitrogen Corporation, NY, 
USA) supplemented with 10% fetal bovine 
serum (FBS, Gibco), 100 units/ml penicillin  
G and 100 μg/ml streptomycin (Beyotime, 
Haimen, Jiangsu, China) at 37°C under 5%  
CO2. Cells were passaged by trypsinization at 
85% confluence. For cellular experiments, cells 
were seeded in plates or petri dishes (Corning, 
Costar, NY, USA) 24 hours before treatment. 
When appropriate, cells were treated with  
indicated concentrations of NiONPs, 2-DG, 
SB431542, and TGF-ß1 for indicated time.

Histopathological and immunohistochemistry 
analysis

The left lung was infused with 10% neutral 
paraformaldehyde, fixed for 24~48 h. The cross 
section through left principal bronchus of the 
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left lung was embedded in paraffin wax and cut 
into 5-μm-thick slices. The slices were stained 
with H&E to observe the morphological chang-
es. Immunohistochemical staining for αSMA 
was used to access the fibrosis. The slices we- 
re deparaffinized with xylene and endogenous 
peroxidase activity was quenched with 3% 
H2O2. After blocking with normal goat serum, 
the slices were incubated with αSMA antibody 
(1:100, ab5694) for 24 h and then with second-
ary antibody and peroxidase-labeled streptavi-
din incubation followed by diaminobenzidine 
and hematoxylin staining.

Western blot

After treatments, adherent cells were collected 
and whole-cell extracts were denatured and 
electrophoresed on SDS-PAGE and transferred 
onto a polyvinylidene fluoride membrane (PVDF, 
Bio-Rad, Hercules, CA, USA). After 1 hour incu-
bation in blocking buffer [PBS (pH 7.4) supple-
mented with 5% low-fat milk powder], the mem-
branes were incubated overnight at 4°C with 
primary antibodies: rabbit anti-HIF-1α (NB100-
479) and rabbit anti-HIF-2α (NB100-122) were 
from Novus biologicals (USA) , rabbit anti-colla-
gen-1 (ab34710), rabbit anti-αSMA (ab5694), 
rabbit anti-TGF-ß1 (ab92486) and rabbit anti-
Smad3 (phospho S423+S425) (ab52903) anti-
bodies were from Abcam (Cambridge, UK) and 
mouse anti-GAPDH was from Sigma-aldrich. 
Membranes then were incubated with anti-
mouse or anti-rabbit secondary antibodies and 
processed for enhanced chemiluminescence 
(Thermo Fisher Scientific, Waltham MA, USA). 
Densitometric analysis of bands was performed 
using ChemiDoc XRS+System with Image Lab 
Software (Bio-Rad).

Quantitative real-time PCR

Total RNA was isolated using Trizol (Takara Bio 
Inc., Shiga, Japan). cDNA was synthesized from 
total RNA by reverse transcription kit (Takara) 
according to the manufacturer’s protocol. qPCR 
analysis was then performed with gene-specific 
primers in the presence of SYBR green (Bio-
Rad). Primers obtained from Invitrogen were as 
follows: HIF-1α, forward: 5’-TTT TGG CAG CAA 
CGA CAC AG-3’ and reverse: 5’-GCG GTG GGT 
AAT GGA GAC AT-3’; collagen-1, forward: 5’-GCC 
AAG ACG AAG ACA TCC-3’ and reverse: 5’-GTC 
ATC GCA CAA CAC CTT-3’; αSMA, forward: 5’-CTT 
GAG AAG AGT TAC GAG TTG-3’ and reverse: 

5’-GAT GCT GTT GTA GGT GGT T-3’; TGF-ß1, for-
ward: 5’-CTC GCC AGA GTG GTT ATC-3’ and 
reverse: 5’-GTT ATC CCT GCT GTC ACA-3’; GA- 
PDH, forward: 5’-TAT GAC AAC AGC CTC AAG 
AT-3’ and reverse: 5’-AGT CCT TCC ACG ATA 
CCA-3’; LOX, forward: 5’-AGC CGA CCA AGA TAT 
TCC T-3’ and reverse: 5’-CTT CAG CCA CTC TCC 
TCT-3’; PAI-1, forward: 5’-CAG CAG CAG ATT CAA 
GCA-3’ and reverse: 5’-CTG ATC TCA TCC TTG 
TTC CA-3’; VEGF, forward: 5’-CTT GCC TTG CTG 
CTC TAC-3’ and reverse: 5’-ATC CAT GAA CTT 
CAC CAC TT-3’; Gene expression levels were 
determined by Cq method and normalized to 
GAPDH levels.

Cell proliferation assay

Cell proliferation rates were determined using 
EdU immunofluorescence assays (Guangzhou 
RiboBio, Guangzhou, China) according to the 
manufacturer’s instructions. Briefly, EdU was 
added to cells on slice in plate which were treat-
ed with NiONPs 24 h before and incubated 2 h. 
Cells were fixed with 4% paraformaldehyde and 
permeablized with TBS with 0.5% Triton X-100 
and then stained with staining reactions for 30 
min. Cell nuclei were counterstained with DAPI 
(Beyotime, Haimen, Jiangsu, China). Finally, the 
slices were analyzed under fluorescence mic- 
roscopy (Leica, Germany).

Preparation of nuclear extracts and electro-
phoretic mobility shift assay (EMSA)

Nuclear extracts were obtained using NE-PER 
nuclear and cytoplasmic extraction reagents 
(Thermo scientific) following the instructions of 
the manufacturer. Briefly, treated cells were 
harvested with trypsin-EDTA and centrifuged at 
500× g for 5 min and were washed with PBS. 
Then cells were pelleted by centrifugation at 
500× g for 3 min. Cell pellet was incubated at 
4°C for 10 min after adding ice-cold CER I. 
Afterward, ice-cold CER II was added. After vor-
tex and centrifugation, the supernatant of cyto-
plasmic extracts was collected and pellet con-
taining nuclei was suspended in ice-cold NER 
and placed on ice for 40 min. After centrifuga-
tion at 16000× g for 10 min, nuclear extracts 
were obtained from the supernatant.

EMSA was carried out to assess activation of 
HIF-1α after indicated treatments. The sequen- 
ces of the oligonucleotides used are 5’-TCT GTA 
CGT GAC CAC ACT CAC CTC-3’ for the biotin-
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Figure 1. NiONPs treatment induces fibrosis in the lungs of Sprague&Dawley rats and the DNA synthesis of human 
fetal lung fibroblasts. Sprague&Dawley rats were treated with intratracheal instillation of 0.4 ml suspension contain-
ing 800 μg NiONPs for once time. The control group was given only 0.4 ml/rat of saline. The rats were sacrificed and 
lung tissues were obtained at day 28 and 60 after exposure. (A) Fibrotic damage was determined by H&E staining 
(magnification, ×100 and ×200) and (B) the expression of αSMA was detected by immunohistochemistry assay 
(magnification, ×200). (C) Effects of NiONPs (concentration: 0, 0.25, 0.5, 1.0 and 2.0 μg/cm2 ) on the DNA synthe-
sis of human fetal lung fibroblasts were detected by EdU incorporation. *p<0.05, **p<0.01 compared with control. 
Results were represented as mean ± SEM at least three independent experiments. 
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Figure 2. NiONPs cause collagen-1 deposition and production of αSMA by upregulating collagen-1 and αSMA mRNA 
transcriptions in human fetal lung fibroblasts. (A-D) Human fetal lung fibroblasts were exposed to NiONPs suspen-
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end-labeled HIF-1α probe, and 5’-TCT GTA CGT 
GAC CAC ACT CAC CTC-3’ for the cold-competi-
tive HIF-1α probe. Binding reactions were incu-
bated at room temperature for 20 min in the 
presence of 2.5% glycerol, 5 mM MgCl2, 50 ng/
μl poly (dI-dC), 0.05% Nonidet P-40 and 1×bind-
ing buffer (LightShiftTM chemiluminescent 
EMSA kit, Pierce) using 20 nM of biotin-end-
labeled probe. The competition reactions were 
performed by adding 50-fold excess unlabeled 
probe to the reaction mixture. Following elec-
trophoresis on a 6% pre-run Tris-borate-EDTA 
gel, the reactions were transferred to a nylon 
membrane. Then membrane was UV-cross- 
linked, blocked, and detected with the Che- 
miluminescent Nucleic Acid Detection Module 
(Pierce) in accordance with the manufacturer’s 
instructions.

Statistical analysis

All data are reported as the means ± SEM of at 
least three identical experiments. One-way 
analysis of variance (ANOVA) followed by LSD 
(L) comparison test was applied to analyze sta-
tistical significance. Significance was assumed 
when P-values <0.05 and all tests were per-
formed using SPSS 16.0 software package 
(SPSS, Chicago, IL, USA).

Results

NiONPs increase fibrotic proliferation in vivo 
and in vitro

The pathological features of lungs at 28 days 
and 60 days after intratracheal instillation are 
shown in Figure 1A. In the NiONPs-administered 
groups, fibroblasts and collagen fibro prolifera-
tion and interstitial hyperplasia were obvious 
compared with control groups. There was no 
remarkable fibrotic pathology in control groups 
both 28 days and 60 days. And the severity of 
the symptoms of rats treated with NiONPs 
increased with time, the thickness of walls was 
significantly increased in 60 days treatment 
when compared to 28 days treatment. This 

phenomenon suggests pulmonary fibrosis in- 
duced by NiONPs exposure is persistent and 
aggressive. Pulmonary fibrosis is characterized 
by αSMA production, which is presented by 
immunochemistry assay in Figure 1B. We found 
that NiONPs significantly increased the produc-
tion of αSMA at both 28 days and 60 days. 
Moreover, it appears that this effect progressed 
with time which corresponded to pathological 
changes. To study whether NiONPs causes the 
same effect in vitro as in vivo, human fetal lung 
fibroblasts were incubated with NiONPs (0~2.0 
μg/cm2) for 24 h and then the incorporation of 
5-ethynyl-2’-deoxyuridine (EdU) into cells was 
assayed. As illustrated in Figure 1C, incubation 
of human fetal lung fibroblasts with NiONPs 
induced dose-dependent increases in EdU 
incorporation, suggesting that NiONPs induced 
an increase in the proliferation of human fetal 
lung fibroblasts. Thus, NiONPs is a fibrotic acti-
vator in vivo and in vitro.

NiONPs cause collagen-1 deposition and 
αSMA production

Accumulation of extracellular matrix (ECM) in 
lung is a characteristic marker in pulmonary 
fibrosis and deposition of collagen-1 from fibro-
blasts is an important constituent of ECM [49, 
50]. To investigate the mRNA expression level 
of collagen-1 in human fetal lung fibroblasts, 
quantitative real-time PCR (qPCR) was per-
formed. As shown in Figure 2A, NiONPs expo-
sure increased collagen-1 mRNA expression in 
a dose-dependent manner which correspond-
ed to collagen-1 protein synthesis shown in 
Figure 2B FMT is a key event in pulmonary 
fibrosis and αSMA, a typical marker of myofi-
broblast, was detected by qPCR and western 
blot. And both mRNA and protein levels of 
αSMA were increased by NiONPs treatment 
(Figure 2C, 2D). Time-dependent experiments 
were conducted and mRNA expressions of bo- 
th collagen-1 and αSMA were significantly in- 
creased compared with control, but the highest 
increments appeared at 24 h (Figure 2E, 2G). 

sions with concentrations of 0, 0.25, 0.5, 1.0 and 2.0 μg/cm2 for 24 h. (E-H) Time-dependent experiments were 
conducted with 1 μg/cm2 NiONPs for various time points. (A, C, E, G) mRNA transcriptions of collagen-1 and αSMA 
were detected by qPCR, normalized to GAPDH and (B, D, F, G) Protein levels of collagen-1 and αSMA were deter-
mined by western blot and normalized to GAPDH. The value was expressed as fold changes relative to controls. 
*p<0.05, **p<0.01 compared with control. Results were represented as mean ± SEM at least three independent 
experiments.
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However, the protein levels of collagen-1 and 
αSMA were increased in a time-dependent 
manner.

NiONPs-induced fibrosis is HIF-1α dependent 
but not HIF-2α

It has been previously reported that protein 
accumulation of HIFs, including HIF-1α and HIF-
2α is common in the pulmonary fibrosis [25]. To 
determine whether HIF-1α or HIF-2α is the criti-
cal factor in NiONPs-induced fibrosis, western 
blot was used to detect the protein expression 
of the above molecules. NiONPs exposure 
strongly induced HIF-1α expression (Figure 3A). 
There was no such change of HIF-2α in human 
fetal lung fibroblasts exposed to NiONPs (Figure 
3B). To further confirm the changes of HIF-1α, 
HIF-1α-controlled profibrotic genes, including 
LOX, PAI-1 and VEGF were detected by qPCR. As 
shown in Figure 3C-E, the expressions of LOX, 
PAI-1 and VEGF were stimulated in accordan- 
ce with HIF-1α. Furthermore, incorporation of 
2-Deoxy-D-glucose (2-DG) could significant pre-
vent NiONPs-induced expressions of collagen-1 
and αSMA at the level of mRNA and protein 
(Figure 3G-J). 2-DG has been proved to be a 
valid inhibitor of HIF-1α [51, 52] and the above 
results showed that NiONPs-induced fibrosis is 
HIF-1α dependent.

NiONPs-induced fibrosis is correlated with 
TGF-ß1/Samd3 pathway

TGF-ß1 is a primary mediator of FMT during 
fibrogenesis [30-32]. Previous studies have 
reported that TGF-ß1 secreted from macro-
phages in lungs plays an important role in pul-
monary fibrosis [53, 54]. There was only a few 
works pointed out that fibroblasts could be 
stimulated to secrete TGF-ß1 [53]. Our study 
examined the effect of NiONPs on stimulation 
of TGF-ß1/Smad3 pathway in fibroblasts. qPCR 
results showed that TGF-ß1 mRNA expression 
can be induced by NiONPs in a dose-depen- 
dent manner (Figure 4A). Western blot results 

showed that both TGF-ß1 and phosphorylated 
Smad3 (P-Smad3) were upregulated by NiONPs 
in fibroblasts (Figure 4B and 4C). It has been 
reported exogenous TGF-ß1 could promote col-
lagen deposition and αSMA production [34, 
55-57]. Thus, we applied SB431542, which 
can selectively inhibit TGF-ß receptor I kinase 
(ALK5), to fibroblasts treated with NiONPs. As 
shown in Figure 4D-G, SB431542 could coun-
teract the effects of NiONPs on the expressions 
of collagen-1 and αSMA which proves that 
NiONPs-induced production of collagen-1 and 
αSMA is in a TGF-ß1 dependent manner in 
fibroblasts.

HIF-1α and TGF-ß1 interact to promote 
NiONPs-induced fibrosis

Our above results have shown that both HIF-1α 
and TGF-ß1 were involved in the NiONPs-
induced fibrosis. Some studies reported that 
TGF-ß1 could regulate HIF-1α expression [44, 
45]. Also it has been previously reported that 
HIF-1α could affect the production of TGF-ß1 
[39-41]. Thus, we wondered that whether the 
mutual regulation of HIF-1α and TGF-ß1 could 
be existed in human fetal lung fibroblasts. To 
elucidate the interplay of HIF-1α and TGF-ß1, 
TGF-ß1 and P-Smad3 were detected by qPCR 
and western blot in fibroblasts which were 
exposed to 2-DG and NiONPs, it was obvious 
that overexpression of TGF-ß1 and P-Smad3 
resulted from NiONPs treatment could be 
downregulated by 2-DG which was an inhibitor 
of HIF-1α (Figure 5A-C). Conversely, significant 
decrease of NiONPs-induced HIF-1α protein 
expression was observed in our studies which 
was caused by SB431542 (Figure 5E). We test-
ed the downstream genes of HIF-1α and effects 
on these genes mediated by SB431542 vali-
dated the conclusion that TGF-ß1 is a regulator 
of HIF-1α (Figure 5F-H). Furthermore, to clarify 
the mechanism of how TGF-ß1 regulates HIF-
1α, we evaluated the nuclear translocation of 
HIF-1α using electrophoretic mobility shift 
assays (EMSA) analyses. As shown in Figure 5I, 

Figure 3. NiONPs-induced collagen-1 and αSMA expressions are HIF-1α dependent. (A-E) Human fetal lung fibro-
blasts were exposed to NiONPs suspensions with concentrations of 0, 0.25, 0.5, 1.0 and 2.0 μg/cm2 for 24 h. (A) 
HIF-1α and (B) HIF-2α expressions were analyzed by western blot and normalized to GAPDH. (C-E) Relative levels of 
HIF-1α-controlled genes (LOX, PAI-1 and VEGF) were determined by qPCR and normalized to GAPDH. (G-J) Human 
fetal lung fibroblasts were pretreated with 10 mM (+) and 20 mM (++) 2-DG (HIF-1α inhibitor) for 2 h and then ex-
posed to 2 μg/cm2 NiONPs for 24 h. Collagen-1 and αSMA expressions were analyzed by qPCR and western blot and 
normalized to GAPDH. The value was expressed as fold changes relative to controls. *p<0.05, **p<0.01 compared 
with control. Results were represented as mean ± SEM at least three independent experiments.
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Figure 4. NiONPs-induced collagen-1 and αSMA expressions are TGF-ß1 dependent. (A-C) Human fetal lung fibro-
blasts were exposed to NiONPs suspensions with concentrations of 0, 0.25, 0.5, 1.0 and 2.0 μg/cm 2 for 24 h. 
TGF-ß1 expression was detected by qPCR (A) and western blot (B) and normalized to GAPDH. (C) The levels of P-
Smad3 was determined by western blot and normalized to GAPDH. (D-G) Human fetal lung fibroblasts were treated 
with 10 nM SB431542 (TGF-β receptor I kinase (ALK5) inhibitor) and 2 μg/cm2 NiONPs simultaneously for 24 h. 
Collagen-1 and αSMA expressions were analyzed by qPCR and western blot and normalized to GAPDH. The value 
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was expressed as fold changes relative to controls. *p<0.05, **p<0.01 compared with control. Results were repre-
sented as mean ± SEM at least three independent experiments.

Figure 5. Reciprocal regulation between HIF-1α and TGF-ß1. (A-C) Human fetal lung fibroblasts were pretreated with 
10 mM (+) and 20 mM (++) 2-DG (HIF-1α inhibitor) for 2 h and then exposed to 2 μg/cm2 NiONPs for 24 h. (D-H) Hu-
man fetal lung fibroblasts were treated with 10 nM SB431542 and 2 μg/cm2 NiONPs simultaneously for 24 h. The 
levels of TGF-ß1 (A), HIF1α (D), LOX (F), PAI-1 (G) and VEGF (H) were detected by qPCR and Protein expressions of 
TGF-ß1 (B) and P-Smad3 (C) were analyzed by western blot (B) and normalized to GAPDH. (I) EMSA was performed to 
analyze the binding of proteins from nuclear extracts of human fetal lung fibroblasts treated with 2 μg/cm2 NiONPs 
plus 10 nM SB431542 or 1 ng/ml TGF-ß1 for 24 h to the consensus HIF-1α binding site. Lane: 1, negative control; 
2, ctl; 3, TGF-ß1; 4, SB431542; 5, NiONPs; 6, NiONPs+TGF-ß1; 7, NiONPs+SB431542; 8, cold-competitive control.
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there was no band in the negative control (lane 
1) and a slight shadow was shown in the com-
petitor control (lane 8) which should be com-
pared with lane 7 as they had the equal nuclear 
extracts. The binding of HIF-1α in the NiONPs 
treatment group (lane 5) was higher than ordi-
nary control group (lane 2). And this impact 
could be improved by exogenous TGF-ß1 (lane 
6) and reduced by SB431542 (lane 7). Together 
with the result of Figure 5D, we concluded that 
TGF-ß1 could affect protein accumulation and 
nuclear translocation of HIF-1α without regulat-
ing transcription activity of HIF-1α.

Discussion

In this study, we found that NiONPs exposure 
could contribute to pulmonary fibrosis in vivo 
and in vitro. Furthermore, we proposed a model 
of crosstalk between HIF-1α and TGF-ß1 in 
human fetal lung fibroblasts which might be a 
potential mechanism for pulmonary fibrosis 
induced by NiONPs. Specifically, we suggested 
that TGF-ß1 facilitated HIF-1α signaling by 
accumulating HIF-1α protein and enhancing 
DNA binding activity of HIF-1α. Moreover, acti-
vated HIF-1α promoted expression of TGF-ß1 at 
the level of mRNA and protein.

Nowadays, Nanomaterial is widely used in a 
range of new industrial applications because of 
its unique characteristics [58, 59]. But the 
potential damage to human body limits its utili-
ties [8, 58, 60, 61]. Lung is the most suscepti-
ble organ to inhalation exposure of dust na- 
noparticles. Increasing analyses aim at assess-
ing the toxicity of nanoparticles to lungs [53, 
62, 63]. But profibrotic effect of NiONPs re- 
ceived little attention. Inhalation of nickel hy- 
droxide nanoparticles was reported to induce 
significant oxidative stress and inflammation in 
lungs [11]. Oxidative stress is implicated as an 
important molecular mechanism underlying 
fibrosis in a variety of organs, including the 
lungs [64]. Thus, we inferred that NiONPs could 
promote pulmonary fibrosis. Although soluble 
nickel can not induce such a phenomenon, Ni2+ 
derived from NiONPs which are phagocytosed 
by cells because of their nano-size plays a role 
in the whole process [65]. Ni2+ can mimic hy- 
poxia to up-regulate HIF-1 and HIF-1-dependent 
transcription [66, 67]. The possible explanation 
of HIF-1α activation involves an iron-containing 
flavoheme protein which can sense the hypox-
ia. Ni2+ can activate a signaling cascade leading 

to HIF-1α stabilization by substituting for iron  
in this sensor [68, 69]. Subsequently, HIF-1α 
will promote fibrogenesis via several different 
mechanisms [70].

Accumulation of ECM in the lung is an impor-
tant characteristic of pulmonary fibrosis [53]. 
And collagen deposition from fibroblasts results 
in ECM accumulation. Increased transcriptional 
activation of collagen-1 was induced by NiONPs 
(Figure 1A), so as to αSMA, which was a marker 
of EMT. The point of the most increments of 
mRNA expressions of collagen-1 and αSMA in 
time-dependent experiments was at 24 h 
(Figure 1E, 1G). But protein levels in the same 
experiments were increased in a time-depen-
dent manner (Figure 1F, 1H). We assume that 
mRNA expressions were limited by the total 
amount of NiONPs which was relatively de- 
creased when cells were increased and protein 
level changes always tended to be lagging. 

TGF-ß1 is an established mediator of pulmo-
nary fibrosis. Recent evidence shows that TGF-
ß1 is mainly secreted from macrophages in 
lung. Elevated TGF-ß1 can interact with ALK5 
on fibroblasts to cause TGF-ß/Smad signaling 
activation in fibroblasts [53]. TGF-ß1 was 
reported to increase HIF-1α expression through 
binding to ALK5 on human renal tubular epithe-
lial cells and mouse embryonic fibroblasts [33]. 
Our experiments showed that inhibition of ALK5 
can attenuate HIF-1α protein expression in 
human lung fibroblasts. The potential mecha-
nism by which TGF-ß1 increases HIF-1α activity 
was supplemented in the present analysis. 
Exogenous TGF-ß1 and ALK5 inhibitor can posi-
tively and negatively regulate the nuclear trans-
locations of HIF-1α without affecting the tran-
scription activity of HIF-1α. Therefore, our data 
further suggest that autocrine TGF-ß1 from 
NiONPs treatment fibroblasts causes TGF/
Smad3 signaling and then regulates HIF-1α 
activity. 

The mammalian TGF-ß family consists of three 
members. TGF-ß1 is a profibrotic growth factor 
and TGF-ß3 is anti-fibrotic [71, 72]. There is 
contention about the effect of TGF-ß2 [71, 73]. 
Previous studies have demonstrated that TGF-
ß3 is a potential HIF-1α-regulated growth fac-
tors [72, 74]. Upregulation of HIF-1α will en- 
hance TGF-ß3 expression through binding to 
TGF-ß3 promoter [72]. Thus, we wonder TGF-
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ß1, which has a reverse function compared 
with TGF-ß3, might be regulated by HIF-1α. In 
our studies, activation of TGF-ß1/Smad3 was 
inhibited by HIF-1α downregulation. While fur-
ther studies are needed to define the specific 
mechanism by which HIF-1α mediates TGF-ß1 
expression.

Finally, our results support that NiONP is an 
important factor in pulmonary fibrosis induced 
by dust inhalation. Furthermore, our results 
suggest TGF-ß1 may provide a positive feed-
back loop that maintains a high level of HIF-1α 
activity during the process of pulmonary fibro-
sis. Inhibition of the cross talk of HIF-1α and 
TGF-ß1 may be a new strategy for anti-fibrotic 
manipulation of pulmonary fibrosis induced by 
NiONPs. 
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