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Abstract: Parkinson’s disease (PD) is one of the most common degenerative disorders of the central nervous sys-
tem among the elderly. The disease is caused by the slow deterioration of the dopaminergic neurons in the sub-
stantia nigra. Treatment strategies to protect dopaminergic neurons from progressive damage have received much 
attention. However there is no effective treatment for PD. Traditional Chinese medicines have shown potential clini-
cal efficacy in attenuating the progression of PD. Increasing evidence indicates that constituents of some Chinese 
herbs include resveratrol, curcumin, and ginsenoside can be neuroprotective. Since pathologic processes in PD 
including inflammation, oxidative stress, apoptosis, mitochondrial dysfunction, and genetic factors lead to neuronal 
degeneration, and these Chinese herbs can protect dopaminergic neurons from neuronal degeneration, in this 
article, we review the neuroprotective roles of these herbs and summarize their anti-inflammatory, antioxidant, and 
anti-apoptotic effects in PD. In addition, we discuss their possible mechanisms of action in in vivo and in vitro mod-
els of PD. Traditional Chinese medicinal herbs, with their low toxicity and side-effects, have become the potential 
therapeutic interventions for prevention and treatment of PD and other neurodegenerative diseases.
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Introduction 

Parkinson’s disease (PD) is a common neuro-
degenerative disease characterized by motor 
symptoms of tremor, rigidity, bradykinesia, and 
postural instability. The main pathological 
change in PD is progressive loss of dopaminer-
gic neurons in the substantia nigra of the mid-
brain, though the cause of cell death is unknown 
[1]. Treatments for PD include oral preparations 
of levodopa (L-DOPA) and dopamine (DA) recep-
tor agonists and monoamine oxidase-B (MAO-
B) inhibitors, and deep brain stimulation of the 
subthalamic nucleus and globus pallidus by 
surgically implanted electrodes, and stem cell 
transplantation into the striatum. Especially in 
recent years, experimental and clinical research 
on stem cells for treatment of PD has attracted 
increasing attention [2, 3]. Such treatments 
have proven to have some positive results, but 
at present there is no effective treatment for 
PD. Neuroprotective treatment does not direct-
ly address the etiology of PD, but intervention 

in some intermediate links in pathogenesis can 
delay the development of disease. Traditional 
Chinese medicines have shown potential clini-
cal efficacy in attenuating the progression of 
PD. Growing evidence indicates that some 
Chinese herbs contain neuroprotective com-
pounds, such as resveratrol, curcumin, or gin-
senoside, green tea polyphenols or catechins, 
triptolide, etc [4-8]. These herbs can protect 
dopaminergic neurons against the neurotoxins 
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 
(MPTP)- or 6-hydroxydopamine (6-OHDA)- 
induced cell degeneration. They may also 
increase antioxidant activity, impede dopamine 
loss, inhibit microglial activation and the subse-
quent reduction of proinflammatory factor 
release, modulate mRNA levels and protein 
expression of apoptosis-related factors, and 
prevent α-synuclein aggregation and fibrillation. 
In this article, we review the neuroprotective 
roles of resveratrol, curcumin, and panax gin-
seng/ginsenoside in PD and discuss their pos-
sible mechanisms of action (Table 1, Figure 1).
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Table 1. Neuroprotective effects of resveratrol, curcumin, and ginsenoside on PD
Agent Mechanism In vivo/In vitro model Protection References
Resveratrol Anti-Inflammation N9 microglial cell 

6-OHDA-induced rat 
MPTP-induced mice
Primary microglia and astrocytes 
Primary mouse astrocytes
BV2 microglial cells

Decrease the mRNA levels of IL-1α and TNF-α; Decrease the levels of COX-2 expression; 
Decrease the levels of NO, TNF-α, IL-1β, IL-6, MCP-1; Suppress production of IL-12p40, IL-23 
and C-reactive protein, and respective receptors; Down-regulate MPO; Modulate the activity 
of PGC-1α, Akt and NF-κB

[10, 18-21]

Anti-Apoptosis PC12 cells
SH-SY5Y cells
HtrA2 knockout mice
Saccharomyces cerevisiae

Reduce the activity of caspase-3 and the level of Bax; regulate DNA fragmentation and the 
mRNA levels and protein expression of Bax, Bcl-2, cleaved caspase-3, and cleaved PARP-1; 
Activate sirtuin deacetylases and PPAR-γ

[12, 24, 25, 27]

Antioxidation PC12 cells
SKN-MC cells 
6-OHDA-induced rat 
SH-SY5Y cells
Primary fibroblast from PD patients with Park2 mutation 
Transgenic mice overexpressing PGC-1α DA SN4741 cells

Diminish superoxide anion; Inhibit ROS generation; Up-regulate the antioxidant status and 
the expression of MsrA; Activate PPAR-γ, AMPK, SIRT1; Raise the mRNA expression of PGC-
1α’s target genes,

[12, 37, 38, 41]

neurotrophic effect Primary rat midbrain neuron-glia cultures Increase neurotrophic factors release in the concentration- and time-dependent manners [11]
Curcumin Anti-Inflammation MES23.5 cells

Primary rat mesencephalic neuron-glia cultures
MPTP-induced mice

Inhibit NF-κB translocation and AP-1 activation; Inhibit the protein expression of GFAP and 
iNOS, decrease activation of astrocytes and microglia, reduce pro-inflammatory cytokine, 
alleviate loss of TH-IR fibers, protect axon

[48-52]

Anti-Apoptosis PC12 cells
MPTP-induced mice
SH-SY5Y cells
Ts-1-infected mice
A53T α-synuclein cell model
DA neurons in Mpp(+) model

Reduce MMP loss, attenuate MPP(+)-induced an increase in intracellular ROS level, induce 
overexpression of BCl-2 and antagonize MPP+-induced overexpression of iNOS; Ease 
alphaS-induced toxicity; Protect DA neuron axon; Decrease the Bax/Bcl-2 ratio; Reduce the 
accumulation of A53Tα-synuclein; inhibit the JUN/c-Jun pathway; Block MPP(+)

[53-55, 65] 

Antioxidation MES23.5 cells
6-OHDA-induced mice
SH-SY5Y cells
6-OHDA-induced rats
A53T α-synuclein cell model

Restore MMP, increase level of Cu-Zn superoxide dismutase, suppress ROS; Sustain SOD1 
level; reduce the levels of p-p38, cleaved caspase-3 and quinoprotein formation; restore 
depletion of GSH levels, free radical scaveng; Inhibit oxidative stress and the mitochondrial 
cell death pathway; activate the Nrf2/ARE pathway; Reduce p53 phosphorylation

[48, 51, 57, 62, 
64, 66-68]

Prevent α-synuclein ag-
gregation and fibrillation

SH-SY5Y cells Prevent α-synuclein aggregation and fibrillation; Destabilize preformed falphaS; Specifically 
binds to oligomeric intermediates 

[60, 71-74]

Inhibit MAO-B MPTP-induced mice Inhibit MAO-B activity [71, 76] 
Ginsenoside Anti-Inflammation BV2 microglial cells

Rat primary microglia
Mesencephalic primary cultures 
PC12 cells
LPS-treated mice

Suppress NO production and TNF-α secretion, inhibit the mRNA expressions of iNOS, TNF-α, 
IL-1β, COX-2 and MMP-9, inhibited the phophorylations of PI3K/Akt and MAPKs and the 
DNA binding activities of NF-kB and AP-1; Suppress phosphorylation and nuclear transloca-
tion of NF-κB/p65, phosphorylation and degradation of IκB and the phosphorylation of IKK; 
inhibit the activation of Akt and ERK1/2; Reduce NO-formation and PGE2 synthesis; attenu-
ate up-regulation TNF-α, IL-1β and IL-6 mRNA, and iNOS and COX-2 expression

[5, 84-86]

Anti-Apoptosis PC12 cells
Primary cultured nigral neurons
MPTP-induced mice

Inhibit the activation of caspase-3, reduce iNOS and NO production; Increased the phos-
phorylation inhibition of Bad through activation of the PI3K/Akt pathway; Enhance the 
expression of Bcl-2 protein and mRNA, reduce the expression of Bax, Bax mRNA, and iNOS, 
and attenuate the cleavage of caspase-3

[87-91] 

Antioxidation PC12 cells 
MES23.5 cells 
Primary cultured nigral neurons

Reduce the generation of ROS and cytochrome c release, restore MMP, increased the 
phosphorylation inhibition of Bad through activation of the PI3K/Akt pathway; Decrease 
iron influx, inhibit IRPs; decrease DMT1-mediated ferrous iron uptake and iron-induced cell 
damage 

[87, 88, 90, 91] 

Neurotrophin-like effects PC12 cells
SN-K-SH cells

Increase neurite outgrowth; Reversed MPTP-induced cell death [92] 
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Figure 1. The structures and protective mechanisms of resveratrol, curcumin, and ginsenoside on PD.
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Resveratrol

Resveratrol, a polyphenolic compound natural-
ly present in red wine and grapes, has a num-
ber of pharmacological effects including anti-
inflammation, anti-apoptosis, antioxidation, 
antifungal, anticancer, and others [9-12]. It is 
also able to cross the blood-brain barrier and is 
water soluble [13]. The pathogenesis of PD is 
not clear, but in general is considered to be 
related to neuroinflammation, apoptosis, and 
oxidative stress [14-16]. Especially since the 
beginning of the 21st century, many research 
groups have explored the use of resveratrol in 
PD [17] and investigated its therapeutic effects 
from many angles. We summarize the neuro-
protective roles of resveratrol in PD and dis-
cuss its possible mechanisms of action (Table 
1, Figure 1).

Anti-inflammation 

Glial activation and neuroinflammation have 
been found to be closely related to the patho-
genesis of PD. Resveratrol strongly decreased 
the mRNA levels of two proinflammatory genes, 
interleukin 1-α (IL-1α) and tumor necrosis 
factor-α (TNF-α), in N9 microglial cells induced 
by lipopolysaccharide (LPS) [18]. Resveratrol 
treatment also significantly decreased the lev-
els of cyclooxygenase-2 (COX-2) expression in 
the substantia nigra in the 6-hydroxydopamine  
(6-OHDA)-induced PD rat model [19]. Wight RD 
and colleagues tested the ability of resveratrol 
to inhibit LPS-induced production of inflamma-
tory molecules by primary mouse astrocytes. 
They found that resveratrol inhibited LPS-
induced production of nitric oxide (NO), cyto-
kines such as TNF-α, interleukin 1-β (IL-1β), and 
Interleukin-6 (IL-6); and chemokine monocyte 
chemotactic protein-1 (MCP-1), which play criti-
cal roles in innate immunity. Resveratrol also 
suppressed astrocyte production of Interleukin-
12p40 (IL-12p40) and Interleukin-23 (IL-23), 
which are known to alter the phenotype of T 
cells involved in adaptive immunity. Finally, res-
veratrol inhibited astrocyte production of 
C-reactive protein (CRP), which plays a role in a 
variety of chronic inflammatory disorders [10]. 
In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyri-
dine (MPTP)-treated mice, resveratrol signifi-
cantly reduced glial activation and decreased 
the levels of IL-1β, IL-6, and TNF-α as well as 
their respective receptors in the substantia 
nigra pars compacta (SNpc), according to 

Western blot, reverse transcription-polymerase 
chain reaction (RT-PCR), and quantitative PCR 
analysis [20]. Resveratrol protected DA neu-
rons against LPS-induced neurotoxicity in a 
concentration- and time-dependent manner 
through the inhibition of microglial activation 
and the subsequent reduction of proinflamma-
tory factor release [9]. Resveratrol significantly 
down-regulated myeloperoxidase (MPO) level (a 
key molecule in the host defense system 
against different pathogens), although it did not 
spark abnormal NO production in microglia and 
astrocytes. Moreover, resveratrol treatment 
restored the impaired responses of primary 
mixed glia from Mpo (-/-) mice to rotenone and 
attenuated rotenone-induced DA cell death. 
Furthermore, resveratrol plays the same regu-
latory roles on MPO levels in microglia treated 
with 1-methyl-4-phenylpyridinium (MPP)(+) [21]. 
Resveratrol suppressed the decrease of SIRT1 
and increase of TNF-α and IL-6 induced by LPS, 
indicating that SIRT1 may participate in the 
regulation of proinflammatory cytokines derived 
from activated microglial activation [22]. 
Resveratrol treatment up-regulated the expres-
sion of the suppressor of cytokine signaling-1 
(SOCS-1), supporting the hypothesis that it pro-
tects DA neurons of the SNpc against MPTP-
induced cell loss by regulating inflammatory 
reactions, possibly through SOCS-1 induction 
[20]. Resveratrol also modulates the activity of 
numerous proteins, including peroxisome pro-
liferator-activated receptor coactivator-1α 
(PGC-1α), members of the FOXO family, Akt 
(protein kinase B), and nuclear factor-κB (NF-
κB) [23]. In conclusion, resveratrol protects DA 
neurons by reducing the inflammatory 
response. 

Anti-apoptosis 

Induced in a variety of ways, apoptosis of DA 
neurons leads to PD. Under microglial-neuronal 
coculture, treatment with resveratrol success-
fully reduced the inflammation-mediated apop-
totic death of N9 microglial cells [18]. 
Resveratrol significantly reduced the activity of 
caspase-3 in neuroblastoma SH-SY5Y cells 
triggered by 6-OHDA [24], and decreased the 
level of Bax to the point of attenuating apopto-
sis [25]. Moreover, under high-glucose (HG) 
conditions, resveratrol significantly reduces 
HG-induced apoptosis in DA cells by regulating 
DNA fragmentation and the expression of sev-
eral genes, such as Bax, Bcl-2, cleaved cas-
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pase-3, and cleaved poly(ADP-ribose)poly-
merase 1 (PARP-1) and also prevents the 
pro-apoptotic increase of p53 in the nucleus 
induced by HG [12]. Resveratrol showed anti-
apoptotic activity in both rat and zebrafish brain 
synaptosomal fractions exposed to the neuro-
toxic agent rotenone by MTT assay [26]. 
Similarly, using PC12 cells, resveratrol greatly 
reduced PC12 death induced by MPP(+), which 
was related to modulation of the mRNA levels 
and protein expression of Bax and Bcl-2 [27]. 
Numerous studies have demonstrated the neu-
roprotective capability of resveratrol through 
activation of silent information regulator 1 
(SIRT1) [28]. Resveratrol was shown to increase 
the lifespan of Saccharomyces cerevisiae [29], 
which was attributed to its ability to activate sir-
tuins, members of the histone deacetylase 
family [30]. There is evidence that resveratrol’s 
ability to attenuate tissue injury in the brain and 
restore mitochondrial function is partly attribut-
able to its effect on SIRT1-dependent deacety-
lation of PGC-1α, a protein factor involved in 
mitochondrial biogenesis [23, 31], and activa-
tion of peroxisome proliferator-activated 
receptor-γ (PPAR-γ), as a therapeutic target for 
neurodegenerative disease, due to PPAR-γ abil-
ity to protect against mitochondrial damage 
through upregulation of Bcl-2 [32, 33]. Thus, 
resveratrol increases the levels of SIRT1 and 
related enzymes, which could change neuronal 
transcription profiles and enhance anti-apop-
totic activity [34]. Moreover, resveratrol acti-
vates AMP-activated protein kinase (AMPK) to 
affect neuronal energy homeostasis, further 
contributing to neuroprotection [31]. AMPK 
and/or SIRT1 are required to induce resvera-
trol-mediated autophagy, and the AMPK-SIRT1-
autophagy pathway plays an important role in 
neuroprotection by resveratrol in PD cellular 
models [35]. By activating autophagy, resvera-
trol prevented PrP (106-126)-induced neurotox-
icityand reduction in mitochondrial potential, 
translocation of Bax to the mitochondria, and 
cytochrome c release [36]. To sum up, resvera-
trol plays its neuroprotective function by dimin-
ishing DA apoptosis.

Antioxidation

Many evidences showed that resveratrol exert-
ed a neuroprotective effect on DA neurons by 
antioxidant. Excess reactive oxygen species 
(ROS) in the brain have been implicated as a 

likely potential risk factor for the pathogenesis 
of PD. Resveratrol scavenged ROS in a dose-
dependent manner, and its antioxidant effects 
were further shown by protecting the enzymatic 
activity of the mitochondrial respiratory elec-
tron transport chain (complexes I and II) and 
pyruvate dehydrogenase in isolated liver mito-
chondria [37]. Resveratrol up-regulates antioxi-
dant status and lowers DA loss in PD rat mod-
els [38], as well as prevents the formation of 
the DA-DNA adducts that could lead to gene 
mutations that cause PD [39]. Wang Y et al. 
showed that pretreatment of PD rats with res-
veratrol or resveratrol liposome (20 mg/kg per 
day) for 14 days greatly reduced abnormal rota-
tional behavior and the loss and apoptosis of 
nigral cells, restored levels of total ROS, and 
significantly improved the total antioxidant 
capability of nigral tissues. Furthermore, resve-
ratrol liposome showed even more profound 
effects than free resveratrol [40]. Methionine 
sulfoxide reductases A (MsrA) act as a catalytic 
antioxidant system and refers to the protection 
of oxidative stress-induced cell injury. Pre- 
treatment with resveratrol up-regulated the 
expression of MsrA in human neuroblastoma 
SH-SY5Y cells [30]. It was also found that the 
expression and nuclear translocation of fork-
head box group O 3a (FOXO3a), a transcription 
factor that activates the human MsrA promoter, 
were increased after resveratrol pretreatment 
[41]. In resveratrol (50 μM) coculture, PC12 cell 
death induced by DA (1 μM)-H2O2 (1 μM) was 
abolished, indicating resveratrol’s anti-oxidant 
capability [17]. Resveratrol protected DA neu-
rons against HG-induced oxidative stress by 
diminishing cellular levels of superoxide anion 
[12]. Activation of PPAR-γ may also target the 
transcription of SOD and catalase genes 
through increasing the activity of the NF-E2-
related factor 2 (Nrf2)/keap 1 pathway [42]. 
Many studies have confirmed that resveratrol 
suppresses neuroinflammation by inhibiting 
NADPH oxidase and attenuating NF-κB-induced 
expression of inducible nitric oxide synthase 
(iNOS), COX-2, and secretory phospholipase A2 
(sPLA2) [9, 43, 44] and by activating the hor-
metic pathway, which involves the induction of 
SOD and catalase genes through stimulating 
the PI3K/Nrf2/keap 1 pathway [42]. Both in 
vivo (transgenic mice) and in vitro (SN4741 
cells) studies showed that PGC-1α in DA neu-
rons has the important function of resisting oxi-
dative stress and improving neuronal viability, 
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and resveratrol is neuroprotective via SIRT1/
PGC-1α [45]. Nicotinamide is an inhibitor of 
SIRT1 and prevents resveratrol-induced eleva-
tion of FOXO3a and MsrA expression, demon-
strating that the effect of resveratrol is mediat-
ed by a SIRT1-dependent pathway from another 
direction [41]. Recent research has shown that 
resveratrol regulates energy homeostasis 
through activation of AMPK and SIRT1 and rais-
es the mRNA expression of a number of PGC-
1α’s target genes, resulting in enhanced mito-
chondrial oxidative function; resveratrol treat- 
ment also causes an increase in complex I and 
citrate synthase activity, basal oxygen con-
sumption, and mitochondrial ATP production 
and causes enhanced macro-autophagic flux 
through activation of an LC3-independent path-
way [46]. 

Other effects

Resveratrol exerted neurotrophic effects on pri-
mary rat midbrain neuron-glial cultures; fur-
thermore it increased the release of neuro-
trophic factors in a concentration- and 
time-dependent manner [11]. Polymorphisms 
of the cytochrome P450 (CYP/Cyp) 2D6 gene 
are related to PD. Resveratrol ameliorated the 
neurodegenerative changes by altering the 
expression of Cyp2d22, a mouse ortholog of 
human CYP2D6 as well as paraquat accumula-
tion [47].

Curcumin 

Curcumin, a natural polyphenol compound 
derived from the curry spice turmeric, is known 
for several biological and medicinal effects, 
such as anti-cancer, anti-microbial, anti-inflam-
matory, antioxidant, and antiproliferative activi-
ties. Curcumin has shown therapeutic potential 
for neurodegenerative diseases including PD, 
which has garnered great interest in recent 
years. We review the neuroprotective roles of 
curcumin in PD and discuss its possible mecha-
nisms of action (Table 1, Figure 1).

Anti-inflammation

Both in vitro and in vivo studies showed that 
curcumin can protect DA neurons through anti-
inflammatory effect. Curcumin pretreatment 
significantly inhibited both 6-OHDA-induced 
NF-κB translocation [48] and LPS-induced mor-
phological changes in microglia, and dramati-

cally suppressed the expression of many LPS-
induced proinflammatory factors and their 
genes. Furthermore, curcumin treatment dec- 
reased LPS-induced activation of NF-κB and 
activator protein-1 (AP-1) [49]. Pretreatment 
with curcuminoids (150 mg/kg/day, oral admin-
istration) for 1 week prevented MPTP-mediated 
depletion of DA and tyrosine hydroxylase (TH) 
immunoreactivity and inhibited the protein 
expression of glial fibrillary acidic protein (GFAP) 
and iNOS. Likewise, curcumin pretreatment 
reduced pro-inflammatory cytokine (IL-6, IL-1β, 
TNF-α) and total nitrite generation in the stria-
tum of MPTP-induced mice [50]. Curcumin alle-
viated loss of TH-IR fibers and decreased acti-
vation of astrocytes and microglia [51]. 
Recently, using a quantitative microfluidic-
based methodology, Tegenge et al. showed that 
LPS-stimulated microglia release soluble fac-
tors, which when applied locally to axons, result 
in axon degeneration. Curcumin specifically 
protects axons, but not neuronal cell bodies, 
from NO-mediated degeneration [52].

Anti-apoptosis

Curcumin also protected DA neurons from 
apoptosis. It has been reported that curcumin 
protects PC12 cells against MPP(+)-induced 
cytotoxicity and apoptosis by reducing the loss 
of mitochondrial membrane potential (MMP), 
and its neuroprotective effects might be medi-
ated by the Bcl-2-mitochondria-ROS-iNOS path-
way because curcumin attenuates MPP(+)-
induced an increase in intracellular ROS level, 
induces overexpression of BCl-2 and antago-
nizes MPP+-induced overexpression of iNOS 
[53]. Research using a PD cell model found that 
both intra- and extra-cellular alphaS may 
induce apoptosis of DA neurons; curcumin can 
ease alphaS-induced toxicity, decrease ROS 
levels, and protect cells against apoptosis [54]. 
In addition the death of DA neurons and the 
loss of DA axons in the striatum were signifi-
cantly suppressed by curcumin in the MPTP 
mouse model [55]. Chiu et al. showed that lipo-
somal-formulated curcumin [Lipocurc™] signifi-
cantly blocked neuronal apoptosis and stimu-
lated DA neurons in the substantia nigra [56]. 
Using 6-OHDA-induced neurotoxicity in the 
SH-sY5Y cells, curcumin decreased the Bax/
Bcl-2 ratio at mRNA expression and protein 
level [57]. Curcumin specifically inhibits the 
JNK/c-Jun pathway [58] and can block MPP(+), 
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which causes the upregulation of c-Jun 
N-terminal kinase (JNK) and DA neuronal death 
[59]. JNK phosphorylation induced by MPTP 
can cause translocation of Bax to mitochondria 
and the release of cytochrome c, which can be 
diminished by curcumin [55]. The axon degen-
eration induced by LPS is mediated by microg-
lial MyD88/p38 MAPK signaling and concomi-
tant production of NO. Through inhibiting JNK, 
curcumin protects axons from degeneration 
involving JNK phosphorylation [52]. Curcumin 
could reduce the accumulation of A53T 
α-synuclein through downregulation of the 
mTOR (mammalian target of rapamycin)/
p70S6K signaling [60].

Antioxidation

The neuroprotective effects of curcumin to PD 
also related to its antioxidant properties. In 
2005, Zbarsky V et al. pretreated rats with cur-
cumin and showed clear protection of the num-
ber of TH-positive cells in the SN and DA levels 
in the striata [61]. Treatment of DA neurons and 
mice with curcumin restores depletion of gluta-
thione (GSH) levels, protects against protein 
oxidation, preserves mitochondrial complex I 
activity that is normally is impaired due to GSH 
loss [62], and maintains SOD1 levels in the 
lesioned striatum of 6-OHDA mice [51]. 
Curcumin protected MES23.5 cells against the 
neurotoxin 6-OHDA by restoring mitochondrial 
membrane potential, increasing the levels of 
Cu-Zn superoxide dismutase, and suppressing 
an increase in intracellular ROS [48]. The effect 
of three bioconjugates of curcumin (involving 
diesters of demethylenated piperic acid, valine, 
and glutamic acid) against GSH depletion medi-
ated oxidative stress in DA neurons [63]. 
Curcumin pretreatment of the human DA cell 
line SH-SY5Y exposed to 6-OHDA improved cell 
viability and significantly reduced ROS [57]. 
Curcuminoids were administered to rats (60 
mg/kg, body weight, per oral) for three weeks 
followed by unilateral injection of 6-OHDA (10 
μg/2 μL) into the right striatum on the 22nd 
day. The results showed that curcuminoids 
appear significant protection against progres-
sive neuronal degeneration due to increased 
oxidative attack in 6-OHDA-lesioned rats 
through a free radical-scavenging mechanism 
[64]. Pretreatment of SH-SY5Y with curcumin I 
(diferuloylmethane) significantly decreased the 
formation of quinoprotein and reduced the lev-

els of p-p38 and cleaved caspase-3 in a dose-
dependent manner induced by 6-OHDA. 
Moreover, the levels of phospho-tyrosine 
hydroxylase (p-TH) were also dose-dependently 
increased by treatment with curcumin I. These 
results clearly demonstrate that curcumin I pro-
tects neurons against oxidative damage by 
attenuation of p-p38 expression, caspase-
3-activation, and toxic quinoprotein formation 
and by restoration of p-TH levels [65].

Similarly, pretreatment with a pyrazole deriva-
tive of curcumin (CNB-001, 2 μM) 2 h before 
rotenone exposure (100 nM) to SK-N-SH cells 
increased cell viability, decreased ROS forma-
tion, maintained normal physiological mito-
chondrial membrane potential, and reduced 
apoptosis. Furthermore, CNB-001 inhibited 
downstream apoptotic cascade by increasing 
the expression of Bcl-2 and decreased the 
expression of Bax, caspase-3, and cytochrome 
C [66]. Curcumin has also been shown to detox-
ify peroxynitrite and protect against mitochon-
drial complex I (CI) inhibition and protein nitra-
tion [67]. Curcumin protects against A53T 
mutant α-synuclein-induced cell death via inhi-
bition of oxidative stress and the mitochondrial 
cell death pathway [68]. Pretreatment with cur-
cumin I (diferuloylmethane) protects SH-SY5Y 
cell from 6-OHDA-induced neurotoxicity. 
Curcumin I significantly improved cell viability, 
reduced ROS and p53 phosphorylation [61]. 
Curcumin has been shown to activate the Nrf2/
ARE (antioxidant-response element) pathway 
that activates transcription of anti-inflammato-
ry and antioxidant genes to produce neuropro-
tective effects [69]. The protective effects of 
curcumin against 6-OHDA may be attributable 
to its iron-chelating capability, suppressing the 
iron-induced degeneration of nigral DA neurons 
[70].

Other effects

In addition to preventing α-synuclein aggrega-
tion and fibrillation [71], curcumin also inhibits 
the formation of alpha-synuclein fibrils (fal-
phaS) and destabilizes preformed falphaS at 
pH 7.5 at 37 degrees C in vitro [72]. Curcumin-
glucoside (Curc-gluc), a modified form of cur-
cumin, prevents oligomer formation and inhib-
its fibril formation. Curc-gluc inhibits aggre- 
gation in a dose-dependent manner and 
enhances the solubility of α-synuclein [73]. 
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Curcumin efficiently reduces the accumulation 
of A53T α-synuclein [60]; however, fluores-
cence and two-dimensional nuclear magnetic 
resonance (2D-NMR) show that it binds not to 
monomeric α-Syn but instead to oligomeric 
intermediates [74]. A mixture of curcumin and 
β-cyclodextrin not only inhibited aggregation 
but also broke up the preformed aggregates 
[75].

In addition, curcumin inhibits monoamine oxi-
dase B [71]. Systemic administration of cur-
cumin (80 mg/kg i.p.) significantly reversed the 
MPTP-induced depletion of DA and dihydroxy-
phenylacetic acid (DOPAC). MAO-B activity was 
also significantly inhibited by curcumin and its 
metabolite tetrahydrocurcumin [76]. However, 
Ojha’s found the MAO-B activity only partially 
and not significantly altered [50]. In yeast, cur-
cumin prevents formation of polyglutamine 
aggregates by inhibiting Vps36, a component 
of the ESCRT-II (endosomal sorting complex 
required for transport) complex [77]. 

The leucine-rich repeat kinase 2 (LRRK2) gene 
is most commonly associated with both familial 
and sporadic PD [78]. Employing both cell and 
Drosophila models to investigate the interac-
tion between LRRK2 genetic mutations and oxi-
dative stress, it was found that curcumin signifi-
cantly redssuced LRRK2 kinase activity and 
the levels of oxidized proteins, and thus acted 
as not only an antioxidant but also a LRRK2 
kinase inhibitor [79].

Ginsenoside

Ginseng, a traditional Chinese medicine, is 
widely used. Most ginseng species contain 
active constituents with beneficial effects, 
including ginsenosides, polysaccharides, pep-
tides, polyacetylenic alcohols, and fatty acids. 
There are two major categories of ginsenosides: 
protopanaxadiols (PPD, e.g., Ra, Rb, Rc, Rd, 
Rg3, Rh2) and protopanaxatriols (PPT, e.g., Re, 
Rf, Rg1, Rg2, Rh1) [80]. Ginseng has many ther-
apeutic effects, especially on nervous system 
diseases. Ginseng plays a neuroprotective 
roles in the regulation of synaptic plasticity, 
neuroinflammatory processes, and neurotrans-
mitter release [6]. In vitro and in vivo studies 
have determined that ginsenosides, as the 
active compounds responsible for ginseng’s 
action, exert pharmacological effects against 
neuroinflammation, cerebral oxidative stress 

and radical formation, and apoptosis (Table 1 
and Figure 1).

Anti-inflammation

Ginsenosides have clear anti-inflammatory 
effects. Ginsenoside Rg5 is one of the main 
constituents of steamed ginseng and belongs 
to the family of protopanaxadiol ginsenosides 
[81]. It has been shown to suppress NO produc-
tion and proinflammatory TNF-α secretion in 
BV2 microglial cells and rat primary microglia, 
as well as inhibit the mRNA expression of iNOS, 
TNF-α, IL-1β, COX-2, and matrix metallopepti-
dase 9 (MMP-9) induced by LPS [82]. Drug 
screening determined that ginsenoside Re 
enhances the function of the defective PINK1-
Hsp90/LRPPRC-Hsp60-complex IV signaling 
axis in PINK1-null neurons by restoring NO lev-
els [83]. In addition, Re (2 μg/ml) protects 
against LPS (1 μg/ml)-treated microglial cells. 
The neuroprotective/anti-inflammatory effects 
induced by Re treatment appeared via the 
phospho-p38, iNOS, and COX2 signaling path-
ways in BV2 cells [80]. Rg1 obviously decreased 
the cytotoxicity induced by H2O2 in PC12 cells 
and suppressed phosphorylation and nuclear 
translocation of NF-κB/p65, phosphorylation 
and degradation of inhibitor protein of κB (IκB), 
and the phosphorylation of IB-kinase complex 
(IKK). Rg1 also inhibited the activation of Akt 
and extracellular signal-regulated kinase 1/2 
(ERK1/2) [84]. Rd partially reduced the neuro-
toxic action of LPS on DA neurons, which could 
take place through a reduction of NO-formation 
and prostaglandin E2 (PGE2) synthesis [85]. In 
an in vivo animal model, pretreatment with Rg3 
(orally with 10, 20, and 30 mg/kg 1 h prior to 
the LPS) significantly attenuated upregulation 
of TNF-α, IL-1β, and IL-6 mRNA in brain tissue at 
4 h after LPS injection. Furthermore, iNOS and 
COX-2 expression in brain tissue were also 
attenuated [86]. Also, Rg5 inhibited the phos-
phorylation of PI3K/Akt and MAPKs and the 
DNA binding activity of NF-κB and AP-1, which 
are upstream molecules controlling inflamma-
tory reactions [82]. In addition, ginsenoside’s 
neuroprotective effects via Rd may involve 
interference with the expression of iNOS and 
COX-2 [85].

Anti-apoptosis 

Ginsenosides have anti-apoptotic effects. 
Pretreatment with ginsenoside Rg1 obviously 
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inhibited the activation of caspase-3. In addi-
tion, Rg1 also reduced iNOS protein levels and 
NO production [87]. Rg1 increased the inhibi-
tion of phosphorylation of the pro-apoptotic 
protein Bad through activation of the PI3K/Akt 
pathway [88]. Pretreatment with Re markedly 
increased TH-positive neurons and decreased 
the TUNEL-positive ratio in a PD mouse model 
induced by MPTP. Furthermore, Re enhanced 
the expression of Bcl-2 protein and mRNA but 
reduced the expression of Bax, Bax mRNA, and 
iNOS and attenuated the cleavage of caspase-3 
[89].

Antioxidation

Ginsenosides also have anti-oxidation function. 
Pretreatment with ginsenoside Rg1 evidently 
reduced the generation of DA-induced ROS and 
the release of mitochondrial cytochrome c into 
the cytosol [87]. Rg1 was shown to reduce rote-
none-induced cell death in primary cultured 
nigral neurons and restored mitochondrial 
membrane potential. In addition, Rg1 prevent-
ed cytochrome c release from the mitochron-
drial membrane [88]. Because iron accumula-
tion is involved in the neurotoxicity of 6-OHDA, 
Rg1 pretreatment decreases iron influx by 
inhibiting 6-OHDA-induced up-regulation of an 
iron importer protein divalent metal transporter 
1 with iron-responsive element (divalent metal 
transporter 1 (DMT1) + iron responsive ele-
ment (IRE)), and the effect of Rg1 on DMT1 + 
IRE expression was due to its inhibition of iron-
regulatory proteins (IRPs) by its antioxidant 
effect [90]. Pretreatment with Rg1 inhibited 
MPP(+)-induced up-regulation of DMT1-IRE in 
MES23.5 cells and significantly inhibited ROS 
production and translocation of NF-κB to nuclei. 
Rg1 decreased DMT1-mediated ferrous iron 
uptake and iron-induced cell damage by inhibit-
ing the up-regulation of DMT1-IRE, likely by 
inhibiting the ROS-NF-κB pathway [91]. 

Other effects

Ginseng extract has been found to have neuro-
trophin-like effects. Both Rb1 and Rg1 
increased neurite outgrowth of PC12 cells in 
the absence of NGF after 18 days in culture; in 
addition, both Rb1 and Rg1 reversed MPTP-
induced SN-K-SH cell death [92].

Conclusion and perspective 

PD is a chronic, progressive, and multifactorial 
neurologic disorder in which many pathologic 

processes including inflammation, oxidative 
stress, mitochondrial dysfunction, neurotrans-
mitter imbalance, apoptosis, and genetic fac-
tors lead to neuronal degeneration. Thus, any 
therapeutic approach that limits itself to drugs 
against a single pathological process is invalid, 
and drug combinations with various pharmaco-
logical properties are likely to be more effec-
tive. Recently, traditional Chinese medicinal 
herbs, with their low toxicity and side-effects 
have become a popular topic when discussing 
new drugs for prevention and treatment of PD 
and other neurodegenerative diseases. It is 
known that Chinese herbs play various neuro-
protective roles, including antioxidant, anti-
inflammatory, free radicals-scavenging, anti-
apoptosis, and chelating harmful metals 
through a variety of mechanisms [4, 6, 93, 94]. 
Therefore, as therapeutic neuroprotective 
agents, Chinese herbs are attracting increasing 
attention for the treatment of PD patients. At 
present, for the prevention and treatment of 
PD, traditional Chinese herbs monomer and 
active ingredients with clear molecular struc-
tures contribute to its mechanism research, 
but there are some problems in the application 
of Chinese herbs. First, efficacy studies of tradi-
tional Chinese medicine monomer or effective 
ingredients for PD still remain in the stage of 
cell or animal model, and need further clinical 
observation and verification. Second, the effi-
cacies of single use of traditional Chinese 
herbs monomer or effective components are 
very different from Chinese herbal compound 
used in clinic, and can not exploit advantages 
of traditional Chinese medicine on synergy 
effects and overall regulation of body. Third, 
some Chinese herbs ingredients have low bio-
availability [93]. Future studies should be pay 
attention to the bioavailability of the traditional 
Chinese herb composition and the best combi-
nation of a variety of traditional Chinese medi-
cine monomer and the effective composition to 
improve its therapeutic effect.
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