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MiR-330-3p inhibits gastric cancer progression through 
targeting MSI1
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Abstract: Increasing evidences demonstrated that microRNAs (miRNAs) play critical roles in the human tumor devel-
opment and progression. In our study, we found that miR-330-3p expression was downregulated in gastric cancer 
cell lines and tissues. Ectopic expression of miR-330-3p suppressed the gastric cancer cell proliferation, colony for-
mation and migration. Overexpression of miR-330-3p promoted E-cadherin expression and inhibited the expression 
of N-cadherin, vimentin and snail. We identified Musashi-1 (MSI1) as a direct target gene of miR-330-3p in gastric 
cancer cell. In addition, MSI1 was upregulated in gastric cancer cell lines and tissues and the MSI1 expression was 
inversely correlated with miR-330-3p expression in gastric cancer tissues. MiR-330-3p expression was increased in 
gastric cancer cells after treated with histone deacetylase inhibitor trichostatin A (TSA) and DNA methylation inhibi-
tor 5-aza-CdR (AZA). These indicated that downregulated expression of miR-330-3p was partly mediated by gene 
promoter region hypermethylation. These results suggested that miR-330-3p acted as a tumor suppressor gene in 
GC. 
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Introduction

Gastric cancer (GC) is the second most com-
mon cause of cancer related death and the 
fourth most common cancer worldwide [1-4]. It 
is estimated that about one million new GC 
cases are diagnosed per year [5-7]. Although 
advances in chemotherapy and surgery have 
been achieved, the prognosis of GC is still poor 
with the 5-year overall survival rate below 30% 
[8-10]. The main reason is that most GC 
patients are diagnosed at advanced stage [11-
13]. Therefore, identification of new biomarkers 
and therapeutic targets are pivotal for improv-
ing GC prognosis.

MicroRNAs (miRNAs) are small, endogenous 
and noncoding RNAs that regulate gene expres-
sion through decreasing the stability and there-
fore repressing the translation of mRNAs [14-
17]. Deregulation of miRNAs is found in many 
tumors such as gallbladder cancer, osteosar-
coma, cutaneous squamous cell carcinoma, 
bladder cancer, ovarian carcinoma and breast 
cancer [18-22]. Increasing evidences have 

demonstrated that miRNAs play an important 
role in many biological processes such as cell 
development, proliferation, apoptosis, migra-
tion, invasion and differentiation [23-30]. 
Therefore, it is crucial to study the roles of miR-
NAs in the development of GC [31, 32].

In this study, we showed that miR-330-3p 
expression was downregulated in gastric can-
cer cell lines and tissues. Ectopic expression of 
miR-330-3p suppressed the HGC-27 cell prolif-
eration, colony formation and migration. Mu- 
sashi-1 (MSI1) was identified as a direct target 
gene of miR-330-3p in the GC cell.

Materials and methods

Tissue and cell lines cultured and cell transfec-
tion

Human GC tissues and adjacent normal tissues 
were surgically collected from GC patients in 
our hospital. This study was proved by the 
Ethics Review Board of the Affiliated Yan An 
Hospital of Kunming Medical University and 
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written informed consent was collected from 
each patient. GC cell lines (MGC-803, AGS, 
SGC-7901, HGC-27) and one normal gastric 
mucosa cell line (GES) were collected from the 
Chinese Academy of Science and cultured in 
the RPMI-1640 medium (Life Technologies, 
USA) contained with penicillin and streptomy-
cin. miR-330-3p mimic and scramble oligonu-
cleotide were collected from GenePharma 
(Shanghai, China). Cell transfection was per-
formed using the Lipofectamine 2000 Reagent 
(Invitrogen, USA) following to manufacturer’s 
instruction. 

Real-time PCR

Total RNA for miRNA and mRNA analyses was 
isolated from tissues or cells using TRIzol 
reagent (Invitrogen; USA) according to the man-

ufacturer’s information. The expression of miR-
330-3p and MSI1 was determined with SYBR 
Green PCR master mix (Applied Biosystems, 
USA) using real-time PCR. The primers were 
used as following: MSI1 forward 5’-GCTCGAC- 
TCCAAAACAATTGACC-3’ and reverse 5’-GGCTG- 
AGCTTTCTTACATTCCAC-3, and for GAPDH we- 
re forward 5’-TGTTCGACAGTCAGCCGC-3’ and 
reverse 5’-GGTGTCTGAGCGATGTGGC-3’. GAP- 
DH and U6 small nuclear RNA was performed 
as endogenous control for mRNA and miR-330-
3p respectively. 

Cell growth and colony-forming assay

Cell growth was determined using MTT assays 
according to the instructions. Cells were seed-
ed in the 96-well plates and MTT reagent was 
put to the medium, and continue to culture for 

Figure 1. miR-330-3p was downregulated in gastric cancer cell lines and tissues. A: Of the 40 samples, miR-330-3p 
expression was downregulated in the 29 patients (29/40, 72.5%) compared to adjacent tissues. B: The expression 
of miR-330-3p was downregulated in the GC tissues compared with adjacent no-tumor tissues. C: miR-330-3p in the 
GC cell lines (MGC-803, MNK-45, SGC-7901 and HGC-27) and normal gastric mucosa cell line (GES) was measured 
by using qRT-PCR.
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more than 4 hours. The absorbance was mea-
sure on the microtiter plate reader (Molecular 
Devices, CA) at 490 nm. For colony formation 
analysis, cells were cultured in the 6-well plate 
for two weeks. Cell colony was fixed with para-
formaldehyde (4%) and stained with crystal vio-
let (1%) (Sigma-Aldrich, USA). Stained colony 
was counted under the microscope.

Cell migration assay

Wound-healing assay was performed to detect 
the cell migration. Cells were cultured in the six-
well plates. The cell wound was scratched using 
the sterile plastic tip when cell was reached 
confluence. After wased with medium twice, 
cells were cultured for 48 hours and images 
were taken under microscope to measure the 
wound.

Luciferase assays

For luciferase assays, HGC-27 cell was cultured 
in the 24-well plate and transfected with report-
er vector and miR-330-3p or scramble using 
Lipofectamine 2000 according to description. 
After 48 hours, the activitie of Renilla and firefly 
luciferase in the cell lysate was measured using 

a dual-luciferase system (Promega). The ratio 
of Renilla/firefly luciferase activitie was calcu-
lated for normalization.

Western blotting

Total proteins were isolated from cell or tissue 
and protein concentrations were determined 
with the BCA protein assay kit (Pierce, USA). 
Proteins were separated using 12% SDS-PAGE 
gel and transferred to PVDF membranes (poly-
vinylidene difluoride; Bio-Rad). The membrane 
was blocked 5% non-fat milk and incubated 
with the primary antibody (E-cadherin, N-ca- 
dherin, vimentin and snail, MSI1 and GAPDH). 
The blot was incubated with horseradish per-
oxidase (HRP) for 1 hour and then was detected 
using ECL (enhanced chemiluminescence) sys-
tem (Pierce Biotechnology, IL).

Sodium bisulfite modification and methylation-
specific PCR (MS-PCR)

Total DNA from cell or tissues was isolated 
using Wizard DNA Purification Kit (QIAGEN, 
Valencia, CA) according to instruction. 10 ng 
DNA was used to PCR amplification and miR-
330-3p CpG islands primers for unmethylated 

Figure 2. miR-330-3p expression was epigenetically regulated in gastric cancer. A: The expression of miR-330-3p 
in the HGC-27 cells after treated with TSA or AZA was detected by using qRT-PCR. B: The expression of miR-330-3p 
in the MGC-803 cells after treated with TSA or AZA was detected by using qRT-PCR. C: The methylation status of 4 
pairs of GC tissues and adjacent no-tumor tissues was measured by MS-PCR.



MiR-330-3p inhibits GC progression

4805	 Am J Transl Res 2016;8(11):4802-4811

(forward: 5’-TGATTCGTTTTATTATCGGTC-3’, re- 
verse: 5’-AACACTAACGACATCGACG-3’) and 
methylated (forward: 5’-TATGATTTGTTTTATTA- 
TTGGTT-30, reverse: 50-AACACTAACAACATCAA 
CA ACC-3’). 

Statistical analysis

Data were shown as the mean ± SD (standard 
deviation). Statistical analysis was measured 
using SPSS 17. Student’s t test was performed 

Figure 3. miR-330-3p inhibited gastric cancer cell proliferation, colony formation and migration. A: The expres-
sion of miR-330-3p was increased after treated with miR-330-3p mimic. B: Ectopic expression of miR-330-3p sup-
pressed the HGC-27 cell proliferation using MMT assay. C: Overexpression of miR-330-3p inhibited the HGC-27 cell 
colony formation. D: miR-330-3p overexpression suppressed the HGC-27 cell migration. *P<0.05, **P<0.01 and 
***P<0.001.
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to measure differences and P<0.05 was con-
sidered significant.

The expression of miR-330-3p was increased 
after treated with miR-330-3p mimic (Figure 

Figure 4. miR-330-3p repressed gastric cancer cell epithelial mesenchymal 
transition (EMT). A: The protein expression of E-cadherin, N-cadherin, vimen-
tin and snail was measured by western blot. B: The mRNA expression of E-
cadherin, N-cadherin, vimentin and snail was measured by qRT-PCR.

Figure 5. miR-330-3p targeted MSI1 in gastric cancer cell. A: There are 8 
sequential bases between MSI1 gene 3’ UTR and 5’ of human miR-330-
3p. B, C: Overexpression of miR-330-3p decreased the Luciferase activity 
of wild type MSI1 3’ UTR construct, whereas the Luciferase activity was not 
decreased in the mutated type in both HGC-27 and MGC-803. D: Ectopic 
expression of miR-330-3p suppressed the protein expression of MSI1 in the 
HGC-27. E: The protein expression of MSI1 in the MGC-803 cell was deter-
mined by using western blot. 

Result

miR-330-3p was downregu-
lated in gastric cancer cell 
lines and tissues

The expression of miR-330-
3p was determined in both 
GC tissues and cell lines. Of 
the 40 samples, miR-330-3p 
expression was downregulat-
ed in the 29 patients (29/40, 
72.5%) compared to adjacent 
tissues (Figure 1A). The ex- 
pression of miR-330-3p was 
downregulated in the GC tis-
sues compared with adjacent 
no-tumor tissues (Figure 1B). 
We also demonstrated that 
miR-330-3p expression was 
downregulated in the GC cell 
lines (MGC-803, MNK-45, 
SGC-7901, HGC-27) compa- 
red with the normal gastric 
mucosa cell line (GES) (Figure 
1C).

miR-330-3p expression was 
epigenetically regulated in 
gastric cancer

HGC-27 and MGC-803 cells 
were treated with the histone 
deacetylase inhibitor tricho-
statin A (TSA) and DNA meth-
ylation inhibitor 5-aza-CdR 
(AZA). miR-330-3p expres-
sion was increased in both 
HGC-27 and MGC-803 cells 
after treated with TSA or AZA 
(Figure 2A and 2B). We also 
measured the methylation 
status of 4 pairs of GC tis-
sues and adjacent no-tumor 
tissues by MS-PCR. The 
methylation level of GC tis-
sues was higher than that of 
adjacent no-tumor tissues 
(Figure 2C).

miR-330-3p inhibited gastric 
cancer cell proliferation, 
colony formation and migra-
tion
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3A). Ectopic expression of miR-330-3p sup-
pressed the HGC-27 cell proliferation using 
MMT assay (Figure 3B). Overexpression of miR-
330-3p inhibited the HGC-27 cell colony forma-
tion (Figure 3C). Moreover, miR-330-3p overex-
pression suppressed the HGC-27 cell migration 
(Figure 3D).

miR-330-3p repressed gastric cancer cell epi-
thelial mesenchymal transition (EMT) 

Overexpression of miR-330-3p promoted the 
protein expression of E-cadherin and repressed 
the protein expression of N-cadherin, vimentin 
and snail using western blot (Figure 4A). In line 
with this, ectopic expression of miR-330-3p 
enhanced the mRNA expression of E-cadherin 
and inhibited the mRNA expression of N-cad- 
herin, vimentin and snail using qRT-PCR (Figure 
4B).

miR-330-3p targeted MSI1 in gastric cancer 
cell

TargetScan online software was used to predict 
miR-330-3p genes and demonstrated that 

MSI1 gene 3’ UTR had 8 sequential bases with 
5’ of human miR-330-3p (Figure 5A). Over- 
expression of miR-330-3p decreased the lucif-
erase activity of wild type MSI1 3’ UTR con-
struct, whereas the luciferase activity was not 
decreased in the mutated type in both HGC-27 
(Figure 5B) and MGC-803 (Figure 5C). Ectopic 
expression of miR-330-3p suppressed the pro-
tein expression of MSI1 in both HGC-27 (Figure 
5D) and MGC-803 (Figure 5E). 

MSI1 expression was inversely correlated with 
miR-330-3p expression in gastric cancer

The expression of MSI1 was determined in GC 
tissues and cell lines. Of the 40 samples, MSI1 
expression was upregulated in the 31 patients 
(31/40, 77.5%) compared to adjacent tissues 
(Figure 6A). The expression of MSI1 was upreg-
ulated in the GC tissues compared with adja-
cent no-tumor tissues (Figure 6B). We also 
demonstrated that MSI1 expression was upreg-
ulated in the GC cell lines (MGC-803, MNK-45, 
SGC-7901, HGC-27) compared with the normal 
gastric mucosa cell line (GES) (Figure 6C). 

Figure 6. MSI1 expression was inversely correlated with miR-330-3p expression in gastric cancer. A: Of the 40 
samples, MSI1 expression was upregulated in the 31 patients (31/40, 77.5%) compared to adjacent tissues. B: 
The expression of MSI1 was upregulated in the GC tissues compared with adjacent no-tumor tissues. C: The MSI1 
expression in the GC cell lines (MGC-803, MNK-45, SGC-7901 and HGC-27) and the normal gastric mucosa cell line 
(GES) was determined by qRT-PCR. D: The expression levels of MSI1 were inversely correlated with the expression 
of miR-330-3p in the gastric cancer tissues. ***P<0.001.
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Moreover, the expression levels of MSI1 were 
inversely correlated with the expression of miR-
330-3p in the gastric cancer tissues (Figure 
6D).

Discussion

In this study, we showed that miR-330-3p 
expression was downregulated in gastric can-
cer cell lines and tissues. Ectopic expression of 
miR-330-3p suppressed the HGC-27 cell prolif-
eration, colony formation and migration. Ov- 
erexpression of miR-330-3p promoted the 
expression of E-cadherin and inhibited the 
expression of N-cadherin, vimentin and snail. 
These data suggested that miR-330-3p re- 
pressed gastric cancer cell epithelial mesen-
chymal transition (EMT). We identified MSI1 as 
a direct target gene of miR-330-3p in gastric 
cancer cell. In addition, MSI1 was upregulated 
in gastric cancer cell lines and tissues and the 
MSI1 expression was inversely correlated with 
miR-330-3p expression in gastric cancer tis-
sues. Moreover, miR-330-3p expression was 
increased in GC cells after treated with histone 
deacetylase inhibitor trichostatin A (TSA) and 
DNA methylation inhibitor 5-aza-CdR (AZA). 
These indicated that downregulated expression 
of miR-330-3p was partly mediated by gene 
promoter region hypermethylation. To con-
clude, these results suggested that miR-330-
3p acted as a tumor suppressor gene in GC. 

Previous studies showed that miR-330-3p 
played an important role in the development of 
multiple tumors [33-38]. For example, Arora et 
al [38] found that the expression of miR-330-
3p classified Brain metastasis (BM) + vs. BM- 
patients in nonsmall cell lung cancer patients. 
Lionetti et al [37] showed that deregulated 
expression of miR-330-3p in the serum existed 
in primary plasma cell leukemia and was cor-
related with clinical outcome. Liu et al [33] 
demonstrated that miR-330-3p expression 
was upregulated in NSCLC tissues and brain 
metastasis tissues. Overexpression of miR-
330-3p promoted the NSCLC cell cycle distribu-
tion and proliferation through targeting EGR2. 
Meng et al [34] found that miR-330-3p expres-
sion was upregulated in esophageal squamous 
cell carcinoma (ESCC) tissues. miR-330-3p 
overexpression increased ESCC cell migration, 
invasion and proliferation through inhibiting 
PDCD4 expression. However, the role of miR-

330-3p in the GC is still unknown. In our study, 
miR-330-3p expression was downregulated in 
GC cell lines and clinical GC tissues. Ectopic 
expression of miR-330-3p suppressed the GC 
cell proliferation, colony formation and 
migration. 

MSI1 was identified as a candidate direct tar-
get of miR-330-3p by using the TargetScan. 
MSI1 original identified as one of neural stem 
cell (NSC) marker which is expressed in the ner-
vous system [39, 40]. MSI1 is considerated to 
be one marker of NSCs and neural progenitor 
cells in mammalian [41]. Moreover, higher 
expression of MSI1 was correlated with high 
grade glioma. Additionally, inhibition of MSI1 
increased the radiation-induced colon cancer 
cells apoptosis and cancer regression. MSI1 is 
an RNA-binding protein (RBP) that plays an 
important role in the gene expression by bind-
ing to a sequence in the 3’ UTR of target mRNAs 
leading to the translational inhibition [42-44]. 
Previous studies showed that MSI1 was overex-
pressed in the cervical cancer tissues and 
ectopic expression of MSI1 promoted the ecto-
pic cell tumor formation, cell proliferation and 
increased the cervical cancer cells into the S 
phase [45]. MSI1 was expressed in a lot of 
tumors, including retinoblastoma, glioblasto-
ma, and endometrial, colorectal, esophageal 
and bladder carcinoma [43, 46-51]. Morever, 
Wang et al [52] demonstrated that MSI1 expres-
sion was upregulated in GC tissues compare to 
normal gastric tissues. Kuang et al [53] also 
showed that MSI1 expression was upregulated 
in the intestinal metaplasia compared to the 
normal mucosa. It is reasonable to know that 
miR-330-3p target genes to inhibit cell prolifer-
ation and invasion. Among these putative tar-
get genes for miR-330-3p is an inhibitor of 
MSI1, which was predicted by the TargetScan. 
Our study proved that ectopic expression of 
miR-330-3p suppressed the protein expres-
sion of MSI1 in both HGC-27 and MGC-803 cell. 
Data from the Luciferase assays also suggest 
that MSI1 is one of the direct downstream tar-
get genes of miR-330-3p in the GC cell. In line 
with previous studies, we also found that the 
expression of MSI1 was upregulated in the GC 
tissues compared with adjacent no-tumor tis-
sues. In addition, we found that the expression 
levels of MSI1 were inversely correlated with 
the expression of miR-330-3p in the gastric 
cancer tissues.
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In conclusion, we demonstrated that miR-330-
3p was downregulated in the human GC tis-
sues. Ectopic expression of miR-330-3p sup-
pressed the GC cell proliferation, colony 
formation and migration. MSI1 was identified 
as a direct target gene of miR-330-3p. These 
results suggested that miR-330-3p acted as a 
tumor suppressor gene in GC. 
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