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Abstract: Background: The laminin-binding integrin (LBI) family are cell adhesion molecules that are essential for 
invasion and metastasis of human epithelial cancers and cell adhesion mediated drug resistance. We investigated 
whether copy number alteration (CNA) or mutations of a five-gene signature (ITGB4, ITGA3, LAMB3, PLEC, and 
SYNE3), representing essential genes for LBI adhesion, would correlate with patient outcomes within human ep-
ithelial-type tumor data sets currently available in an open access format. Methods: We investigated the relative 
alteration frequency of an LBI signature panel (integrin β4 (ITGB4), integrin α3 (ITGA3), laminin β3 chain (LAMB3), 
plectin (PLEC), and nesprin 3 (SYNE3)), independent of the epithelial cancer type, within publically available and 
published data using cBioPortal and Oncomine software. We rank ordered the results using a 20% alteration fre-
quency cut-off and limited the analysis to studies containing at least 100 samples. Kaplan-Meier survival curves 
were analyzed to determine if alterations in the LBI signature correlated with patient survival. The Oncomine data 
mining tool was used to compare the heat map expression of the LBI signature without SYNE3 (as this was not 
included in the Oncomine database) to drug resistance patterns. Results: Twelve different cancer types, represent-
ing 5,647 samples, contained at least a 20% alteration frequency of the five-gene LBI signature. The frequency of 
alteration ranged from 38.3% to 19.8%. Within the LBI signature, PLEC was the most commonly altered followed by 
LAMB3, ITGB4, ITGA3, and SYNE3 across all twelve cancer types. Within cancer types, there was little overlap of the 
individual amplified genes from each sample, suggesting different specific amplicons may alter the LBI adhesion 
structures. Of the twelve cancer types, overall survival was altered by CNA presence in bladder urothelial carcinoma 
(p=0.0143*) and cervical squamous cell carcinoma and endocervical adenocarcinoma (p=0.0432*). Querying 
the in vitro drug resistance profiles with the LBI signature demonstrated a positive correlation with cells resistant 
to inhibitors of HDAC (Vorinostat, Panobinostat) and topoisomerase II (Irinotecan). No correlation was found with 
the following agents: Bleomycin, Doxorubicin, Methotrexate, Gemcitabine, Docetaxel, Bortezomib, and Shikonen. 
Conclusions: Our work has identified epithelial-types of human cancer that have significant CNA in our selected five-
gene signature, which was based on the essential and genetically-defined functions of the protein product networks 
(in this case, the LBI axis). CNA of the gene signature not only predicted overall survival in bladder, cervical, and 
endocervical adenocarcinoma but also response to chemotherapy. This work suggests that future studies designed 
to optimize the gene signature are warranted. General Significance: The copy number alteration of structural com-
ponents of the LBI axis in epithelial-type tumors may be promising biomarkers and rational targets for personalized 
therapy in preventing or arresting metastatic spread. 
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Introduction

DNA copy number alterations in cancer

Human cancer is often caused by irreparable 
structural mutations in cells. The mutations 

can promote alterations in DNA copy number at 
very specific genomic locations [1], changing 
the function of the gene, and thereby producing 
a transformed phenotype [2]. Several develop-
mental disorders, such as Down Syndrome, 
Prader Willi, and Angelman, for example, are 
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triggered by gain or loss in a single copy of a 
chromosome [3]. Pollack and his team provide 
evidence that extensive DNA copy number 
alterations (CNA) can generate global deregula-
tion in gene expression, which may be a factor 
in the genesis and progression of tumors [4]. 
Identifying and locating copy number altera-
tions can offer an approach for linking CNA with 
disease phenotype and for pinpointing critical 
genes, all of which can be highly useful in treat-
ing tumors or in developing novel treatments.

Clinicians and researchers are now able to 
employ increasingly sophisticated sequencing 
technology (comparative genomic hybridization 
[CGH], single-nucleotide polymorphism [SNP] 
[5]) to identify copy number alterations and 
their relationship to tumor severity in a variety 
of cancers, including head neck squamous can-
cers [6], multiple myeloma [7], prostate cancer 
[8-10], primary cutaneous malignant melano-
mas [11], chronic lymphocytic leukemia [12], 
the transformation of follicular lymphoma to 
diffuse large cell lymphoma [13], urinary blad-
der cancer [14], breast cancer [15], hepatocel-
lular carcinoma [16], and pancreatic cancer 
[17, 18], among many others. 

Access to publically available databases with 
user-friendly interfaces, such as the cBioPortal 
(http://www.cbioportal.org) [19, 20], Oncomine 
(http://www.oncomine.com) [21, 22], and 
STRING (http://string-db.org) [23, 24], prompt-
ed the current study. Our goal was to determine 
if the copy number alterations of essential 
members of the laminin-binding integrin (LBI) 
axis correlated with aggressive cancer sub-
types or drug-resistant phenotypes. Inve- 
stigating CNA (i.e. gene amplification) as a point 
of regulation for the abundance of LBIs is par-
ticularly relevant since integrins are constitu-
tively synthesized, recycled, rarely degraded, 
and have a biological half-life longer than the 
duration of a cell cycle [25, 26]. CNA would be 
the major mechanism to increase LBI abun-
dance on tumor cell surfaces during tumor 
metastasis. The essential gene products in the 
laminin-binding integrin axis required for tumor 
metastatic progression were investigated, in 
contrast to standard approaches investigating 
CNA in prostate cancer (PCa) [27]. 

In the study by Ross-Adams, et al. [27], candi-
dates were selected based on transcription 
and gene variation data by comparing normal 

and cancer tissue in 259 men. Five separate 
patient subgroups were identified based on 
100 unique genes, of which six were previously 
known to play a role in prostate cancer 
(MAP3K7, MELK, RCBTB2, ELAC2, TPD52, 
ZBTB4), and 94 genes were previously unlinked 
to PCa progression. This observation allowed 
the authors to reliably predict biochemical 
relapse. However, patients with poor prognosis 
(Gleason score >7) were spread across all five 
clusters, failing to differentiate the clinical sig-
nificance of any one cluster. Furthermore, since 
the identified genes were specific to nucleic 
acid processing, transcription factor binding, 
and phosphorylation of proteins, the authors 
could only predict biochemical relapse, where-
as predicting metastatic potential is much 
more beneficial in determining survival [28, 
29]. 

Our approach was to query the data for CNA of 
the LBI axis. An abundance of cell culture and 
experimental mouse models have investigated 
the role of laminin-binding integrins and their 
interacting proteins in cancer progression [30-
33], but only sporadic reports exist with human 
tissue studies indicating the LBI axis as impor-
tant in cancer progression [34-38]. A five-gene 
signature consisting of essential laminin adhe-
sion structures known to cause human disease 
was created—β4 integrin (ITGB4) [39-42], α3 
integrin (ITGA3) [35, 43, 44], laminin β3 chain 
(LAMB3) [45, 46], plectin (PLEC) [40, 47, 48], 
and nesprin 3 (SYNE3) [49-51]. We sought to 
determine if CNA in this five-gene signature 
could be observed in human cancer by screen-
ing numerous cancer types using the open-
access resources. Selection of these five-genes 
synthesizes many separate research strands 
linking two or more of these genes as critical 
elements in cancer progression and/or metas-
tasis [45-56], and defines more clearly the 
potential role of the laminin-binding integrin 
axis in disease progression. Our approach may 
suggest alternative targeted therapies or bio-
marker networks based upon phenotype selec-
tion of the gene candidates, in line with emerg-
ing research efforts to subtype-classify various 
tumors [42, 57, 58]. 

Integrins and their role in cancer

Integrins are a class of non-covalently bound, 
heterodimeric cell surface receptors composed 
of α and β subunits, and responsible for cell 
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adhesion to the extracellular matrix (ECM), cell 
signaling, and cell migration [59-63]. Humans 
possess 18 α and 8 β integrin subunits, com-
bining in 24 distinct heterodimers [63]. Three 
alpha integrins are involved in laminin-binding 
(α3, α6, and α7), comprising heterodimers 
α3β1, α6β1, α6β4, and α7β1, and representing 
a highly conserved class of integrins essential 
for normal development [62, 64-66]. There is 
considerable evidence for the role of α6 integ-
rin, also called CD49f, in the progression of a 
variety of epithelial cancers [67-70], as well as 
its role in the migration of normal cell process-
es associated with neuroblasts [71, 72] and 
the myelination of peripheral nerve cells via 
Schwann cell activity [73]. In partnership with 
neuroligin 1 (NLGN1), a cell adhesion molecule, 
α6 integrin plays a crucial role in neurovascular 
development [74]. Compared with α6, the role 
of α7β1 has been so far limited to its presence 
in melanoma cells [75], myoblasts [76], and the 
skeletal neuromuscular junction [77], although 
there is some evidence of anti-metastatic prop-
erties for α7β1 [47, 78]. Conversely, α3β1 is a 
basement membrane receptor that also 
appears to modulate adhesion, migration, and 
cytoskeletal organization [43, 79] and, along 
with α6β1, is important for proper formation of 
the cerebral cortex [80]. 

The three laminin-binding alpha integrins also 
are implicated in the invasion steps of cancer 
metastasis [60, 61, 81-83], in part through 
interactions with tetraspanins [32, 84, 85], and 
the drug-resistant phenotype of metastatic dis-
ease [86-88]. Previous research from our group 
has detailed regulation by laminin-binding inte-
grins and laminin ECM proteins of cell adhesion 
and migration (metastasis) during prostate 
cancer progression [61, 89-91]. Das, et al. [89], 
and Sroka, et al. [61], have demonstrated the 
role of α3 and α6 in perineural invasion (PNI) as 
a major route for prostate cancer metastasis, 
while Liebig, et al. [92], offers a comprehensive 
overview of PNI in various cancers. Further, our 
group has identified a novel variant of α6β1 in 
prostate cancer—α6pβ1—which is unique to 
human cancer tissue and tumor cell lines [91, 
93]. The α6p variant occurs on the tumor cell 
surface by removal of the extracellular laminin-
binding domain by the serine protease uroki-
nase plasminogen activator (uPA) [91, 94], an 
occurrence that may provide the most common 
mechanism of extracapsular spread in prostate 
metastasis [95]. 

Materials and methods 

Identifying the protein components of the 
laminin-binding integrin (LBI) axis 

The STRING analysis tool was used to deter-
mine interacting proteins using ITGB4 as the 
query. The β4 integrin was used because, bio-
logically, this is the seed site for building domi-
nant adhesion structures in normal epithelial 
tissues. Several known partners have been 
genetically verified and therefore served as the 
foundation for finding the other protein part-
ners in the axis. Any proteins identified that 
were not specific to the LBI axis, (e.g., adapter 
proteins [GRB2]) were excluded from the gene 
signature. 

Immunohistochemistry 

Human cancer tissues were fixed in 10% neu-
tral buffered formalin for 24 hours, processed, 
paraffin embedded, and immunohistochemis-
try performed using the AA6NT antibody (1:700) 
on a Discovery XT Automated Immunostainer 
(Ventana Medical Systems, Inc., Tucson, AZ). 
All de-identified tissues were processed 
through the tissue acquisition and molecular 
analysis support resource (TACMASR) of the UA 
Cancer Center. 

Analysis of cBioPortal data 

We utilized the ability to conduct an integrative 
analysis of complex cancer genomics and clini-
cal profiles using the cBioPortal data, an open-
access resource at http://www.cbioportal.org/ 
[96, 97]. The portal reduces molecular profiling 
data from cancer tissues and cell lines into 
readily understandable genetic, epigenetic, 
gene expression, and proteomic events. The 
query interface combined with customized 
data storage enabled us to interactively explore 
genetic alterations across samples curated 
from national and international cancer studies 
and specific genes. This web-based tool was 
used to query five genes simultaneously: ITGB4, 
ITGA3, LAMB3, PLEC, and SYNE3. In the query, 
no cancer studies were pre-selected and 
approximately 91 studies were analyzed. The 
data type priority, selected by us, was mutation 
and copy number alteration (CNA). The LBI gene 
set was defined by the STRING analysis coupled 
with retaining candidate gene products geneti-
cally defined as axis partners and eliminating 
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gene products with known interactions across 
multiple pathways. The resulting HUGO gene 
symbols were submitted together and the anal-
ysis was provided by the tool. Further data anal-
ysis was restricted by requiring at least 100 
samples in the data set and at least a 20% or 
larger change in the CNA and mutation within 
the gene set. 

Analysis of Oncomine data

The four LBI genes (the fifth gene in our selec-
tion, SYNE3, is not in this database) were 
entered into the Oncomine database (Thermo 
Fisher Scientific Inc., v4.5: http://www.onco-
mine.com) [21, 22] and searched with a variety 
of filters until “drug sensitivity analysis” and 

Figure 1. Immunohistochemistry detection of laminin-binding integrin A6 in aggressive human cancer specimens. 
(scale bar, as indicated): (A) prostate cancer, (B) prostate cancer bone metastasis, (C) pancreatic tumor, (D) pancre-
atic tumor metastatic to lymph node, (E) breast cancer, and (F) chordoma (highly infiltrative skeletal neoplasm with 
epithelial characteristics).
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“chemotherapy sensitivity analysis” were 
arrived at as most useful. All results were then 
filtered for top 1% of gene rank, a fold change 
value of 4, and a P-value of 1E-4. Each drug 
resistance profile was viewed through both an 
under- and over-expression order. Heat maps of 
gene expression were generated for the four 
LBI genes and each of the chemo drugs in the 
Oncomine database.

Statistical analysis

Survival curves generated by the cBioPortal 
were analyzed to determine whether any altera-
tions in patient survival occurred when compar-
ing cases that contained an alteration in the 
five LBI genes with those without an alteration 
in the five LBI genes. The results are displayed 
as Kaplan-Meier plots with P values from a 
logrank test. Similarly, with Oncomine, heat 
maps were generated comparing the expres-
sion of the LBI genes between drug-resistant 
and drug-sensitive cells. Statistical significance 
of the data (P-values) was provided by the 
program. 

Results 

Immunohistochemistry detection of integrin α6 
in aggressive human epithelial-type tumors 

Laminin-binding integrins and, in particular, the 
α6 integrin, have been shown to be a normal 
stem cell adhesion and signaling protein axis 
for the invasion, migration, and patterning of 
embryonic tissue and, in adults, regenerating 
tissue following injury. In human cancer, cohe-
sive collectives of cells are found in invasive 
prostate cancer, cancer in circulation, and in 
prostate cancer within metastatic sites such as 
bone. In human prostate cancer tissues, α6 
integrin is found typically between the tumor 
cells as a cohesive collection of tumor during 
cancer invasion and metastasis [38]. Here we 
surveyed by immunohistochemistry α6 protein 
expression in other aggressive epithelial 
tumors (pancreatic, breast) in bone, lymph 
node, and a highly infiltrative axial skeletal neo-
plasm with epithelial characteristics (chordo-
ma). In these aggressive human cancer speci-
mens, α6 integrin is predominantly expressed 
on the cell membrane as well as in the cyto-
plasm (Figure 1), suggesting active trafficking 
of the adhesion receptor.

Significantly, the distribution in tumors is 
around the tumor cells in a pattern distinct 
from the polarized cell-ECM distribution that is 
observed in normal tissues [38]. For example, 
in normal prostate glands, the α6 integrin is 
distributed at the base of the gland, anchoring 
the basal cells to a basal lamina composed of 
laminin 332. In contrast, the tumor tissue con-
tains the α6 integrin distributed as a cell-cell 
adhesion molecule, suggesting a dramatic 
change in function. 

The α6 integrin is a laminin-binding integrin 
that will dominantly pair with β4 or pair with β1 
when β4 is absent. Since β1 will pair with many 
alpha integrin subunits, the β4 subunit was 
used as the query to find other protein partners 
associated with α6β4. Our next step was to uti-
lize a STRING program to survey potential can-
didates based on the eight lines of evidence 
used in the algorithm.

Protein components of nodes across the lam-
inin-binding integrin axis

Using an open-access resource called STRING 
v10.0 (http://string-db.org), we selected the 
functional protein partners of integrin α6β4 
using data from peer-reviewed publications 
and curated databases (Figure 2). The ten pre-
dicted proteins (with the corresponding gene 
names) include: plectin (PLEC), integrin α6 
(ITGA6), collagen type XVII (COL17A1), laminin 
β3 (LAMB3), integrin α3 (ITGA3), laminin α3 
(LAMA3), met proto-oncogene (hepatocyte 
growth factor receptor, MET), the adapter pro-
teins, Src homology 2 domain, which contains 
(SHC1) and growth factor receptor-bound pro-
tein 2 (GRB2), and protein kinase C, alpha 
(PRKCA).

As Figure 2 illustrates, ITGB4 interacts with 
ITGA6 as expected for normal heterodimer for-
mation and interacts with its ligands, LAMA3, 
LAMB3, and with PLEC, which is known to be a 
component of a LBI-based adhesion structure 
called the hemidesmosome. In considering the 
proteins essential for the LBI axis, proteins that 
were required but not specific to the LBI axis or 
those that were not rate limiting for its function 
were eliminated from further analysis. The 
excluded genes included GRB2, PRKCA, 
COL17A1, LAMA3, MET, and SHC1. Reduction 
from the 10 original proteins to the five used in 
the cBioPortal analysis (and four in the 
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Oncomine analysis, as SYNE3 was not in their 
database) was based on knowing the essential 
genetic components for the LBI axis and the 
components associated with cancer invasion 
and metastasis. 

Unbiased cross cancer subtypes correlations 
using cBioPortal data

Using the five-gene query, the cBioPortal tool 
analyzed 91 different cancer studies for muta-
tion or copy number alterations. The results 
returned 21 different cancer studies represent-
ing 5,647 samples that contained a >20% alter-
ation frequency and at least 100 samples in 
the data set (Figure 3). On closer inspection, 

occurred in PLEC, amplification was the most 
common feature. Since the major changes for 
copy number alteration were found in ovarian, 
breast, and liver cancer, we used the Oncoprint 
feature of the tool to determine the specific 
alterations in each gene of the signature in the 
data set for each cancer type. 

In the analysis depicted in Figure 4 each row 
represents a gene and each column represents 
a tumor sample. The PLEC gene was amplified 
predominantly in all three cancer types. 
Inspecting the data across the grey vertical 
bars, which represent unique samples interro-
gated for the gene alteration, shows that indi-
vidual samples in the majority of cases are not 

Figure 2. Identification of known and predicted structural proteins essen-
tial for laminin-binding integrin (ITGB4) function. Interacting nodes are dis-
played in colored circles using String, v10.0. Predicted functional partners 
of β4 integrin are shown based upon peer reviewed published data and 
curated database entries. [STRING v.10 (http://string-db.org)].

this represents approximately 
12 different epithelial cancer 
types. Of particular interest is 
that the predominant pattern of 
amplification occurred in ovari-
an, liver, breast, and esophageal 
cancer. Evidence of mutation 
was most predominant in mela-
noma and stomach cancer. 
Minor changes in deletion or 
multiple alterations were ob- 
served in the data. 

The frequency of alteration 
ranged from 38.3% to 19.8% 
with the rank order (highest to 
lowest) as ovarian serous cyst-
adenocarcinoma, liver hepato-
cellular carcinoma, breast inva-
sive carcinoma, skin cutaneous 
melanoma, lung adenocarcino-
ma, lung squamous cell carcino-
ma, stomach adenocarcinoma, 
bladder urothelial carcinoma, 
head and neck squamous cell 
carcinoma, metastatic prostate 
cancer, cervical squamous cell 
carcinoma, endocervical carci-
noma, and uterine corpus endo-
metrial carcinoma. 

Oncoprints of three epithelial 
cancer subtypes

Within the LBI gene query and 
across all twelve cancer types, 
PLEC was the most commonly 
altered followed by LAMB3, 
ITGB4, ITGA3, and SYNE3. 
Although specific mutations 
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altered in every gene of the signature. Within 
cancer types, there was little overlap of the 
individual amplified genes within a specific 
case, suggesting different specific amplicons 

may alter the LBI adhesion structures. Stated 
another way, the Oncoprint shows different 
mechanisms of altering the LBI axis across a 
set of cancer samples based on a query of the 

Figure 3. Copy number alteration of laminin-binding integrin genes and cancer subtypes. The alteration frequency of 
a five-gene signature (ITGA3, ITGB4, LAMB3, PLEC, and SYNE3) was determined using the cBioPortal (http://www.
cbioportal.org).  Only cancer types containing >100 samples and an alteration frequency of >20% are shown. The 
alteration frequency included deletions (blue), amplification (red), multiple alterations (grey) or mutation (green). 
The total number of samples for each cancer type are indicated by the numbers at the top of each column. 

Figure 4. Epithelial cancer types frequently amplify PLEC. We used the Oncoprint feature of the cBioPortal (http://
www.cbioportal.org) to determine the copy number alteration frequency of each individual gene in the LBI signature 
within selected cancer subtypes. Grey bars along a vertical line represent the same sample interrogated for am-
plification (red), deep deletion (blue), missense mutation (green), truncating mutation (black) or in-frame mutation 
(brown). 
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five genes. Further analysis of the specific 
mutations listed did not reveal any “hot spots” 
of mutation within any of the genes in the set 
(data not shown). Further analysis also revealed 
that amplification of the genes was correlated 
with increased levels of mRNA in the samples 
(data not shown). 

Figure 5. Kaplan-Meier survival curves generated by the cBioPortal (http://www.cbioportal.org). The overall fraction 
of subjects surviving over time following treatment was measured among cases with and without alterations in the 
five-gene signature (ITGA3, ITGB4, LAMB3, PLEC, and SYNE3). A significant difference in survival between groups 
was observed among cases involving bladder urothelial carcinoma (p=0.0143*), cervical squamous cell carcinoma, 
and endocervical adenocarcinoma (p=0.0432*).

Figure 6. LBI expression signature and drug resistance. The Oncomine data mining tool (v4.5:  http://www.onco-
mine.com) was used to compare the heat map expression pattern of the four gene signature (ITGA3, PLEC, ITGB4, 
LAMB3) in the Garnett cell lines to inhibitors of HDAC (Vorinostat, Panobinostat) and Topoisomerase II (Irinotecan). 

cBioPortal LBI and CNA survival curves: two 
cancer types

Of the twelve cancer types, a significant altera-
tion in overall survival (Figure 5) was indicated 
in bladder urothelial carcinoma (p=0.0143*), 
as well as cervical squamous cell carcino- 
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ma and endocervical adenocarcinoma (p= 
0.0432*).

Oncomine LBI expression signature and drug 
resistance

The drug resistance profile from 28 chemother-
apeutic agents were independent of the LBI 
CNA signature, including Bleomycin, Bosutinib, 
Carboplatin, Cisplatin, Docetaxel, Doxorubicin, 
Fluorouracil, Gemcitabine, Methotrexate, Mi- 
tomycin, Paclitaxel, Shikonin, and Vinblastine, 
among others (data not shown). Querying the 
drug resistance profiles with the LBI axis signa-
ture unexpectedly resulted in a positive correla-
tion with cells resistant to two inhibitors of his-
tone deacetylase (HDAC) (Vorinostat, Pano- 
binostat) and topoisomerase II (Irinotecan) 
(Figure 6).

HDAC inhibitors are a group of compounds that 
disrupt the function of histone deacetylase [73, 
74], and topoisomerase II (Top2) inhibitors [75, 
76] are enzymes that regulate DNA structural 
changes during the cell cycle. Recent work has 
suggested a link between drug resistance from 
gemcitabine and increased sensitivity to HDAC 
inhibitors [98]. 

Discussion

The cBioPortal analysis program identified 12 
epithelial types of human cancer that have sig-
nificant CNA in the chosen five-gene signature 
(ITGA3, ITGB4, LAMB3, PLEC, and SYNE3). The 
LBI signature was created representing the 
essential and genetically verified functional 
components of laminin-binding integrins and 
their adhesion structures.

Although CNA increased significantly in specific 
cancer subtypes, there was not uniform 
increase in all genes of the signature. The 
increase in the LBI using several different 
genes within the cluster, independently, sug-
gests that the phenotype is selected and war-
rants further study to identify the essential ele-
ments of the LBI axis. It is important to note 
that the LBI structural proteins were good can-
didates for genes altered in copy number since 
they are essential “housekeeping genes” found 
in normal tissue, continually expressed in can-
cer (Figure 1) and used in cancer for metasta-
sis. Human essential genes, similar to those in 
the LBI axis, are retained as duplicates to serve 
as “backed up copies” and normally are under 

stringent dosage regulation [99]. Currently, 
mass spectrometry approaches are identifying 
new targets in integrin structural and signaling 
complexes [100, 101] that could be genetically 
tested for function in the LBI axis. 

While some significant alterations in overall 
survival were indicated when considering the 
LBI signature using the current data (Figure 5), 
future work will be to monitor the trend with 
additional data as it becomes publically avail-
able. Another limitation of the work is that RNA 
transcription signatures were not sufficiently 
available to determine if the CNA across all the 
genes in the data sets correlated with increased 
transcription. 

We note with interest that of the many drug 
resistance profiles in Oncomine, only the HDAC 
and topoisomerase inhibitor resistance corre-
lated with the increase in laminin-binding integ-
rin copy number expression. While potentially 
interesting for understanding regulation of the 
LBI axis, it is noted that the preferred drug-
based management of epithelial tumors, such 
as prostate [102], are Cabazitaxel [103, 104], 
Docetaxel and/or Mitoxantrone [105, 106], and 
Cyclophosphamide [107, 108], many of which 
were not in the database. Neither were the anti-
androgen receptor (AR) signaling inhibitors  
and antagonists, Enzalutamide (2nd gen), 
Flutamide, Bicalutamide, Nitulamide (1st Gen), 
and Galterone (3rd Gen). These drugs are not 
considered chemotherapeutic agents for killing 
cancer cells but, rather, are anti-growth agents 
via binding to AR and displacing androgen, or 
down-regulating expression of the androgen-
dependent genes, such as PSA and TMPRSS2. 
Future open-access data detailing sensitivity 
and response of currently tested agents with 
copy number analysis and mutation data will 
likely be useful for additional analysis. 

Conclusions 

The open access databases cBioPortal and 
Oncomine both contain user-friendly interfaces 
to query data across genes and cancer types 
from many clinical studies that are indepen-
dently curated. The programs identified other 
epithelial types that likely will have detectable 
immunohistochemistry signatures of the LBI 
and will prompt new studies in other epithelial 
cancer types. The copy number alterations of 
specific structural components of the LBI axis 
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in epithelial tumors may be promising targets to 
prevent or manage metastatic spread. 
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