Original Article Arsenic trioxide inhibits cancer stem-like cells via down-regulation of Gli1 in lung cancer

Ke-Jie Chang*, Meng-Hang Yang*, Jin-Cheng Zheng*, Bing Li, Wei Nie

Department of Respiratory Medicine, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China. *Equal contributors and co-first authors.

Received December 4, 2015; Accepted January 29, 2016; Epub February 15, 2016; Published February 29, 2016

Abstract: Cancer stem cells (CSCs) are responsible for the tumorigenesis and recurrence, so targeting CSCs is a potential effective method to cure cancers. Activated Hedgehog signaling pathway has been proved to be implicated in the maintenance of self-renewal of CSCs, and arsenic trioxide (As_2O_3) has been reported to inhibit Gli1, a key transcription factor of Hedgehog pathway. In this study, we evaluated whether As_2O_3 has inhibitory effects on cancer stem-like cells (CSLCs) in lung cancer and further explored the possible mechanism. CCK8 assay and colony formation assay were performed to demonstrate the ability of As_2O_3 to inhibit the growth of NCI-H460 and NCI-H446 cells, which represented non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), respectively. Tumor sphere formation assay was carried out to evaluate the effects of As_2O_3 on stem cell-like subpopulations. The expression of stem cell biomarkers CD133 and stem cell transcription factors such as Sox2 and Oct4 were detected. Moreover, the effects of As_2O_3 on expression of Gli1 and its target genes were observed. We found that As_2O_3 inhibited the cell proliferation and reduced the colony formation ability. Importantly, As_2O_3 decreased the formation of tumor spheres. The expression of stem cell biomarker CD133 and stem cell transcription factors such as Sox2 and Oct4 were detected. Moreover, were markedly reduced by As_2O_3 treatment. Furthermore, As_2O_3 decreased the expression of Gli1, N-myc and GAS1. Our results suggested that As_2O_3 is a promising agent to inhibit CSLCs in lung cancer. In addition, the mechanism of CSLCs inhibition might involve Gli1 down-regulation.

Keywords: Arsenic trioxide, cancer stem-like cells, lung cancer, Gli1

Introduction

Lung cancer is one of the most aggressive malignant tumors throughout the world, claiming millions of death each year [1]. Despite advances in chemotherapy and targeted drugs, the overall five-year survival rate among patients with advanced lung cancer remains poor, and the recurrence rate is high. It is reported that lung cancer stem cells (LCSCs) are closely correlated to the poor prognosis and unsuccessful clinical outcomes in lung cancer [2].

Cancer stem cells (CSCs) or cancer initiating cells are small subpopulations of cancer cells, which can differentiate and generate heterogeneous cell populations to constitute the tumor [3]. CSCs thus play a key role in the initiation and progression of malignant tumors [3]. CSCs are highly resistant to conventional chemotherapy and ionizing radiation [4]. This suggests that while many chemotherapeutic agents kill the tumor bulk population, CSCs can survive to generate new tumor and cause tumor recurrence. It is reported that CSCs form spherical colonies when they are cultured in serum-free medium in the presence of specific growth factors [5, 6]. Besides, some researchers proposed that CD133⁺ cells have the characteristics of CSCs because they are more proliferative, clonogenic and tumorigenic than CD133 counterparts and express genes associated with stemness [7, 8]. Oct4 and Sox2, initially known as key transcription factors for embryonic stem cells, are also involved in the maintenance of CSCs [9, 10].

Aberrant Hedgehog signaling pathway is implicated in the initiation and progression of various types of tumors, including myeloid leukaemia [11], multiple myeloma [12], basal-cell carcinoma [13], glioma [14] as well as lung cancer [15, 16]. Inhibition of Hedgehog signaling impedes clonogenic growth and tumor initiation ability of glioma stem cells [14]. It has been reported that GANT-61 (Smo antagonist) is able to reduce CSCs and profoundly impede pancreatic cancer metastatic spread [17]. In lung cancer, Gli1 expression is associated with poor overall survival [18]. Depletion of Gli1 significantly abolishes the growth of stem-like side populations from NSCLCs [19].

Arsenic trioxide (As_2O_3) has been used as a traditional remedy in China for thousands of years [20]. In recent decades, As₂O₃ has been proved to induce complete remission in acute promyelocytic leukemia (APL) with minimal toxicity [21], and it also strongly inhibited the self renewal of APL stem cells [22]. Furthermore, it was found that the combination of As₂O₃ and PI3K inhibitor PI-103 strongly diminishes acute myeloid leukemia stem cells while sparing normal hematopoietic stem cells [23]. Owing to its effects on patients with leukemia, researchers have turned their attention to utilization of As₂O₂ for treatment of various solid tumors. Studies have shown that As₂O₂ inhibits the cancer stem-like cells in gliomas via deregulation of Notch activation [24]. As₂O₃ has been found to induce differentiation of human hepatocellular carcinoma stem cells and prolong survival after hepatectomy in a mouse model [25]. Our team has previously demonstrated that As₂O₂ induces apoptosis and arrests cell cycle in lung cancer cells [26]. Additionally, As₂O₃ significantly inhibits the growth of lung cancer xenograft tumors and the formation of malignant pleural effusion in a mice model as a result of its antiangiogenic effects [27, 28]. Moreover, As₂O₂ is clinically effective in the treatment of lung cancer complicated with malignant pleural effusion. Our findings suggest that As₂O₃ might be a new approach for the treatment of lung cancer. However, it is unclear whether As₂O₃ has the ability to inhibit cancer stem-like cells (CSLCs) in lung cancer.

We hypothesized that As_2O_3 could inhibit CSLCs in lung cancer through down-regulation of Gli1. In our studies, we employed two human lung cancer cell lines, NCI-H460 and NCI-H446, representing non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), respectively.

Materials and methods

Cell culture and reagents

NCI-H460 cell line was obtained from Cell Bank of the Chinese Academy of Sciences (Shanghai, China). NCI-H446 cell line was obtained from the American Type Culture Collection (ATCC, Manassas, VA, USA). The cells were cultured in RPMI 1640 (HyClone, Logan City, Utah, USA) plus 10% fetal bovine serum (FBS) (HyClone, Logan City, Utah, USA) and 1% penicillin-streptomycin (HyClone, Logan City, Utah, USA). The cells were maintained at 37°C in a humidified incubator containing 5% CO_2 . As₂O₃ was dissolved in PBS and diluted into indicated concentrations when needed.

Cell viability assay

Cell viability was determined by the CCK8 assay (beyotime, Shanghai, China). 3×10^3 cells were seeded per well in 96-well culture plates. After adhesion, the cells were treated with 1, 2, 4, 8, 16 and 32μ M As₂O₃, respectively. Cells treated with vehicle were used as controls. After incubation at 37° C for 24, 48 or 72 hours, the absorbance was measured by spectrophotometer at a wavelength of 450 nm. The cell viability was calculated as a percentage of the OD value in the control cells. Dose-response curves were made. The IC₅₀ which represents the drug concentration that inhibits 50% of the growth of vehicle-treated control cells was calculated.

Colony formation assay

NCI-H460 and NCI-H446 cells were treated with 1, 2 and 4 μ M As₂O₃ for 72 hours. Subsequently, 2×10³ cells per well were counted and seeded in 6-well culture dishes. The cells were not exposed to As₂O₃ at this stage. After incubation at 37°C for 14 days, colonies were stained by Coomassie brilliant blue dying and photographed by a camera. Macroscopic colonies of each well were counted.

Tumor sphere formation assay

NCI-H460 and NCI-H446 cells were treated with different concentrations of As_2O_3 (1-4 μ M) for 72 hours. Subsequently, 1×10⁴ cells per well were counted and seeded in low-adherent 6-well culture plates (Corning, NY, USA) under serum-free conditions consisting of DMEM/F-12 (Life Technologies, Rockville, MD, USA), 20

Figure 1. Inhibitory effects of As_2O_3 on lung cancer cell growth. NCI-H460 and NCI-H446 cells were treated with different concentrations of As_2O_3 for 24, 48 or 72 h. CCK8 assay was used to determine the cell viability. The control group was treated with PBS. A. Concentration- and time-dependent growth inhibitory effects of As_2O_3 on NCI-H460 cells. B. As_2O_3 inhibited the growth of NCI-H446 cells in a concentration- and time-dependent manner. *Columns*, mean; *Error bars*, SD. **P*<0.05, ***P*<0.01, ****P*<0.001 compared to the control.

µl/ml B27 (Life Technologies, Rockville, MD, USA), 20 ng/ml epidermal growth factor (EGF) (Invitrogen, Carlsbad, CA, USA), 20 ng/ml basic fibroblast growth factor (bFGF) (Invitrogen, Carlsbad, CA, USA) and 1% penicillin-streptomycin (HyClone, Logan City, Utah, USA). After incubation at 37 °C for 5 days, pictures were taken under a microscope and the number of tumor spheres was counted in five separated 50× fields.

Quantitative real-time PCR (qPCR)

NCI-H460 and NCI-H446 cells were treated with different concentrations of As_2O_3 (1-4 μ M)

for 72 hours. The total RNA was extracted and then reverse transcribed into cDNA. RT-PCR analysis was performed using SYBR Premix Ex Taq (Takara, Otsu, Shiga, Japan). The following primers were used: CD133 forward 5'-TTTCAAGGACTTGCGAACTC-TC-3'; CD133 reverse 5'-TGCT-ATTCAGCTGGCTTAGAGAC-3'; Oct-4 forward 5'-CGACCATCTGCCGC-TTTGAG-3': Oct4 reverse 5'-CC-CCCTGTCCCCCATTCCTA-3'; Sox2 forward 5'-GCGAACCATCTCTGTG-GTCT-3'; Sox2 reverse 5'-GGAA-AGTTGGGATCGAACAA-3'; Gli1 forward 5'-ATGAAACTGACTGCCGTT-GG-3'; Gli1 reverse 5'-CTTCTCG-CCAGTGTGTCTGC-3': N-myc forward 5'-ACCACAAGGCCCTCAGTA-CC-3'; N-myc reverse 5'-GTGCA-TCCTCACTCTCCACG-3'; GAS1 forward 5'-CGGAGCTTGACTTCTTG-GAC-3': GAS1 reverse 5'-CCCA-ACCCTTCAAATTGCTA-3'; β-actin forward 5'-CCTGGCACCCAGCAC-AAT-3'; β-actin reverse 5'-GGG-CCGGACTCGTCATACT-3'.

Western blotting

NCI-H460 and NCI-H446 cells were treated with various concentrations of As_2O_3 (1-4 µM) for 72 hours. Proteins were extracted, electrophoretically separated, and then transferred onto PVDF membranes. The mem-

branes were blocked with a solution containing 5% skim milk for 1 h, and were incubated overnight at 4°C with the primary antibodies. The primary antibodies were as follows: CD133 (1:1000, ABclonal, Cambridge, MA, USA), Sox2 (1:1000, Cell Signal technology, Danvers, MA, USA), Oct4 (1:000, Cell Signal technology, Danvers, MA, USA), Gli1 (1:1000, ABclonal, Cambridge, MA, USA), N-myc (1:1000, ABclonal, Cambridge, MA, USA), GAS1 (1:1000, ABclonal, Cambridge, UK), and β -actin (1:1000, ABclonal, Cambridge, MA, USA). Finally, the membranes were incubated with the appropriate secondary antibody and visualized using the ECL detection reagents.

Figure 2. As_2O_3 inhibited the colony formation of lung cancer cells. NCI-H460 and NCI-H446 cells were treated with 1-4 μ M As_2O₃ for 72 h. A. Images revealed that As_2O₃ could inhibit colony formation in NCI-H460 and NCI-H446 cells. B. The clonony numbers were significantly reduced by As_2O₃ treatment. *Columns*, mean; *Error bars*, SD. ****P*<0.001 compared to the control.

Statistical analysis

All data were analyzed using the SPSS 22.0 software. The measured data were presented as the means \pm SD, and were analyzed by a one-way ANOVA, followed by Dunnett's test. A value of *P*<0.05 was considered to be statistically significant.

Results

As₂O₃ inhibited lung cancer cell growth

Firstly, we used CCK8 assay to examine the growth inhibitory effects of As_2O_3 on NCI-H460 and NCI-H446 cells. Cells were treated with 1,

2, 4, 8, 16 and 32 μ M As_2O_3 for 24, 48 or 72 h. Our data showed that As_2O_3 could inhibit the proliferation of NCI-H460 and NCI-H446 cells in a concentration- and time-dependent manner (**Figure 1**). The IC₅₀s of NCI-H460 and NCI-H446 cells after treatment for 72 h were 5.610 and 4.252 μ M, respectively.

Colony formation analysis

To determine whether As_2O_3 could inhibit the colony formation capacity, we subsequently performed the colony formation assay. In NCI-H460 cells, control group, 1 μ M As_2O_3 -treated group, 2 μ M As_2O_3 -treated group and 4 μ M As_2O_3 -treated group formed an average of 309,

Figure 3. The effects of As_2O_3 on the tumor sphere formation. Equal numbers of viable NCI-H460 and NCI-H446 cells were cultured in serum free conditions following 72 h of As_2O_3 treatment. A. The number of tumor spheres was significantly decreased following As_2O_3 treatment. B. Representative images revealed that As_2O_3 could reduce the number of tumor spheres. *Bar*, 200 µm. C. Typical images showed that the size of tumor spheres in As_2O_3 -treated group was smaller than that in control group. *Bar*, 50 µm. *Columns*, mean; *bars*, SD. ****P*<0.001 compared to the control.

304, 213 and 179 colonies, respectively (**Figure 2**). In NCI-H446 cells, control group formed an average of 642 colonies. However, these numbers decreased to 477, 236 and 137 when treated with 1μ M, 2μ M and 4μ M As₂O₃, respectively (**Figure 2**). Our data showed that the clonogenic capacity of NCI-H460 and NCI-

H446 cells could be remarkably inhibited by As_2O_3 treatment in a dose-dependent manner.

As₂O₃ reduced the formation of tumor spheres

Tumor spheres maintain stem cell-like subpopulations [5, 6]. Therefore, we investigated the

Figure 4. As₂O₃ treatment down-regulated the expression of stem cell markers. NCI-H460 and NCI-H446 cells were treated with different concentrations of As₂O₃ (1 μ M, 2 μ M and 4 μ M) for 72 h. A. qPCR analysis showed that As₂O₃ significantly suppressed CD133, Oct4 and Sox2 mRNA expression in a dose-dependent manner. B. Western blot showed that reductions in CD133, Oct4 and Sox2 at protein levels were seen in As₂O₃ treated group. β -actin served as internal control. *Columns*, mean; *Error bars*, SD. **P*<0.05, ***P*<0.01, ****P*<0.001 compared to the control.

effects of As_2O_3 on the formation of tumor spheres. As expected, As_2O_3 was able to significantly decrease the number and the size of the tumor spheres. Cells treated with vehicle formed more numerous and larger tumor spheres. However, As_2O_3 -treated cells merely formed smaller and lesser tumor spheres. Additionally, the growth inhibitory effects of As_2O_3 on tumor spheres were concentrationdependent (**Figure 3**). These results suggested that the stem cell-like subpopulations were sensitive to As_2O_3 treatment.

The expression of CD133, Sox2 and Oct4 were reduced by As_2O_3 treatment

To further examine the effects of As_2O_3 on CSLCs, we used qPCR and Western blot analysis to measure the expression levels of CD133

after treatment with As_2O_3 for 72 h. As_2O_3 significantly suppressed the expression of CD133 at both mRNA and protein levels in a dosedependent manner (Figure 4A and 4B). Besides, we detected the effects of As_2O_3 on Sox2 and Oct4 which are very important transcription factors in regulating self-renewal and multipotency of CSCs. As shown in Figure 4A and 4B, the expression levels of Sox2 and Oct4 were also decreased by As_2O_3 treatment.

${\rm As_2O_3}$ down-regulated Gli1 and its target genes expression

Aberrant activated Hedgehog signaling is implicated in the initiation and propagation of lung cancer [15, 18, 29-32]. Blockade of Hedgehog signaling leads to a reduction in stem cell-like subpopulations [19, 33]. To further explore the

Arsenic trioxide inhibits lung cancer stem cells

Figure 5. As₂O₃ inhibited the expression of Gli1 and its target genes such as N-myc and GAS1. NCI-H460 and NCI-H446 cells were treated with 1-4 μ M As₂O₃ for 72 h. A. As₂O₃ decreased the Gli1, N-myc and GAS1 mRNA levels in NCI-H460 and NCI-H446 cells. B. As₂O₃ also influenced the expression of Gli1, N-myc and GAS1 at protein levels. *Columns*, mean; *Error bars*, SD. **P<0.01, ***P<0.001 compared to the control.

underlying mechanism of the inhibitory effects of As_2O_3 on CSLCs, we used qPCR analysis to measure the expression levels of Hedgehog signaling molecules after treatment with As_2O_3 at the indicated concentrations. The Gli1 mRNA levels were significantly decreased by As_2O_3 in a concentration-dependent manner. Additionally, downstream genes of Gli1 such as N-myc and GAS1 were reduced by As_2O_3 treatment (**Figure 5A**). These results were confirmed at protein levels by Western blot (**Figure 5B**).

Discussion

The CSC theory indicates that malignant tumor is made up of heterogeneous neoplastic cells, among which a subpopulation exhibits unlimited self-renewal capacity and cell division potential to generate heterogeneous offspring [34]. This group of cancer cells is known as cancer stem cells or cancer initiating cells which propagate cancer initiation, development, invasion and metastasis [35]. Differing from the bulk population of tumor cells, CSCs display particular resistance to multiple cytotoxic chemotherapy drugs and are responsible for unsatisfied clinical outcomes and tumor relapse [35, 36]. Therefore, a novel therapy that targets CSCs has the potential to be a more powerful cancer therapeutic strategy. So far, the best example involving inhibition of CSCs is treatment of APL with As203 which could effectively eradicate APL-derived stem cells and lead to improved overall survival [22, 37, 38]. Moreover, research-

ers found that As₂O₃ was effective in inhibition of CSCs in various solid tumors such as gliomas [24, 39, 40], hepatocellular carcinoma [25] and pancreatic cancer [41]. Our data showed that As₂O₃ significantly inhibited the survival of lung cancer cells in a dose- and time-dependent manner. In colony formation assay, NCI-H460 and NCI-H446 cells were treated with different concentrations of As203 for 72 hours; then equal numbers of viable cells per well were counted and seeded in 6-well culture plates. After incubation for 14 days, we observed that number of macroscopic colonies of As₂O₃treated group was lesser than control group. So we speculated that As₂O₃ might inhibit CSLCs in NSCLC and SCLC cell lines. It is reported that CSCs has the ability of forming spherical colonies when cultured in serum-free medium, termed tumor spheres. Tumor sphere cells show increased proliferation, clonogenic potential, tumorigenic capacity as well as drug-resistant properties compared with monolayer cells [5, 6]. Therefore, we performed sphere formation assay to validate our hypotheses. Our results revealed that low dose of As203 could dramatically decrease the size and the number of the tumor spheres, indicating the effects of As₂O₃ on stem cell-like subpopulations. Some researchers found that CD133⁺ lung cancer cells also display a spectrum of features consistent with CSCs, including clonogenic ability, tumorigenic capacity, multipotency and multidrug-resistant properties [7, 42]. Patients with CD133⁺ tumors have shorter median progression-free survival and higher recurrence risks than patients with CD133⁻ tumors [43-45]. We found that the expression of CD133 was significantly suppressed by As₂O₃ treatment. Additionally, As₂O₃ significantly decreased the expression of stem cell transcription factors, Oct4 and Sox2, which play crucial roles in the maintenance of multipotency and self-renewal of CSCs [9, 46]. In a word, we found that low dose of As₂O₂ could inhibit stem cell-like subpopulations in lung cancer. It is very exciting for the potential clinical use of As₂O₂ in lung cancer treatment because of this drug's minimal toxicity and lower economic burden for patients.

Hedgehog signaling pathway specifies the proliferation, differentiation and migration of normal stem cell [47, 48]. Aberrant activated Hedgehog signaling pathway also plays an important role in the initiation and development of lung cancer and is required for the maintenance of LCSCs [15, 18, 29-32]. This pathway is composed of Hh ligands, Hh receptors (Ptch), Smoothened (Smo) and Gli protein [49]. Gli1 protein is the vital transcription factor of Hedgehog signaling pathway and contributes to activation of Hedgehog downstream genes. At present, a majority of Hedgehog antagonists exert its effects by binding to Smo. However, they displayed some limitations because constitutively activated mutations in Smo [13] and mutations in the downstream of Smo such as inactivated mutations in the inhibitory factor Sufu [50] or increased Gli expression [51, 52] can lead to loss-of-function of these Hedgehog antagonists. Therefore, Gli1 may be a more effective target for blockade of Hedgehog signaling pathway. A previous study reported that As₂O₃ could block Hedgehog signaling by directly interaction with Gli1 protein [53]. Consistent with these results, our data showed that As₂O₃ down-regulated the expression levels of Gli1 and its target genes such as N-myc and GAS1. Besides, we showed that As₂O₃ caused degradation of Gli1 protein. A previous study established that As₂O₃ could directly bind to cysteine residues in the zinc fingers and induce PML oligomerization as well as ubiquitination, which lead to degradation of PML-RAR fusion protein [54]. It is highly plausible that As₂O₂ also binds to cysteine residues in the zinc finger domains in Gli1, thus causing Gli1 protein degradation. Furthermore, it has been reported that Gli1 appeared to regulate the stem cell transcription factors Sox2 and Oct4 [19, 55]. Thus, we speculate that As₂O₃ modulate Sox2 and Oct4 expression through Gli1 blockade, leading to the inhibitory effects on CSLCs. However, this mechanism should be further investigated.

Therefore, when all of the data presented here are taken in whole, it suggests that: (a) As_2O_3 could inhibit the proliferation and colony formation ability of lung cancer cells. (b) The formation of tumor spheres was decreased by As_2O_3 treatment. (c) As_2O_3 markedly reduced the expression of stem cell biomarker CD133 and stem cell transcription factors such as Sox2 and Oct4. (d) As_2O_3 decreased the expression levels of Gli1 and its downstream genes such as N-myc and GAS1. In a word, As_2O_3 is a promising new approach to inhibit CSLCs in lung cancer, and the underlying mechanism may involve Gli1 blockade. As an FDA-approved drug, As_2O_3 has been widely used to treat patients with APL, and the security of the drug at therapeutic doses has been confirmed in human body. Our founding will provide a foundation for the application of As_2O_3 in the clinical treatment of lung cancer.

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 81172227) and Research Foundation of Shanghai Municipal Education Commission (No. 12ZZ073). We sincerely thank Ping-Ping Zhang, from Department of Gastroenterology of Changhai Hospital, for her excellent support in our research.

Disclosure of conflict of interest

None.

Address correspondence to: Bing Li and Wei Nie, Department of Respiratory Medicine, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China. Tel: 86-021-81885322; E-mail: bing_li1962@163.com (BL); niewei-1001@ 163.com (WN)

References

- [1] Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J and Jemal A. Global cancer statistics, 2012. CA Cancer J Clin 2015; 65: 87-108.
- [2] Alison MR, Lin WR, Lim SM and Nicholson LJ. Cancer stem cells: in the line of fire. Cancer Treat Rev 2012; 38: 589-598.
- [3] Visvader JE and Lindeman GJ. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 2008; 8: 755-768.
- [4] Sourisseau T, Hassan KA, Wistuba I, Penault-Llorca F, Adam J, Deutsch E and Soria JC. Lung Cancer Stem Cell Fancy Conceptual Model of Tumor Biology or Cornerstone of a Forthcoming Therapeutic Breakthrough? J Thorac Oncol 2014; 9: 7-17.
- [5] Sun FF, Hu YH, Xiong LP, Tu XY, Zhao JH, Chen SS, Song J and Ye XQ. Enhanced expression of stem cell markers and drug resistance in sphere-forming non-small cell lung cancer cells. Int J Clin Exp Pathol 2015; 8: 6287-6300.
- [6] Qiu X, Wang Z, Li Y, Miao Y, Ren Y and Luan Y. Characterization of sphere-forming cells with stem-like properties from the small cell lung cancer cell line H446. Cancer Lett 2012; 323: 161-170.

- [7] Sarvi S, Mackinnon AC, Avlonitis N, Bradley M, Rintoul RC, Rassl DM, Wang W, Forbes SJ, Gregory CD and Sethi T. CD133+Cancer Stemlike Cells in Small Cell Lung Cancer Are Highly Tumorigenic and Chemoresistant but Sensitive to a Novel Neuropeptide Antagonist. Cancer Research 2014; 74: 1554-1565.
- [8] Hsu HS, Huang PI, Chang YL, Tzao C, Chen YW, Shih HC, Hung SC, Chen YC, Tseng LM and Chiou SH. Cucurbitacin I inhibits tumorigenic ability and enhances radiochemosensitivity in nonsmall cell lung cancer-derived CD133positive cells. Cancer 2011; 117: 2970-2985.
- [9] Chen YC, Hsu HS, Chen YW, Tsai TH, How CK, Wang CY, Hung SC, Chang YL, Tsai ML, Lee YY, Ku HH and Chiou SH. Oct-4 expression maintained cancer stem-like properties in lung cancer-derived CD133-positive cells. PLoS One 2008; 3: e2637.
- [10] Liu K, Lin B, Zhao M, Yang X, Chen M, Gao A, Liu F, Que J and Lan X. The multiple roles for Sox2 in stem cell maintenance and tumorigenesis. Cell Signal 2013; 25: 1264-1271.
- [11] Zhao C, Chen A, Jamieson CH, Fereshteh M, Abrahamsson A, Blum J, Kwon HY, Kim J, Chute JP, Rizzieri D, Munchhof M, VanArsdale T, Beachy PA and Reya T. Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature 2009; 458: 776-779.
- [12] Peacock CD, Wang Q, Gesell GS, Corcoran-Schwartz IM, Jones E, Kim J, Devereux WL, Rhodes JT, Huff CA, Beachy PA, Watkins DN and Matsui W. Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma. Proc Natl Acad Sci U S A 2007; 104: 4048-4053.
- [13] Xie J, Murone M, Luoh SM, Ryan A, Gu Q, Zhang C, Bonifas JM, Lam CW, Hynes M, Goddard A, Rosenthal A, Epstein EH Jr and de Sauvage FJ. Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature 1998; 391: 90-92.
- [14] Clement V, Sanchez P, de Tribolet N, Radovanovic I and Ruiz i Altaba A. HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 2007; 17: 165-172.
- [15] Park KS, Martelotto LG, Peifer M, Sos ML, Karnezis AN, Mahjoub MR, Bernard K, Conklin JF, Szczepny A, Yuan J, Guo R, Ospina B, Falzon J, Bennett S, Brown TJ, Markovic A, Devereux WL, Ocasio CA, Chen JK, Stearns T, Thomas RK, Dorsch M, Buonamici S, Watkins DN, Peacock CD and Sage J. A crucial requirement for Hedgehog signaling in small cell lung cancer. Nat Med 2011; 17: 1504-1508.
- [16] Rodriguez-Blanco J, Schilling NS, Tokhunts R, Giambelli C, Long J, Liang Fei D, Singh S, Black

KE, Wang Z, Galimberti F, Bejarano PA, Elliot S, Glassberg MK, Nguyen DM, Lockwood WW, Lam WL, Dmitrovsky E, Capobianco AJ and Robbins DJ. The hedgehog processing pathway is required for NSCLC growth and survival. Oncogene 2013; 32: 2335-2345.

- [17] Fu J, Rodova M, Roy SK, Sharma J, Singh KP, Srivastava RK and Shankar S. GANT-61 inhibits pancreatic cancer stem cell growth in vitro and in NOD/SCID/IL2R gamma null mice xenograft. Cancer Lett 2013; 330: 22-32.
- [18] Hong Z, Bi A, Chen D, Gao L, Yin Z and Luo L. Activation of hedgehog signaling pathway in human non-small cell lung cancers. Pathol Oncol Res 2014; 20: 917-922.
- [19] Bora-Singhal N, Perumal D, Nguyen J and Chellappan S. Gli1-Mediated Regulation of Sox2 Facilitates Self-Renewal of Stem-Like Cells and Confers Resistance to EGFR Inhibitors in Non-Small Cell Lung Cancer. Neoplasia 2015; 17: 538-551.
- [20] Antman KH. Introduction: the history of arsenic trioxide in cancer therapy. Oncologist 2001; 6 Suppl 2: 1-2.
- [21] Mathews V, George B, Lakshmi KM, Viswabandya A, Bajel A, Balasubramanian P, Shaji RV, Srivastava VM, Srivastava A and Chandy M. Single-agent arsenic trioxide in the treatment of newly diagnosed acute promyelocytic leukemia: durable remissions with minimal toxicity. Blood 2006; 107: 2627-2632.
- [22] Zheng X, Seshire A, Rüster B, Bug G, Beissert T, Puccetti E, Hoelzer D, Henschler R and Ruthardt M. Arsenic but not all-trans retinoic acid overcomes the aberrant stem cell capacity of PML/RARα-positive leukemic stem cells. Haematologica 2007; 92: 323-331.
- [23] Hong Z, Xiao M, Yang Y, Han Z, Cao Y, Li C, Wu Y, Gong Q, Zhou X, Xu D, Meng L, Ma D and Zhou J. Arsenic disulfide synergizes with the phosphoinositide 3-kinase inhibitor PI-103 to eradicate acute myeloid leukemia stem cells by inducing differentiation. Carcinogenesis 2011; 32: 1550-1558.
- [24] Zhen Y, Zhao S, Li Q, Li Y and Kawamoto K. Arsenic trioxide-mediated Notch pathway inhibition depletes the cancer stem-like cell population in gliomas. Cancer Lett 2010; 292: 64-72.
- [25] Zhang KZ, Zhang QB, Zhang QB, Sun HC, Ao JY, Chai ZT, Zhu XD, Lu L, Zhang YY, Bu Y, Kong LQ and Tang ZY. Arsenic trioxide induces differentiation of CD133+ hepatocellular carcinoma cells and prolongs posthepatectomy survival by targeting GLI1 expression in a mouse model. J Hematol Oncol 2014; 7: 28.
- [26] Qu GP, Xiu QY, Li B, Liu YA and Zhang LZ. Arsenic trioxide inhibits the growth of human lung cancer cell lines via cell cycle arrest and

induction of apoptosis at both normoxia and hypoxia. Toxicol Ind Health 2009; 25: 505-515.

- [27] Yang MH, Zang YS, Huang H, Chen K, Li B, Sun GY and Zhao XW. Arsenic trioxide exerts antilung cancer activity by inhibiting angiogenesis. Curr Cancer Drug Targets 2014; 14: 557-566.
- [28] Xie SL, Yang MH, Chen K, Huang H, Zhao XW, Zang YS and Li B. Efficacy of Arsenic Trioxide in the Treatment of Malignant Pleural Effusion Caused by Pleural Metastasis of Lung Cancer. Cell Biochem Biophys 2014; [Epub ahead of print].
- [29] Maitah MY, Ali S, Ahmad A, Gadgeel S and Sarkar FH. Up-regulation of sonic hedgehog contributes to TGF-beta1-induced epithelial to mesenchymal transition in NSCLC cells. PLoS One 2011; 6: e16068.
- [30] Velcheti V and Govindan R. Hedgehog signaling pathway and lung cancer. J Thorac Oncol 2007; 2: 7-10.
- [31] Watkins DN, Berman DM, Burkholder SG, Wang B, Beachy PA and Baylin SB. Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature 2003; 422: 313-317.
- [32] Cochrane CR, Szczepny A, Watkins DN and Cain JE. Hedgehog Signaling in the Maintenance of Cancer Stem Cells. Cancers (Basel) 2015; 7: 1554-1585.
- [33] Tian F, Mysliwietz J, Ellwart J, Gamarra F, Huber RM and Bergner A. Effects of the Hedgehog pathway inhibitor GDC-0449 on lung cancer cell lines are mediated by side populations. Clin Exp Med 2012; 12: 25-30.
- [34] Yoshida GJ and Saya H. Therapeutic strategies targeting cancer stem cells. Cancer Sci 2016; 107: 5-11.
- [35] Lobo NA, Shimono Y, Qian D and Clarke MF. The biology of cancer stem cells. Annu Rev Cell Dev Biol 2007; 23: 675-699.
- [36] Wang J, Li ZH, White J and Zhang LB. Lung cancer stem cells and implications for future therapeutics. Cell Biochem Biophys 2014; 69: 389-398.
- [37] Chen GQ, Shi XG, Tang W, Xiong SM, Zhu J, Cai X, Han ZG, Ni JH, Shi GY, Jia PM, Liu MM, He KL, Niu C, Ma J, Zhang P, Zhang TD, Paul P, Naoe T, Kitamura K, Miller W, Waxman S, Wang ZY, de The H, Chen SJ and Chen Z. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): I. As2O3 exerts dose-dependent dual effects on APL cells. Blood 1997; 89: 3345-3353.
- [38] Shen ZX, Chen GQ, Ni JH, Li XS, Xiong SM, Qiu QY, Zhu J, Tang W, Sun GL, Yang KQ, Chen Y, Zhou L, Fang ZW, Wang YT, Ma J, Zhang P, Zhang TD, Chen SJ, Chen Z and Wang ZY. Use of arsenic trioxide (As203) in the treatment of

acute promyelocytic leukemia (APL): II. Clinical efficacy and pharmacokinetics in relapsed patients. Blood 1997; 89: 3354-3360.

- [39] Wu J, Ji Z, Liu H, Liu Y, Han D, Shi C, Shi C, Wang C, Yang G, Chen X, Shen C, Li H, Bi Y, Zhang D and Zhao S. Arsenic trioxide depletes cancer stem-like cells and inhibits repopulation of neurosphere derived from glioblastoma by downregulation of Notch pathway. Toxicol Lett 2013; 220: 61-69.
- [40] Sun H and Zhang S. Arsenic trioxide regulates the apoptosis of glioma cell and glioma stem cell via down-regulation of stem cell marker Sox2. Biochem Biophys Res Commun 2011; 410: 692-697.
- [41] Han JB, Sang F, Chang JJ, Hua YQ, Shi WD, Tang LH and Liu LM. Arsenic trioxide inhibits viability of pancreatic cancer stem cells in culture and in a xenograft model via binding to SHH-Gli. Onco Targets Ther 2013; 6: 1129-1138.
- [42] Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A, Conticello C, Ruco L, Peschle C and De Maria R. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ 2008; 15: 504-514.
- [43] Wu S, Yu L, Wang D, Zhou L, Cheng Z, Chai D, Ma L and Tao Y. Aberrant expression of CD133 in non-small cell lung cancer and its relationship to vasculogenic mimicry. BMC Cancer 2012; 12: 535.
- [44] Mizugaki H, Sakakibara-Konishi J, Kikuchi J, Moriya J, Hatanaka KC, Kikuchi E, Kinoshita I, Oizumi S, Dosaka-Akita H, Matsuno Y and Nishimura M. CD133 expression: a potential prognostic marker for non-small cell lung cancers. Int J Clin Oncol 2014; 19: 254-259.
- [45] Li F, Zeng H and Ying K. The combination of stem cell markers CD133 and ABCG2 predicts relapse in stage I non-small cell lung carcinomas. Med Oncol 2011; 28: 1458-1462.
- [46] Chen S, Xu Y, Chen Y, Li X, Mou W, Wang L, Liu Y, Reisfeld RA, Xiang R, Lv D and Li N. SOX2 gene regulates the transcriptional network of oncogenes and affects tumorigenesis of human lung cancer cells. PLoS One 2012; 7: e36326.

- [47] Ingham PW and McMahon AP. Hedgehog signaling in animal development: paradigms and principles. Genes Dev 2001; 15: 3059-3087.
- [48] Varjosalo M and Taipale J. Hedgehog: functions and mechanisms. Genes Dev 2008; 22: 2454-2472.
- [49] Robbins DJ, Fei DL and Riobo NA. The Hedgehog signal transduction network. Sci Signal 2012; 5: re6.
- [50] Lee Y, Kawagoe R, Sasai K, Li Y, Russell HR, Curran T and McKinnon PJ. Loss of suppressorof-fused function promotes tumorigenesis. Oncogene 2007; 26: 6442-6447.
- [51] Nolan-Stevaux O, Lau J, Truitt ML, Chu GC, Hebrok M, Fernandez-Zapico ME and Hanahan D. GLI1 is regulated through Smoothenedindependent mechanisms in neoplastic pancreatic ducts and mediates PDAC cell survival and transformation. Genes Dev 2009; 23: 24-36.
- [52] Stein U, Eder C, Karsten U, Haensch W, Walther W and Schlag PM. GLI gene expression in bone and soft tissue sarcomas of adult patients correlates with tumor grade. Cancer Res 1999; 59: 1890-1895.
- [53] Beauchamp EM, Ringer L, Bulut G, Sajwan KP, Hall MD, Lee YC, Peaceman D, Ozdemirli M, Rodriguez O, Macdonald TJ, Albanese C, Toretsky JA and Uren A. Arsenic trioxide inhibits human cancer cell growth and tumor development in mice by blocking Hedgehog/GLI pathway. J Clin Invest 2011; 121: 148-160.
- [54] Zhang XW, Yan XJ, Zhou ZR, Yang FF, Wu ZY, Sun HB, Liang WX, Song AX, Lallemand-Breitenbach V, Jeanne M, Zhang QY, Yang HY, Huang QH, Zhou GB, Tong JH, Zhang Y, Wu JH, Hu HY, de The H, Chen SJ and Chen Z. Arsenic trioxide controls the fate of the PML-RARalpha oncoprotein by directly binding PML. Science 2010; 328: 240-243.
- [55] Batsaikhan BE, Yoshikawa K, Kurita N, Iwata T, Takasu C, Kashihara H and Shimada M. Cyclopamine decreased the expression of Sonic Hedgehog and its downstream genes in colon cancer stem cells. Anticancer Res 2014; 34: 6339-6344.