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Abstract: Nucleotide-binding domains and leucine-rich repeat (NLR) pyrin domains containing 3 (NLRP3) inflamma-
some are highly involved in the pathogenesis of acute lung injury (ALI) wherein alveolar macrophages (AMs) play a 
crucial role. Isoflurane (ISO) has been shown to attenuate ALI. However, the inhibitory effects of ISO on NLRP3 acti-
vation in lipopolysaccharide (LPS)-induced ALI remain unknown. Here, we showed that 1.4% ISO post-treatment re-
duced LPS-induced body weight loss, pulmonary histopathological injury, edema, and vascular permeability in rats. 
ISO attenuated LPS-triggered inflammation, as evidenced by reductions in the number of total cells, neutrophils, 
and macrophages, and the release of IL-1β and IL-18 in the bronchoalveolar lavage fluid. ISO treatment decreased 
the myeloperoxidase activity, F4/80-positive cells, and the mRNA expression of IL-1β and IL-18 in the lung tissues of 
LPS-treated rats. Mechanistically, ISO reduced NLRP3 activation and caspase-1 activity in a reactive oxygen species 
(ROS)-dependent manner. An in vitro study that ISO inhibited LPS-induced AM activation partly confirmed in vivo 
findings. Overall, these results indicate that ISO post-conditioning alleviated LPS-induced ALI possibly by inhibiting 
ROS-mediated NLRP3 inflammasome activation.

Keywords: Acute lung injury, lipopolysaccharide, isoflurane, nucleotide-binding domain and leucine-rich repeat 
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Introduction

Acute lung injury (ALI) and its more severe form, 
acute respiratory distress syndrome (ARDS), 
are common and devastating clinical disorders 
with high morbidity and mortality [1]. ALI is 
characterized by intense inflammation with 
neutrophil accumulation, interstitial edema, 
disruption of endothelial and epithelial integri-
ty, and leakage of protein into the alveolar 
space. These symptoms lead to pulmonary 
edema, intrapulmonary hemorrhage, and sev- 
erely impaired pulmonary gas exchange [2]. 
Despite several decades of striving for ALI ther-
apy, its mortality rate has not improved signifi-
cantly. Thus, probing the molecular mecha-
nisms of ALI and exploring novel therapeutic 
regimens are urgent necessities.

The nucleotide-binding domains and leucine-
rich repeat (NLR) pyrin domains containing 3 
(NLRP3) inflammasome is a multiprotein com-

plex composed of NLRP3, an apoptosis-associ-
ated speck-like protein containing a caspase 
activation and recruitment domain (ASC), and 
caspase-1 [3]. NLRP3 is the best-characterized 
member of NLRs involved in the innate and 
adaptive immune systems, which can be acti-
vated by exogenous and endogenous stimulat-
ing factors, such as bacteria, viruses, fungi, and 
components of dying cells [3, 4]. Signals from 
these various stimuli converge on a pathway 
that involves ionic balance, lysosome dysregu-
lation, and mitochondrial damage, leading to 
the release of cathepsins and production of 
reactive oxygen species (ROS) [5]. ROS has 
been implicated as a positive regulator of NL- 
RP3 inflammasome activation [6]. Upon activa-
tion, caspase-1 can cleave the proforms of in- 
terleukin (IL)-1β and IL-18 into their mature and 
active forms, which is followed by pyroptosis 
[5]. IL-1β is one of the most potent inflamma-
tion-initiating cytokines observed in ALI pa- 
tients; it also induces the production of other 
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cytokines [7]. IL-18 functions as a pro-inflam-
matory cytokine in ALI, serving as both an auto-
crine activator and a facilitator of other inflam-
matory mediators [8]. NLRP3 inflammasome 
activation and IL-1β and IL-18 production are 
simultaneously augmented in the lungs of ALI 
mice with lipopolysaccharide (LPS) challenge 
[9-11]. Therefore, inactivating NLRP3 inflam-
masome may be an effective therapeutic tech-
nique for ALI.

Alveolar macrophages (AMs) residing in the 
alveolar space account for 90% of the cells in 
the bronchoalveolar lavage fluid (BALF) [12]. 
AMs are the primary source of cytokines in 
lungs and play an important role in the patho-
genesis of ALI, initiating inflammatory respons-
es and promoting neutrophil infiltration and tis-
sue damage [13]. AMs from ARDS patients 
secrete much higher levels of IL-1β [14], and 
AM depletion results in significantly diminished 
IL-1β secretion and injury in animal models of 
ALI [15, 16]. NLRP3 inflammasome activation 
in AMs increases caspase-1 activity and IL-1β 
production, both of which aggravate lung injury 
[17]. Thus, the inhibition of NLRP3 inflamma-
some activation in AMs possibly contributes to 
the attenuation of inflammation-related lung 
damage. 

Isoflurane (ISO) exerts anti-inflammatory and 
anti-oxidative effects in multiple organs, includ-
ing the lungs [18-21]. Inhalation of ISO elicits 
protective effects during zymosan-, LPS-, or 
ischemia-reperfusion-induced lung injury [21-
24]. Previous studies have revealed that ISO 
prevents LPS-induced lung damage by reducing 
cytokine release from alveolar macrophages, 
neutrophil recruitment and microvascular pro-
tein leakage [25-28]. However, the protective 
effects of ISO and underlying mechanisms in 
LPS-induced ALI remain unclear. 

In this study, we found that 1.4% ISO post-treat-
ment significantly improved the body weight 
loss and attenuated the pulmonary histopatho-
logical damage, edema and vascular leakage in 
LPS-induced ALI animals. ISO reduced the 
number of total cells, neutrophils, and macro-
phages, and the release of IL-1β and IL-18 in 
the BALF of LPS-treated rats. ISO decreased 
myeloperoxidase (MPO) activity, F4/80-positive 
cells, and mRNA expression of IL-1β and IL-18 
in the lungs of LPS-challenged rats. ISO also 
inhibited NLRP3 inflammasome activation and 

caspase-1 activity partly by scavenging ROS. In 
vitro studies of LPS-treated AMs were consis-
tent with in vivo findings. Together, ISO post-
treatment attenuated LPS-induced ALI partially 
by inhibiting ROS-mediated NLRP3 inflamma-
some activation. 

Materials and methods 

Animals

Male Sprague-Dawley rats (6 weeks, 200-250 
g) were provided by the Laboratory Animal 
Center of Southeast University (Nanjing, Jiang- 
su, China) and housed in pathogen-free condi-
tions with a 12 h/12 h light/dark cycle at 22- 
24°C and free access to food and water. The 
experimental protocols were approved by the 
Institutional Animal Care Committee of Sou- 
theast University and conducted in accordance 
with the National Institutes of Health Guidelines 
for the Care and Use of Laboratory Animals.

LPS-induced ALI and ISO treatment

The LPS-induced ALI model was established as 
previously described [23]. Briefly, rats were 
injected intraperitoneally (i.p.) with LPS (Es- 
cherichia coli 055:B5; Sigma-Aldrich, St. Louis, 
MO, USA) at a dose of 30 mg/kg body weight. 
Sham controls were injected i.p. with the same 
volume of aseptic saline. At 1 h after LPS or 
saline administration, the rats were treated 
with ISO as previous report [23]. The animals 
were placed in a rodent ventilator (ALC-V8, 
Shanghai AlcottBiotech Co., Shanghai, China), 
and the ISO concentration (1.4%) was main-
tained for 1 h and monitored by a gas-specific 
analyzer (Capnomac Ultima; Datex, Helsinki, 
Finland) during treatment. Rats without ISO 
treatment were exposed to room air (RA) in the 
chamber as a vehicle control. In summary, the 
rats were divided into four groups: the sham + 
RA group, the sham + ISO group, the LPS + RA 
group, and the LPS + ISO group. In experiments 
involving ROS scavengers, the rats were inject-
ed intravenously (i.v.) with 150 mg/kg N-ace- 
tylcysteine (NAC; Sigma) 30 min before LPS 
injection. All of the rats were euthanized under 
anesthesia at 12 h after LPS exposure. 

Isolation of AMs

AMs were isolated from the BALF as previously 
described [29]. Briefly, healthy rats were eutha-
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nized by sodium pentobarbital. Lungs and the 
trachea were then excised completely, washed 
in Hank’s balanced salt solution (HBSS), and 
lavaged over 10 times with light massaging by 
slowly instilling and withdrawing 1 mL of warm 
(37°C) Ca2+/Mg2+-free HBSS (pH 7.4) containing 
ethylene diamine tetraacetic acid (0.6 mM). 
BALF was collected and centrifuged at 400 × g 
at 4°C for 10 min. The cells were then incubat-
ed in 100 mm sterilized polystyrene Petri dish-
es at 37°C for 2 h. Cells adhered to the bottom 
of the dish were harvested and replated for fur-
ther experiments. Phycoerythrin-conjugated an- 
ti-CD11b and fluorescein isothiocyanate- conju-
gatedanti-F4/80 (both obtained from eBiosci-
ence, San Diego, CA, USA) were used to confirm 
the > 95% purity of AMs by flow cytometric anal-
ysis. Viability was determined to be > 98% by 
trypan blue (Sigma) exclusion.

AMs culture and treatment

AMs were cultured at a density of 1 × 105 cells/
cm2 in collagen IV-coated dishes in DMEM 
(Gibco, BRL, Grand Island, NY, USA) containing 
10% fetal calf serum (FBS; Gibco) without anti-
biotics and incubated at 37°C in an atmosphere 
of 5% CO2. Confluent monolayers formed on the 
culture dishes or BioFlex plates with elastomer 
membranes within 24-48 h. AM monolayers 
were serum-deprived for 2 h prior to the experi-
ments. AMs were treated with LPS (100 ng/mL) 
or culture medium (CM) for 30 min and then 
exposed to RA or ISO for 30 min in a metabolic 
chamber (Columbus Instruments, Columbus, 
OH, USA). During ISO exposure, the concentra-
tion of ISO (1.4%) was verified by Datex 
Capnomac exhaust gas (SOMA Technology Inc., 
Cheshire, CT, USA). The cells were cultured con-
tinuously for the indicated times. Four treat-
ment groups were established, namely, the 
sham + RA group, the sham + ISO group, the 
LPS + RA group, and the LPS + ISO group. To 
investigate the inhibitory effects of NAC, AMs 
were pretreated with or without 1 mM NAC for 
30 min, washed, and treated with LPS or new 
CM for the indicated time periods.

Sample collection

At 12 h after LPS injection, the rats were anes-
thetized using sodium pentobarbital. Blood 
samples were taken from the ventral aorta and 
centrifuged at 1500 × g for 10 min; the serum 
was collected and stored at -20°C before use. 

The lower lobe of the right lung was ligated prior 
to bronchoalveolar lavage (BAL) and harvested 
for the determination of MPO and caspase-1 
activities, and quantitative real-time PCR (qP- 
CR), Western blot, and histopathological analy-
ses. BAL was performed as previously described 
[30]. Briefly, after anesthetization, the trachea 
was exposed and cannulated with a 22-G intra-
venous cannula. Phosphate-buffered saline 
(PBS; 0.8 mL) was injected and withdrawn for 
the first lavage. The lavage procedure was per-
formed thrice. BALF samples were centrifuged 
at 1000 × g for 8 min at 4°C. The supernatants 
were harvested for cell counting, enzyme-linked 
immunosorbent assay (ELISA), and total protein 
analysis. Cell pellets were resuspended in PBS, 
and the number of cells was determined with a 
hemocytometer (Beckman Coulter, Inc.). Diffe- 
rential cell counts were enumerated on cyto-
spin-prepared slides stained with Diff-Quick 
stain (Andwin Scientific, Schaumburg, IL, USA). 
Protein content was assessed by using a bicin-
choninic acid protein assay kit (Thermo Fisher 
Scientific, Rockford, IL, USA) in accordance 
with the manufacturer’s instructions. The ratio 
of BALF/serum protein concentration was used 
as the lung permeability index (LPI).

Histology and immunohistochemistry analysis

Lung samples were fixed with 4% paraformalde-
hyde for 48 h at room temperature, embedded 
in paraffin, and sectioned to 4 μm thicknesses. 
After deparaffinization and rehydration, the 
sections were stained with hematoxylin and 
eosin (HE; Sigma) for examination by light micro- 
scopy (Olympus, Tokyo, Japan). A scoring sys-
tem to grade the degree of lung injury was 
used, based on predetermined criteria. The 
scores obtained through this system represent 
the average of scores given by two independent 
investigators tasked to read each HE-stained 
slide in a blinded manner. All points for each 
category were added and weighted according 
to their relative importance. The injury score 
was calculated according to the following for-
mula: injury score = [(alveolar hemorrhage po- 
ints/no. of fields) + 2 × (alveolar infiltrate po- 
ints/no. of fields) + 3 × (fibrinpoints/no. of fie- 
lds) + (alveolar septal congestion/no. of fields)]/
total number of alveoli counted. Rabbit anti-rat 
F4/80 polyclonal antibody (Abcam, Cambridge, 
UK) was used to immunostain tissues. F4/80 
protein was visualized using diaminobenzidine, 
and images were obtained using a light micro-
scope (Olympus) with the QImaging software 
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(Surrey, BC, Canada). The number of F4/80+ 
cells in the lung was counted in 20 consecutive 
high-power fields (hpf, × 40) and expressed as 
cells/hpf.

Lung wet/dry (W/D) weight ratio

Lung edema was estimated by the W/D weight 
ratio. Fresh lung was weighed, dried in an oven 
at 80°C for at least 24 h, and then weighed 
again after drying to calculate the W/D weight 
ratio.

Capillary protein leakage

Pulmonary capillary permeability was deter-
mined using the Evans blue dye extravasation 
technique. The animals received tail vein injec-
tions of Evans blue dye (30 mg/kg; Sigma) 30 
min before sacrifice. Following the rats’ death, 
PBS-perfused lungs were harvested. Evans 
blue content was measured at 620 nm using a 
spectrophotometer (Beckman, Fullerton, CA, 
USA), and Evans blue permeability was calcu-
lated and expressed as μg/g of lung.

Lung MPO activity 

MPO activity, a marker of neutrophil infiltration 
in the lung, was determined using an MPO 
assay kit (Nanjing Jiancheng Bioengineering 
Institute, Nanjing, China) according to the man-
ufacturer’s protocol. Briefly, 100 mg of lung tis-
sue was homogenized in extraction buffer. The 
samples were maintained at 37°C for 15 min, 
and enzymatic activity was subsequently mea-
sured using a spectrophotometer (Beckman) at 
460 nm. MPO activity was expressed as U/mg 
lung.

ELISA

Levels of IL-1β and IL-18 in the BALF or cell 
supernatants were measured using ELISA kits 
(R&D Systems, Minneapolis, MN, USA) accord-
ing to the manufacturer’s protocols. A micro-
plate reader (Molecular Devices, Sunnyvale, 
CA, USA) was used to measure optical density 
at 450 nm.

qPCR

Total RNA from lung tissues or cultured AMs 
was extracted using TRIzol reagent (Invitrogen, 
CA, USA). cDNA was generated using a Prime 
Script RT Reagent Kit (Takara, Otsu, Shiga, Ja- 

pan). Real-time PCR was performed using SYBR 
Green Supermix (Bio-Rad, Hercules, CA, USA). 
Results were analyzed by the 2-ΔΔCt method for 
relative quantitation and normalized to glycer-
aldehyde-3-phosphate dehydrogenase (GAP- 
DH). The following primers were used: for 
NLRP3, 5’-CAGCG ATCAACAGGCGAGAC-3’ (for-
ward), and 5’-AGAGATATCCCAGCAAACCTATC 
CA-3’ (reverse); for ASC, 5’-ACTCATTGCCAGG- 
GTCACAGAAGTG-3’ (forward), and 5’-GCTTC- 
CTCATCTTGTCTTGGCTGGT-3’ (reverse); for cas-
pase-1, 5’-ACTCG TACACGTCTTGCCCTCA-3’ (for- 
ward), and 5’-CTGGGCAGGCAGCAAATTC-3’ (re- 
verse); for IL-1β, 5’-CCCTGAACTCAACTGTGAAA- 
TAGCA-3’ (forward), and 5’-CCCAAGTCAAGGG- 
CTTGGAA-3’ (reverse); for IL-18 5’-GACTGGC- 
TGTGAC CCTATCTGTGA-3’ (forward), and 5’-TT- 
GTGTCCTGGCACACGTTTC-3’ (reverse); and for 
GAPDH, 5’-GAACATCATCCCTGCATCCA-3’ (for-
ward), and 5’-CCAGTGA GCTTCCCGTTCA-3’ (re- 
verse).

Measurement of ROS production

Levels of intracellular ROS were measured by 
the oxidative conversion of 2’,7’-dichlorofluo-
rescein diacetate (DCFH-DA) to the fluorescent 
compound dichlorofluorescin (DCF). In brief, 
lung homogenates or AMs were incubated with 
PBS containing 15 μM 2’,7’-DCFH-DA (Nanjing 
Jiancheng Bioengineering Institute) for 30 min 
at 37°C to label intracellular ROS. The cells 
were then washed with PBS, and cellular fluo-
rescence was determined using a microplate 
reader (Promega, Madison, WI, USA) at 490 
and 520 nm.

Caspase-1 activity assay

Caspase-1 enzymatic activity was measured 
using a colorimetric assay kit (R&D system). 
Briefly, lung homogenates or cell supernatants 
were added to 50 μL of caspase-1 reaction buf-
fer and 40 μM YVAD-pNA (Santa Cruz, CA, USA), 
a caspase-1 substrate, followed by incubation 
at 37°C for 2 h. Caspase-1 activity was mea-
sured at 405 nm using a microplate reader 
(Promega).

Western blot analysis

Proteins were extracted from lung tissues or 
cultured AMs with lysis buffer (Cell Signaling 
Technology, Beverly, MA, USA). Equal samples 
were separated by sodiumdodecyl sulfate poly-
acrylamide gel and electrophoretically trans-
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ferred to a nitrocellulose membrane (Millipore, 
Bedford, MA, USA). The membranes were blo- 
cked with 5% skim milk in Tris-buffered saline 
with Tween-20 for 1 h at room temperature. 
Blots were then incubated overnight with rabbit 
anti-rat polyclonal antibodies such as NLRP3, 
ASC, caspase1-p20 (all obtained from Adipogen, 
San Diego, CA, USA), and β-actin (Cell Signaling 
Technology) at 4°C. Horseradish peroxidase-
conjugated anti-rabbit IgG (Cell Signaling Te- 
chnology) was used as a secondary antibody. 
Signals were detected using an enhanced che-
miluminescence kit (Cell Signaling Technology). 
The density of each protein band on the mem-
brane is reported as the densitometric ratio 
between the protein of interest and β-actin.

Statistical analysis

All of the data, except for the histopathological 
scores, are presented as means ± standard 
deviation (SD). Histopathological scores were 
obtained using the nonparametric Kruskal-
Wallis method followed by the Nemenyi multi-
ple comparison test. Intergroup differences 
were determined using one-way analysis of 

variance followed by Tukey’s test for multiple 
comparisons. Statistical analyses were accom-
plished by SPSS 16.0 (Chicago, IL, USA), and P 
< 0.05 was considered significant difference.

Results

ISO protects rats against LPS-induced body 
weight loss and histopathological damage

The body weight of the rats was significantly 
reduced after LPS administration (Figure 1A). 
However, ISO post-treatment attenuated the 
body weight loss induced by LPS stimulation 
(Figure 1A). The protective effects of ISO on 
LPS-induced lung injury were investigated by 
histological examination with HE staining. As 
shown in Figure 1B, LPS challenge caused se- 
vere lung injury characterized by pulmonary 
edema, hemorrhage, alveolar wall thickening, 
and intraalveolar exudation. LPS treatment 
also resulted in the infiltration of inflammatory 
cells into the lung interstitium and alveolar 
spaces. However, ISO post-conditioning attenu-
ated the above histopathological changes. 
Evaluation of the pathological severity of lung 

Figure 1. ISO reduced the body weight 
loss and lung histopathological dam-
age in LPS-challenged rats. Rats were 
treated with ISO or RA for 1 h at 1 h after 
LPS or saline injection. A. Body weight 
change was measured once a day for 4 
days (n = 10 per group). B. Representa-
tive photographs of lung tissues stained 
with HE at 12 h after LPS administration. 
Scale bar: 5.0 μm. C. The semi-quantita-
tive score was used to assess the sever-
ity of lung damage (n = 10 per group). 
Data are presented as means ± SD. *P 
< 0.05, **P < 0.01 vs. Sham groups; #P 
< 0.05, ##P < 0.01 vs. LPS + RA group. 
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injury through independent scoring four param-
eters showed a significant decrease in the his-
topathological score of the LPS + ISO group 
compared to that of the LPS + RA group (Figure 
1C). These results suggest that ISO treatment 
significantly alleviated LPS-induced body wei- 
ght loss and lung injury of rats.

ISO mitigates LPS-induced pulmonary edema 
and capillary permeability in rats

To evaluate the protective effects of ISO on 
LPS-induced lung injury further, lung W/D 
weight ratio, total protein in the BALF, and pul-
monary capillary permeability were assessed. 
The lung W/D weight ratio, a well-known hall-
mark of lung edema, significantly increased in 
LPS-treated rats (Figure 2A). In terms of lung 
permeability and vascular leakage, total pro-

tein level in the BALF of LPS-challenged rats 
was very high (Figure 2B). Evans blue extrava-
sation assay indicated that LPS induced a sig-
nificant increase in Evans blue leakage into the 
lung (Figure 2C). Similar results were obtained 
for LPI, another good indicator of alveolar-capil-
lary permeability (Figure 2D). ISO post-treat-
ment markedly reduced the increases in lung 
W/D weight ratio, total protein in the BALF, 
Evans blue leakage, and LPI induced by LPS 
(Figure 2A-D). These data demonstrate that 
ISO treatment reduced lung edema and capil-
lary leakage in LPS-treated rats.

ISO inhibits LPS-induced inflammatory re-
sponse in rats

To investigate the effect of ISO on LPS-induced 
inflammatory response in lung, the number of 

Figure 2. ISO improved LPS-induced lung edema and capillary permeability in rats. Rats were treated with ISO or RA 
for 1 h at 1 h after LPS or saline injection. Lung tissue, BALF, and blood samples were harvested to evaluate the hall-
marks of lung injury at 12 h after LPS or saline challenge. (A) The W/D weight ratio of lung. (B) The protein leakage in 
the BALF. (C, D) The lung capillary permeability was evaluated by Evans blue extravasation (C) and LPI (D). Data are 
presented as means ± SD (n = 10 per group). *P < 0.05, **P < 0.01 vs. sham groups; #P < 0.05 vs. LPS + RA group.
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Figure 3. ISO reduced inflammatory cells of lung in LPS-stimulated rats. Rats were treated with ISO or RA for 1 h 
at 1 h after LPS or saline injection. Lung and BALF samples were collected at 12 h after LPS or saline administra-
tion. (A-C) The number of (A) total cells, (B) neutrophils, and (C) macrophages in the BALF were measured using 
a hemocytometer. (D) MPO activity in lung. (E) Immunohistochemistry staining of F4/80-positive macrophages in 
lung tissues. Results were scored semi-quantitatively by averaging the number of stained cells per field. Data are 
presented as means ± SD (n = 10 per group). *P < 0.05, **P < 0.01 vs. sham groups; #P < 0.05 vs. LPS + RA group.
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Figure 4. ISO reduced the levels of IL-1β and IL-18 in BALF and lung tissues of LPS-treated rats. Rats were treated 
with ISO or RA for 1 h at 1 h after LPS or saline injection. Lung tissue and BALF samples were collected at 12 h 
after LPS or saline administration. (A, B) The levels of IL-1β (A) and IL-18 (B) in the BALF were measured by ELISAs. 
(C, D) The mRNA expression of IL-1β (C) and IL-18 (D) in lung was analyzed by qPCR assay. GAPDH was used as the 
endogenous control. Data are presented as means ± SD (n = 10 per group). *P < 0.05 vs. sham groups; #P < 0.05 
vs. LPS + RA group.

Figure 5. ISO inhibited LPS-induced NLRP3 inflammasome activation in the lung of rats. Rats were treated with ISO 
or RA for 1 h at 1 h after LPS or saline injection. Lung samples were collected at 12 h after LPS or saline administra-
tion. (A-C) qPCR assay was performed to determine the mRNA expression of NLRP3 (A), ASC (B), and caspase-1 (C) 
in lung tissues. GAPDH was used as the endogenous control. (D) Representative results of western blot for NLRP3, 
ASC, and caspase-1-p20 expression in lung tissues. β-actin was used as the endogenous control. (E) Relative ex-
pression of NLRP3, ASC, and caspase-1-p20 was normalized to that of β-actin. (F) Caspase-1 activity in lung tissues. 
Data are presented as means ± SD (n = 10 per group). *P < 0.05 vs. sham groups; #P < 0.05 vs. LPS + RA group.
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Figure 6. ISO-mediated inhibition of NLRP3 inflammasome activation was dependent on ROS in LPS-treated rats. 
Rats were treated with ISO/RA for 1 h at 1 h after LPS/saline injection or rats were injected with NAC at 30 min 
before LPS/saline treatment. Lung and BALF samples were collected at 12 h after LPS or saline administration. (A) 
ROS production in lung was assessed by DCFH-DA assay. (B) The expression of NLRP3, ASC, and caspase-1-p20 in 
lung was analyzed by western blot. β-actin was used as the endogenous control. (C) Caspase-1 activity in lung tis-
sues. (D, E) ELISA was performed to determine the release of IL-1β (D) and IL-18 (E) in the BALF. Data are presented 
as means ± SD (n = 10 per group). *P < 0.05 vs. sham group; #P < 0.05 vs. LPS alone group.

Figure 7. Inhibition of NLRP3 inflammasome activation by ISO was mediated by ROS in LPS-treated AMs in vitro. AMs 
were treated with ISO/RA for 30 min at 30 min after LPS/CM stimulation or AMs were pretreated with or without 
NAC at 30 min before LPS/CM stimulation. At 12 h after LPS/CM treatment, the cells and the supernatants were 
pooled for the subsequent experiments. (A) The levels of ROS in AMs. (B) Western blot analysis of NLRP3, ASC, and 
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total cells, neutrophils, and macrophages in the 
BALF were measured using a hemocytometer. 
As shown in Figure 3A-C, LPS administration 
significantly increased the number of total 
cells, neutrophils, and macrophages in the BA- 
LF; ISO treatment attenuated these increases. 
MPO activity, which indicates the accumulation 
of neutrophils in the lung, showed a similar 
result (Figure 3D). Immunohistochemistry resu- 
lts showed a large number of F4/80-positive 
cells in LPS-induced injured lungs, which was 
significantly reduced by ISO treatment (Figure 
3E). These results indicate that ISO alleviated 
inflammatory cell infiltration into the lung and 
inflammatory responses by LPS.

ISO reduces IL-1β and IL-18 production in LPS-
challenged rats

IL-1β and IL-18, two inflammation-initiating 
cytokines, propagate injury signals and trigger 
inflammatory cascades in LPS-induced ALI. The 
levels of IL-1β and IL-18 in the BALF and lung 
homogenates were measured by ELISA and 
qPCR assay, respectively. We observed a nota-
ble reduction in the release of IL-1β (Figure 4A) 
and IL-18 (Figure 4B) in the BALF in LPS-treated 
rats with ISO post-conditioning. Similarly, en- 
hanced mRNA expression of IL-1β (Figure 4C) 
and IL-18 (Figure 4D) in the lung by LPS was 
significantly attenuated by ISO post-treatment. 
These data suggest that ISO inhibited the 
expression and release of IL-1β and IL-18 in the 
lung of LPS-induced ALI rats.

ISO inhibits NLRP3 inflammasome activation 
in LPS-induced ALI rats 

The NLRP3 inflammasome is an assembled 
cytosolic protein complex controlling the prote-
olysis activity of caspase-1, which results in the 
maturation of pro-IL-1β and pro-IL-18. To deter-
mine whether NLRP3 inflammasome was acti-
vated in LPS-induced ALI, mRNA and protein 
levels of NLRP3, ASC, and caspase-1 were 
assessed by qPCR and Western blot, respec-
tively. We found that the mRNA expression of 
NLRP3, ASC, and caspase-1 significantly incre- 
ased in the lungs of LPS-treated rats but was 
counteracted by ISO post-treatment (Figure 

5A-C). The protein expression of NLRP3, ASC, 
and caspase-1 was consistent with their mRNA 
levels (Figure 5D and 5E). In addition, ISO post-
conditioning reduced the increase in caspase-1 
activity in LPS-challenged rats (Figure 5F). 
These results indicate that the NLRP3 inflam-
masome was activated in LPS-induced ALI, 
which was attenuated by ISO post-treatment.

Inhibition of NLRP3 inflammasome activation 
caused by ISO depends on ROS in LPS-treated 
rats

ROS is involved in NLRP3 inflammasome acti-
vation in burn-induced ALI [31]. To investigate 
whether the inhibitory effects of ISO on NLRP3 
inflammasome activation was mediated by 
ROS, the rats received (i.v.) NAC, the scavenger 
of ROS, prior to LPS injection. As shown in 
Figure 6A, ROS generation markedly increased 
in the lungs of LPS-challenged rats, but was 
reduced by ISO or NAC treatment. NAC pretreat-
ment also reduced the expressions of NLRP3, 
ASC, caspase-1, and caspase-1 activity (Figure 
6B and 6C). The release of IL-1β (Figure 6D) 
and IL-18 (Figure 6E) in the BALF was decreased 
by NAC pretreatment. Together, these results 
demonstrate that ISO-exerted inhibition of 
NLRP3 inflammasome activation depended on 
ROS in the lungs of rats with LPS-induced ALI. 

ISO inhibited ROS-mediated NLRP3 inflamma-
some activation in LPS-stimulated AMs in vitro

To partly confirm the findings in vivo, we estab-
lished a cellular model of ALI using LPS-treated 
AMs. As shown in Figure 7A, ISO or NAC treat-
ment significantly decreased LPS-induced ROS 
production in AMs. Increases in levels of NL- 
RP3, ASC, and caspase-1, as well as caspase-1 
activity in AMs resulting from LPS insult, were 
also inhibited by ISO or NAC treatment (Figure 
7B and 7C). Whereas the mRNA expression of 
IL-1β and IL-18 was enhanced by LPS stimula-
tion, ISO or NAC treatment markedly reduced 
these increases (Figure 7D and 7E). The re- 
lease of IL-1β and IL-18 corresponded to their 
mRNA expression tendency (Figure 7F and 7G). 
These results suggest that ISO attenuated LPS-
induced NLRP3 inflammasome activation by 

caspase-1-p20 in AMs. β-actin was used as the endogenous control. (C) Caspase-1 activity in AMs. (D, E) The mRNA 
expression of IL-1β (D) and IL-18 (E) in AMs was measured by qPCR assay. GAPDH was used as the endogenous con-
trol. (F, G) The release of IL-1β (F) and IL-18 (G) in the supernatants was determined by ELISA. Data are presented 
as means ± SD. *P < 0.05 vs. sham group; #P < 0.05 vs. LPS alone group.
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inhibiting ROS production in AMs, which is con-
sistent with in vivo findings. 

Discussion

In this study, we found that 1.4% ISO post-treat-
ment ameliorated LPS-induced ALI by inhibiting 
ROS-mediated NLRP3 inflammasome activa-
tion in vivo and in vitro. The key findings were as 
follows. First, ISO significantly reduced the body 
weight loss and lung injury in LPS-challenged 
rats. Second, ISO abrogated LPS-induced pul-
monary edema and vascular permeability. 
Third, ISO decreased the number of total cells, 
neutrophils, macrophages, and the production 
of IL-1β and IL-18 in the BALF of LPS-challenged 
rats. Fourth, ISO reduced MPO activity, the num- 
ber of F4/80-positive cells, and mRNA levels of 
IL-1β and IL-18 in the lung tissues of LPS-
treated rats. Fifth, ISO inhibited the LPS-
induced formation and activation of NLRP3 
inflammasome in lung tissues partly by scav-
enging ROS. Lastly, the pulmonary protective 
effects of ISO in vivo were confirmed by the in 
vitro studies of AMs. 

LPS-induced ALI closely resembles the ob-
served symptoms of this disorder in humans, 
which include damage of alveolar walls, neutro-
phil accumulation, and release of inflammatory 
cytokines [32]. Here, we found that rats with 
LPS injection showed significant lung injuries, 
as evidenced by the severe lung edema, capil-
lary permeability, inflammatory cell infiltration, 
and inflammatory mediator release. In the lung, 
AMs are the most abundant innate immune 
cells and are a rich source of cytokines and ch- 
emokines that lead to neutrophil recruitment, 
thereby inducing further injury associated with 
ALI and ARDS [33-36]. In this study, we found 
that the numbers of total cells, neutrophils, 
macrophages in the BALF, MPO activity, and 
F4/80-positive cells in lung tissues significantly 
increased by LPS; these increases, however, 
were attenuated by ISO treatment. 

IL-1β is a potent proinflammatory cytokine in 
both AMs initiation and the amplification of 
lung inflammation in patients [37]. IL-1β acti-
vates additional inflammatory cells and facili-
tates the release of more inflammatory media-
tors, which trigger inflammatory cascades and 
amplify injury signals [38]. IL-1β can cause 
alveolar edema by inducing alveolar cell sur-
face abnormalities and alveolar epithelial and 

vascular endothelial permeability [7, 39]. IL-18 
functions as a proinflammatory cytokine and 
serves as an autocrine activator that facilitates 
the expression of other inflammation media-
tors [8]. Elevated IL-18 levels are associated 
with morbidity and mortality in patients with 
ARDS [40]. Neutralization of either IL-1β or IL-18 
by their antibodies has been demonstrated to 
prevent ALI in different rodent models [8, 13]. 
Our results showed that the levels of IL-1β and 
IL-18 in the BALF, lung tissue, and AMs 
increased after LPS insult. However, ISO inhib-
ited LPS-induced mRNA expression and release 
of IL-1β or IL-18 in vivo and in vitro.

NLRP3 inflammasome usually responds to 
pathogens or endogenous danger signals dur-
ing early innate immunity. NLRP3 inflamma-
some activation requires two steps [3]: first, 
microorganisms or other inflammatory factors 
(e.g. LPS) bind to Toll-like receptor 4 to induce 
the expression of NLRP3, pro-caspase-1, pro-
IL-1β, and pro-IL-18 through the NF-κB pathway. 
And second, the extracellular ATP or bacterial 
toxins directly stimulate the activation of cas-
pase-1, thereby leading to the release of IL-1β 
and IL-18. NLRP3 inflammasome has been 
shown to be activated in several models of ALI 
[13, 17, 41]. Activation of NLRP3 in macro-
phages results in increases in alveolar perme-
ability and assembly of the NLRP3/ASC/cas-
pase-1 complex, which facilitates caspase-1- 
mediated processing and release of IL-1β and 
IL-18 [42]. NLRP3 deletion or inhibition effec-
tively improves hyperoxia-induced ALI [43]. In 
this study, we found that ISO post-treatment 
suppressed NLRP3 inflammasome activation 
caused by LPS stimulation. The inhibitory effect 
was evidenced by the decrease in both mRNA 
expression and release of IL-1β and IL-18. It 
was reported that ROS serves as a common 
signal to activate NLRP3 inflammasome [44]. 
Release of mitochondrial ROS can lead to sub-
sequent NLRP3-dependent lysosomal damage 
and inflammasome activation [45]. Shimada et 
al. [46] showed that oxidized mitochondrial 
DNA, the ROS-oxidized product released from 
mitochondria, is capable of binding and activat-
ing NLRP3 inflammasome. Here, we showed 
that ROS production and NLRP3 inflammasome 
activation induced by LPS significantly decr- 
eased following ISO treatment in vivo and in 
vitro. Moreover, pretreatment with NAC, a 
broad-spectrum ROS scavenger, inhibited LPS-
triggered NLRP3 inflammasome activation. 
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Therefore, the inhibitory effects of ISO on LPS-
induced NLRP3 inflammasome signaling may 
partially be a ROS-dependent.

Despite these insights, our study presents sev-
eral limitations. The precise mechanism by 
which ROS modulates NLRP3 inflammasome 
activation requires further investigation. More- 
over, AMs were firstly activated in the patho-
genesis of ALI, and then the bone-marrow 
derived macrophages immigrated and aggre-
gated to the pulmonary mesenchyme to aggra-
vate the inflammatory response. Therefore, 
studying the role of bone-marrow derived mac-
rophages in LPS-induced ALI is also a worth-
while undertaking. These concepts will be the 
focus of our studies in the future.

In summary, ISO post-conditioning protects 
against LPS-induced ALI by inhibiting NLRP3 
inflammasome activation, reducing IL-1β and 
IL-18 secretion, and restricting the inflammato-
ry response. ROS is involved in the inhibitory 
effect of ISO on NLRP3 inflammasome activa-
tion. Therefore, ISO may eventually act as a 
potential therapeutic agent for ALI by targeting 
the ROS/NLRP3 signaling pathway.
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