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Abstract: Duchenne muscular dystrophy (DMD) is an X-linked progressive degenerative muscle disorder caused by 
the absence of dystrophin. There is no curative therapy, although innovative therapeutic approaches have been ag-
gressively investigated over recent years. Currently, the international clinical trial registry platform for this disease 
has been constructed and clinical trials for innovative therapeutic approaches are underway. Among these, exon 
skipping and read-through of nonsense mutations are in the most advanced stages, with exon skipping theoretically 
applicable to a larger number of patients. To date, exon skipping that targets exons 51, 44, 45, and 53 is being glob-
ally investigated including in USA, EU, and Japan. The latest announcement from Japan was made, demonstrating 
successful dystrophin production in muscles of patients with DMD after treating with exon 53 skipping antisense 
oligonucleotides (ASOs). However, the innovative therapeutic approaches have demonstrated limited efficacy. To 
address this issue in exon skipping, studies to unveil the mechanism underlying gymnotic delivery of ASO uptake in 
living cells have been conducted in an effort to improve in vivo delivery. Further, establishing the infrastructures to 
integrate multi-institutional clinical trials are needed to facilitate the development of successful therapies for DMD, 
which ultimately is applicable to other myopathies and neurodegenerative diseases, including spinal muscular at-
rophy and motor neuron diseases.
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Introduction

Duchenne muscular dystrophy (DMD) is an 
X-linked muscular disorder that is estimated to 
affect 1 in 3,800-6,000 live male births [1]. 
Affected individuals are usually asymptomatic 
or they may exhibit mildly delayed developmen-
tal milestones during infancy to early childhood 
with increased serum creatine kinase activities 
[2]. Most patients are diagnosed between 4 
and 5 years of age [3], when they start to show 
signs of physical disability including walking dif-
ficulty. They then manifest progressive, system-
atic muscular weakness and usually become 
nonambulatory and wheelchair dependent 
before their teens [2]. Respiratory function 
decreases with advancing age and cardiomy-
opathy eventually develops, which is currently 

the major cause of morbidity and mortality [4]. 
Without intervention, the mean age at death is 
around 19 years, but multidisciplinary care 
such as noninvasive mechanical ventilation sig-
nificantly improves survival [2]. 

DMD is caused by a mutation in the DMD gene 
located on Xp21, and its protein product, dys-
trophin, forms the dystrophin-associated glyco-
protein complex (DGC) at the sarcolemma, 
which links the muscle sarcomeric structure to 
the extracellular matrix [5] and protects the sar-
colemma from contraction-induced injury [6]. 
The DMD gene encodes 79 exons, and the 
molecular weight of dystrophin is 427 kDa [7]. 
Dystrophin has four distinct functional domains, 
i.e., the N-terminal actin-binding domain, cen-
tral rod-like domain, cysteine-rich domain, and 

http://www.ajtr.org


Recent advances in DMD therapies

2472 Am J Transl Res 2016;8(6):2471-2489

C-terminal domain. Together with the rod 
domain, the cysteine-rich domain links dystro-
phin to the transmembrane DGC. In patients 
with DMD, the protein dystrophin is absent [7] 
and the muscle fibers become vulnerable to 
damage caused by mechanical stretching [8]. 

Mutations in the DMD gene are associated with 
two types of muscular dystrophy, DMD and 
Becker muscular dystrophy (BMD), depending 
on whether the translational reading frame is 
lost or maintained [9]. BMD is a clinically milder 
form of DMD, which is characterized by fea-
tures similar to DMD, except that patients 
remain ambulant until at least age 16 years 
and display variable severity [10]. When the 
DMD mutation is “in-frame” and a semi-func-
tional protein is produced, patients are likely to 

develop BMD, whereas when the mutation is 
“out-of frame” patients undergo a disruption of 
the translational reading frame, which leads to 
the loss of dystrophin and development of DMD 
[11]. It should be noted that some patients do 
not conform with this reading-frame hypothe-
sis, and the causes of these exceptions remain 
unclear. The most recent analyses of DMD 
mutations have demonstrated that 80% of all 
mutations are large mutations, which involve 
one exon or larger, among which 86% are dele-
tions and 14% are duplications [9]. Small muta-
tions, which affect segments smaller than one 
exon, contribute 20% of all mutations, wherein 
half are nonsense mutations [9]. For deletions 
and duplications, a nonrandom distribution of 
mutations has been identified in the DMD gene, 

Figure 1. Schematic illustration of DMD gene transcripts. A. The normal DMD gene transcript that generates the 
mRNA for full length dystrophin. B. Patients with an out-of-frame, exon 50 deletion mutation generate the mRNA for 
short and degradable dystrophin. C. Exon 51 skipping in patients with an exon 50 deletion converts the out-of-frame 
transcript into an in-frame transcript, which can generate short but functional dystrophin.
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with two hot spots, i.e., the distal (exons 45-55) 
and proximal (exons 2-20) hot spots [9].

Currently, there is no curative therapy for DMD 
and glucocorticoids are the only available medi-
cation that slow the decline of muscle strength 
and function [2]. However, several therapeutic 
strategies are now under aggressive investiga-
tion as well as clinical trials (https://clinicaltri-
als.gov), and guidance from the US Food and 
Drug Administration was recently announced to 
help accelerate the development of drugs for 
DMD (http://www.fda.gov/). At the same time, 
clinical trial network, an infrastructure to inte-
grate multi-institutional clinical trials have been 
established for the neuromuscular field, as rep-
resented by the TREAT-NMD (http://www.treat-
nmd.eu/). In Japan, the Registry of Muscular 
Dystrophy (Remudy) (http://www.remudy.jp/
english/) has been established and runs 
national registries for muscular disorders 
including dystrophinopathy, in collaboration 
with the TREAT-NMD alliance. In addition, the 
Muscular Dystrophy Clinical Trial Network 
(MDCTN) (http://www.mdctn.jp/) has been 
established to create opportunities for clinical 
trials and accelerate clinical discoveries. Both 
Remudy and MDCTN, operated by the National 
Center of Neurology and Psychiatry, Tokyo, pro-
vide infrastructures to ensure that the most 
promising new therapies reach patients as 
quickly as possible in Japan.

Current therapeutic approaches to DMD can be 
categorized into two groups based on their stra-
tegic goals: therapies that aim to restore dys-
trophin expression and those that aim to com-
pensate for the lack of dystrophin. Promising 
results have been reported from both thera-
peutic approaches. With significant recent 
advances in research for DMD therapy, we will 
review the current status of clinical trials cen-
tered on innovative therapies for DMD, as well 
as discuss the challenges and future perspec-
tives. We will also describe the processes of 
discovery and underlying rationales for these 
therapeutic advances.

Therapies to restore dystrophin expression

Exon skipping

Exon skipping induced by antisense oligonucle-
otides (ASOs) modulates the dystrophin pre-
mRNA splicing process, thereby restoring the 

reading frame of the DMD gene (Figure 1) [10]. 
Thus, by generating a dystrophin protein that is 
shortened but functional instead of premature-
ly truncated and presumably degradable, in 
patients with DMD, exon skipping could convert 
the DMD phenotype into a milder BMD 
phenotype. 

In the late 1980s, careful examination of mus-
cle pathology led to the identification of rare 
dystrophin-positive fibers among otherwise 
dystrophin-negative fibers in DMD, which are 
now known as revertant fibers [12]. Although 
the biological mechanism responsible for gen-
erating revertant fibers is not yet fully under-
stood, it has been reported that a variety of 
naturally occurring exon skipping events can 
bypass the original pathogenic mutation to pro-
duce revertant fibers [13]. In the beginning of 
the 1990s, Nicholson suggested a potential 
therapeutic advantage of exon skipping in DMD 
by extending the existing frame-shift deletion 
mutation to an in-frame mutation, thus rescu-
ing dystrophin expression [14]. In addition, the 
use of ASOs as gene expression modulators 
was investigated in vitro and they were report-
ed to be potentially beneficial in treating 
β-thalassemia by hybridizing with targeted RNA, 
suppressing aberrant splicing patterns to 
restore correct splicing [15]. Subsequent in 
vitro evidence demonstrated the modulation of 
dystrophin pre-mRNA splicing by an ASO [16], 
which facilitated the development of exon skip-
ping therapy for patients with DMD.

Studies of exon skipping have shown that it is 
applicable to up to 83% of all DMD mutations 
[17]. Theoretically, patients who harbor exon 
deletions, duplications or small mutations 
(deletions, insertions, splice site mutations, 
and point mutations) could benefit from exon 
skipping. For deletions and small mutations, 
the skipping of one or two additional exons is 
usually adequate to restore the reading frame 
[17]. However, exon skipping is more challeng-
ing for duplications because ASOs cannot dis-
criminate between the original and duplicated 
exons, which may induce the skipping of both or 
either exon, thereby yielding out-of-frame tran-
scripts instead of the desired in-frame tran-
scripts [17]. 

A mutation hotspot exists between exons 45 
and 55, and the skipping of exon 51 is consid-
ered to be applicable to the largest subset of 
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patients. Therefore, ASOs that target exon 51 
were the first to be developed clinically [18]. 
Several ASO chemicals have been investigated, 
among which the 2’O-methyl-phosphorothioate 
oligonucleotide (2’OMePS) and phosphorodi-
amidate morpholino oligomer (PMO) are the 
major drug candidates currently under ad- 
vanced phase evaluation in clinical trials (Table 
1). Drisapersen developed by Prosensa (now 
BioMarin) employs a 2’OMePS chemistry in 
which the internucleotide phosphorothioate 
linkages are negatively charged; eteplirsen, a 
PMO-based drug developed by Sarepta Th- 
erapeutics, is a charge-neutral compound. The 
advantages of charge-neutral PMOs over 
2’OMePS are reduced off-target effects, 
increased water solubility and nuclease resis-
tance [19], as well as a stronger binding affinity 
for RNA [20]. Furthermore, PMOs do not elicit 
an immune response through Toll-like recep-
tors and the interferon system [20]. Studies 
that compared 2’OMePS and PMOs concluded 
that skipping efficiencies are sequence-depen-
dent and not chemistry-dependent, but PMOs 
may be slightly less sequence-specific than 
2’OMePS [21]. The results of a clinical trial 
showed that drisapersen could not obtain sig-
nificant improvements in its primary outcome 
measure, the 6-min walk test (6MWT), in both 
phase 2 and phase 3, double-blind, placebo-
controlled clinical trials [22, 23]. Drisapersen is 
now being evaluated to determine its efficacy 
in younger patients aged less than 7 years [23]. 
An application for marketing approval for dris-
apersen was reviewed by FDA, however, in 
January 2016, FDA has concluded that the 
standard of substantial evidence of effective-
ness is not met therefore the approval is not 
ready in its present form (http://investors.
bmrn.com/releasedetail.cfm?ReleaseID=95- 

0309). A phase 2, double-blind, placebo-con-
trolled study of eteplirsen reported an increase 
in the percentage of dystrophin-positive fibers 
to 23% compared with the normal level, where-
as the placebo-treated patients exhibited no 
increase [24]. An extended open-label study 
demonstrated stabilization of the ambulatory 
distance in 6MWT among those treated with 
eteplirsen compared with placebo/delayed 
treatment patients [24]. However, further evalu-
ations using a larger number of participants, a 
wider dose range, and duration studies are nec-
essary to obtain conclusive data. Recently an 
open label phase 3 clinical trial has started for 
eteplirsen (NCT02255552) and the FDA is 
reviewing of its new drug application on May 
26, 2016.

Progress in developing ASOs targeting exons 
other than exon 51 is being made, and ASOs for 
exon 44, 45, and 53 skipping are in the early 
phase of clinical trials (Table 2). The latest 
announcement for exon 53 skipping has been 
made by Japan, demonstrating the restoration 
of dystrophin mRNA in low- (1.25 mg/kg), medi-
um- (5.0 mg/kg), and high-dose (20 mg/kg) 
groups after the treatment with PMO. Moreover, 
the high-dose group showed dystrophin protein 
recovery. There were no serious adverse ev- 
ents, although anemia and a slight effect on 
renal function were reported. Preparation for 
the next-phase 1/2 clinical trials is now being 
made for this exon 53-skipping ASO (http://
www.nippon-shinyaku.co.jp/english/news/?id= 
2556).

Future approaches to exon skipping therapies 
include multi-exon skipping and enhancement 
of drug delivery for increasing skipping efficien-
cy. Multi-exon skipping of DMD exon 45-55 is 

Table 1. Descriptions of antisense oligonucleotides used for exon skipping
Chemical Description Status Ref.
2’OMePS Adopts N-type sugar conformation. Increased binding RNA affinity and improves nuclease resistance. Clinical trial [10, 22]

PMO Charge-neutral, nucleic acid bases are bound to morpholine moiety. Reduced off-target effects, in-
creased water solubility, nuclease resistance, less immune response.

Clinical trial [19, 20]

LNA Sugar ring is locked by a O2’C4’ methylene linkage adopting an RNA-like C3’-endo conformation. Exhibits 
unprecedented binding affinity to complementary DNA or RNA.

Pre-clinical [10]

PNA Charge-neutral, sugar backbone is replaced with the N-(2-aminoethyl)-glycine. Has high degree of nucle-
ase and protease resistance and higher target-binding affinity.

Pre-clinical [10, 29]

tcDNA Possess additional three carbon atoms between C5’ and C3’. Has increased RNA affinity, hydrophobicity, 
nuclease resistance. Spontaneously forms nanoparticles which could potentially improve cellular uptake.

Pre-clinical [30]

PPMO, Pip-
PMO, vPMO

New generation PMO derivatives containing cell-penetrating moieties with enhanced cell uptake. Pre-clinical [28]

2’OMePS, 2’O-methyl-phosphorothioate oligonucleotide; PMO, phosphorodiamidate morpholino oligomer; LNA, locked nucleic acid; PNA, peptide nucleic acid; tcDNA, 
tricyclo DNA; PPMO, peptide-conjugated PMO; Pip-PMO, PMO internalization peptide-conjugated PMO; vPMO, vivo-morpholino.



Recent advances in DMD therapies

2475 Am J Transl Res 2016;8(6):2471-2489

Table 2. Descriptions of registered clinical trials for studies that aim to restore dystrophin (Current status, December 2015)

Drug/compound Description Company/Institute Status Clinical trial 
no. Remarks Ref.

Exon skipping

    Drisapersen 2’OMePS targeting exon 51 GlaxoSmithKline Phase 3 
completed

NCT01254019 Studies targeting patients older than 5 years. No statistically significant 
improvement in 6MWT.

[23]

    Drisapersen 2’OMePS targeting exon 51 BioMarin Pharmaceutical Phase 3 NCT01803412 Extension studies on patients who previously have received drisapersen.

    Drisapersen 2’OMePS targeting exon 51 BioMarin Pharmaceutical Phase 1/2 NCT01910649 Assessing IV dosing as an alternative route of administration which previ-
ous administrations were done via SC.

    PRO044 2’OMePS targeting exon 44 BioMarin Pharmaceutical Phase 2 NCT02329769

    PRO045 2’OMePS targeting exon 45 BioMarin Pharmaceutical Phase 2b NCT01826474

    PRO053 2’OMePS targeting exon 53 BioMarin Pharmaceutical Phase 1/2 NCT01957059

    Eteplirsen PMO targeting exon 51 Sarepta Therapeutics Phase 3 NCT02255552 Studies targeting patients 7-16 years.

    Eteplirsen PMO targeting exon 51 Sarepta Therapeutics Phase 2 NCT02420379 Studies targeting younger patients, 4 to 6 years.

    Eteplirsen PMO targeting exon 51 Sarepta Therapeutics Phase 2 NCT02286947 Studies targeting patients in advanced stage, 7-21 years.

    SRP-4045 PMO targeting exon 45 Sarepta Therapeutics Phase 1/2 NCT02530905

    SRP-4053 PMO targeting exon 53 Sarepta Therapeutics Phase 1/2 NCT02310906

    NS-065/NCNP-01 PMO targeting exon 53 National Center of Neurology 
and Psychiatry (Japan)

Phase 1 NCT02081625

Read-through

    Ataluren Non-sense suppression PTC Therapeutics Phase 3 
completed

Statistically non-significant, but 15 metre benefit in overall study popula-
tion. Conditional drug approval in Europe in 2014.

www. 
ptcbio.com/

    Ataluren Non-sense suppression PTC Therapeutics Phase 3 NCT01557400,
NCT02090959,
NCT01247207

Extension studies on patients who previously have received Ataluren

    NPC-14 Arbekacin Sulfate Kobe University (Japan) Phase 2 NCT01918384

Vector-mediated gene therapy

    Biostrophin rAAV2.5-CMV-minidystrophin Nationwide Children’s 
Hospital (USA)

Phase 1 
completed

NCT00428935 Safe, expression of dystrophin was limited and physical change was 
unremarkable.

[58]

rAAVrh74.MCK.micro-Dys-
trophin

Nationwide Children’s 
Hospital (USA)

Phase 1 NCT02376816

Cell transplantation

HLA-identical allogeneic 
mesoangioblasts

Fondanzione Centro s. Raf-
faelle Del Monte Tabor (Italy)

Phase 1/2a 
completed

Eudract 2011-
000176-33

Safe in four out of five patients, one had thalamic stroke of unknown 
relation. Inconclusive effect on muscle function.

[75]

Autologous bone marrow 
mononuclear cell 

Neurogen Brain and Spine 
Institute (India)

Phase 1 NCT02241434

Umbilical cord based allo-
genic mesenchymal stem cell

University of Gaziantep 
(Turkey)

Phase 1 NCT02484560

Umbilical cord mesenchymal 
stem cell

Acibadem University (Turkey) Phase 1/2 NCT02285673

Autologous bone marrow de-
rived mononuclear stem cell

Chaitanya Hospital, Pune 
(India)

Phase 1/2 NCT01834040

Normal myoblasts Centre Hospitalier Universi-
taire de Québec, (Canada)

Phase 1/2 NCT02196467
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expected to restore the reading frame and be 
therapeutically applicable to 63% of DMD 
patients with deletion mutations, whereas sin-
gle skipping of exon 51 could be applied to 16% 
of patients [25]. Furthermore, patients with 
exon 45-55 deletions were reported to have 
very mild myopathy symptoms [26]. In a mouse 
model of DMD harboring an exon 52 deletion, it 
was demonstrated that systemic antisense 
delivery could skip exons 45-55 to significantly 
improve muscle strength and histopathology 
[27]. Despite the many challenges to this 
approach, including cost, the technical chal-
lenges of skipping efficiency, and potential 
long-term toxicity, multi-exon skipping is an 
attractive approach that could extend the appli-
cability of this therapy to a larger number of 
patients regardless of their mutation type.

The challenges that must be addressed by exon 
skipping strategies include the inability of ASOs 
to cross the plasma membrane without sup-
port, instability, a lack of cell specificity, and 
unwanted off-target effects. The chemistries 
that have been investigated other than 
2’OMePS and PMOs include locked nucleic 
acid (LNA), peptide nucleic acid, tricycloDNA 
(tcDNA), cell-penetrating peptide-conjugated 
PMOs (PPMOs), PMO internalization peptide-
conjugated PMOs (Pip-PMOs), and vivo-mor-
pholinos (vPMOs), which are octa-guanidinium 
groups on dendrimeric scaffolds linked to mor-
pholino oligos [10, 28, 29] (Table 1). LNA-
modified ASOs exhibit better mismatch discrim-
ination and high resistance to nucleases, 
tcDNA has an enhanced target-binding affinity 
and improved nuclease resistance [10, 30]; 
PPMOs, Pip-PMOs, and vPMOs contain cell-
penetrating moieties [28]. Viral vectors and 
synthetic vectors (liposomes, cationic peptides 
and polymers, and protein complexes), as well 
as covalent attachments such as antibodies, 
peptides, lipids, carbohydrates, growth factors 
and vitamins have been tested to increase tar-
get-specificity [10]. Recently, we reported the 
accelerated cell uptake of amphiphilic PPMOs medi- 
ated by class A scavenger receptor subtypes 
(SCARAs) and that this mechanism is depen-
dent on their self-assembly into nanoparticles 
[31]. Optimizing the self-assembly of PPMOs 
into nanoparticles may facilitate a next-genera-
tion technology for enhanced PPMO delivery.  

Read-through therapy

Patients with nonsense mutations, which com-
prise 10% of all patients with DMD [9], can ben-

efit from read-through therapy. Nonsense 
mutations generate stop codons, thereby lead-
ing to premature translational termination and 
truncated proteins, and mRNA is destabilized 
by nonsense-mediated mRNA decay (NMD) 
[32]. The inactivation of any factor related to 
NMD pathway may stabilize transcripts gener-
ated from nonsense-containing coding regions. 
These observations indicate that nonsense-
containing mRNA may produce a significant 
amount of functional protein by altering the 
decay rate or the extent of premature termina-
tion [32].  

It is known that aminoglycoside antibiotics can 
cause phenotypic suppression in bacteria, 
which is because of disruption of the reading of 
ribonucleotides in polypeptide synthesis [33], 
thereby allowing the insertion of alternative 
amino acids at the site of the mutated codon 
[34]. Further studies have extended this pro-
cess to mammalian cells [35], and the read-
through of premature nonsense codons by ami-
noglycosides has been applied to nonsense 
mutation-mediated disease in cystic fibrosis 
and DMD, first in cultured cells and mouse 
models and then in patients [32]. In vitro and in 
vivo assays using gentamicin-treated mdx 
mice, an animal model of DMD harboring a non-
sense mutation, demonstrated the restoration 
of membrane dystrophin expression and func-
tional protection against contraction induced 
muscular injury [36]. Two studies of gentamicin 
treatment were conducted in a small number of 
patients with DMD and BMD, which demon-
strated increased dystrophin production in one 
patient but no success in producing detectable 
full-length dystrophin or improved muscle 
strength in the other patients; thus, it was sug-
gested that further studies with greater dosag-
es and treatment lengths were warranted [37, 
38]. Patient serum creatine kinase levels 
decreased after treatment in both studies, 
which was replicated in a later clinical trial with 
administration of gentamicin over a longer peri-
od [39]. In the latter study, patients treated for 
6 months had significantly increased dystro-
phin levels in their post-treatment muscle com-
pared with the pre-treatment muscle [39].

The results obtained supported the potency of 
gentamicin-mediated read-through, but the 
potential for renal and otic toxicities, as well as 
the lack of clear clinical efficacy led research-
ers to investigate novel compounds. High-
throughput screening was performed to identify 
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compounds that promote nonsense suppres-
sion, where minimally toxic compounds were 
sought [32]. These analyses identified ataluren 
(formerly known as PTC124) (3-[5-(2-fluorophe-
nyl)-[1,2,4]oxa-diazol-3-yl]-benzoic acid; C15- 
H9FN2O3), a compound that shares no struc-
tural similarity with aminoglycosides and is 
active at a lower concentration [32]. Ataluren 
selectively induces ribosomal read-through of 
premature but not normal termination codons 
and promotes dystrophin production in human 
and mouse muscle cells, as well as protecting 
the muscle from contraction-induced injury in 
mdx mice [32]. A phase 2a, open-label, sequen-
tial clinical trial was conducted in patients and 
a quantitative analysis assessing the dystro-
phin/spectrin ratio demonstrated increased 
dystrophin expression in 23 of 38 patients, 
while a qualitative analysis based on immuno-
fluorescence detected positive changes in 13 
of 38 patients [40]. A phase 2b, multicenter, 
randomized, double-blinded trial detected a 
nonsignificant but favorable result, where the 
difference in 6MWT was 31.3 m in favor of the 
treated group [41]. PTC therapeutics, the phar-
maceutical company that developed ataluren, 
has recently announced the results of a phase 
3, double-blind, placebo-controlled study, whi- 
ch detected a nonsignificant effect, although a 
15-m improvement was observed in 6MWT in 
the overall study population, in addition to no 
loss of ambulation in the treated group com-
pared with loss in 4 of 52 patients in the pla-
cebo group (http://ir.ptcbio.com/releasedetail.
cfm?ReleaseID=936905).

Some researchers have expressed doubts over 
ataluren’s mechanism of action and the Eur- 
opean Medicines Agency (EMA), the drug regu-
lator in the EU, previously rejected the drug for 
approval [42]. However, the urgent clinical need 
led the EMA to reconsider its approval, and ata-
luren (Translarna) has now received authoriza-
tion for marketing in Europe.

Compounds other than ataluren have also been 
investigated, where RTC13 and RTC14, com-
pounds with read-through function identified by 
high-throughput screening assay, have poten-
tial, but they have not been tested in patients 
[43].

Vector-mediated gene therapy 

Originally, the identification of patients with 
very mild BMD with large deletions in the cen-

tral part of the DMD gene [11, 44] led to the 
suggestion that dystrophin containing only 
some domains could still be functional [45]. 
Research has shown that the central rod 
domain and C-terminal domain can be truncat-
ed with minimal impact on function but not the 
N-terminal domain or cysteine-rich domain 
deletions [46-48].

A general scheme for vector-mediated gene 
therapy in DMD is to deliver functional copies of 
the DMD gene to restore the lost protein via 
viral or nonviral vectors. Several viral vectors 
have been studied, including lenti- and adeno-
associated viruses (AAVs) [45], and AAV vectors 
are currently the most widely used vector in 
vector-mediated gene therapy. The reason for 
the wide usage of AAV vectors refer to their low 
immunogenicity and defective replication, whi- 
ch facilitate organ-specific functional interven-
tions, with long-term transgene expression over 
many years in nondividing cells [49, 50]. 
Additionally, the wild-type AAV is not associated 
with any known pathogenicity [49]. Micro-
dystophins are functional, smaller cDNA clones 
of dystrophin with four or fewer repeats [51], 
and the small size of micro-dystrophin allows it 
to be packaged into AAV vectors with a relative-
ly small packaging capacity of about 5 kb [49]. 
When AAV vectors packaged with micro-dystro-
phin was injected locally to the muscle of mdx 
mice, dystrophin and DGC was restored, as well 
as ameliorated muscle histopathology [50, 51]. 
Furthermore, micro-dystrophin could restore 
muscle function [52, 53]. Systemic AAV gene 
transfer in larger animals, that is, DMD dogs, 
has also demonstrated the safe and efficient 
transduction of the DMD gene [54]. On the 
other hand, an attempt to transfer the full-
length DMD-coding sequence into muscle cells 
by dual high-capacity adenovirus/AAV vectors 
has been reported [55]. More recent reports 
have demonstrated the delivery of the full-
length DMD gene via multiple AAV vectors in 
mdx mice by splitting the full coding sequences 
into three fragments and packaging them into 
separate independent vectors, which can be 
reconstituted into a larger clone in vivo [49, 56, 
57]. 

In human DMD trials, a local injection study of 
full-length dystrophin delivery demonstrated 
the expression of dystrophin, but the low recon-
stitution rate and ambiguous functional benefit 
are problems that still need to be solved. A 
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phase 1, randomized, double-blind, placebo-
controlled clinical study of the local injection of 
AAV-mini-dystrophin demonstrated its safety 
and it was well tolerated, while AAV genomes 
were detected in all of the patients. However, 
the expression of dystrophin was limited, and 
the changes according to physical examina-
tions were unremarkable [58].

It has been reported that clinical study of gene 
replacement via a self-complementary AAV9 
vector in spinal muscular atrophy type 1 
patients, which is a neuromuscular disorder 
that manifests severe muscle weakness from 
early infancy, yielded significant improvements 
in survival (NCT02122952). Further, an AAV 
product have already been approved for mar-
keting in Europe, which is Glybera, the AAV vec-
tor engineered to express lipoprotein lipase to 
treat lipoprotein lipase deficiency [59]. Taken 
together, AAV vector-mediated gene delivery is 
a promising therapeutic approach.

Two main concerns need to be resolved regard-
ing the immune response to AAV vector-mediat-
ed gene therapy. One is the potential pre-exis-
tence of AAV-neutralizing antibodies because a 
significant proportion of the human population 
is known to have pre-existing neutralizing anti-
bodies for AAV [60]. The second is the potential 
risk of inducing immunoreactivity to the newly 
translated dystrophin obtained from the thera-
peutic transgene, as reported by Mendell et al. 
[61]. Both pre-existing neutralizing antibodies 
for AAV and induced immunoreactivity to newly 
translated protein can lead to loss of transgene 
expression [60-62]. The usage of immunosup-
pressive therapy and other preventive mea-
sures may be required to induce persistent 
antigen-specific tolerance [63].

Nonviral vectors such as plasmids, human arti-
ficial chromosomes, and transposons have the 
advantages that they can avoid any risk of an 
immune response because of viral proteins 
and insertional mutagenesis, and most have a 
high cloning capacity [45]. A sequential study of 
locally injected plasmid-based gene therapy in 
nine patients with DMD/BMD detected no side 
effects, and dystrophin expression was indicat-
ed in six patients [62]. 

Cell transplantation

The transplantation of cells that produce func-
tional dystrophin into patients with DMD can 

restore the lost protein, as well as lead to the 
formation of new fibers. The cells used for 
transplantation can either be genetically 
unmodified cells from normal donors or be 
autologous genetically corrected cells [64], and 
the cell source can be variable.

Satellite cells (SCs), which were identified in the 
1960s, are cells located underneath the basal 
lamina of muscle fibers [65], and they are con-
sidered to be the stem cells for skeletal muscle. 
SCs are present in mammalian muscle as qui-
escent cells and when activated by muscle 
injury they transform into myoblasts and gener-
ate large numbers of new muscle fibers [66]. 
SCs and myoblasts are considered to be good 
candidates for cell therapy in DMD because of 
their ability to generate and regenerate muscle 
fibers. Normal myoblasts injection into mdx 
mice converted pre-existing or regenerated 
muscle fibers as dystrophin positive [67]. In 
patients with DMD, the intramuscular injection 
of normal human SCs or myoblasts into a small 
number of patients led to the expression of 
donor-derived dystrophin to some extent, but 
no clear data on the amelioration of muscle 
function were reported [68-70].  

Cell sources other than SCs and myoblasts 
include muscle-derived stem cells, CD133+ 
stem cells, PW1+ interstitial cells, mesoangio-
blasts, mesenchymal stem cells, hematopoetic 
stem cells, embryonic stem cells, and induced 
pluripotent stem (iPS) cells. Among these, the 
transplantation of CD133+ stem cells and 
mesoangioblasts are the most advanced forms 
of cell therapy currently in clinical trials con-
ducted in patients. CD133, which was originally 
described as a polypeptide expressed on a 
population of circulating human hematopoiet-
ic/endothelial progenitors, was identified as 
comprising a subpopulation of human muscle-
derived stem cells that could differentiate into 
muscle, hematopoietic, and endothelial cell 
types when exposed to certain cytokines [71]. 
Injecting human circulating CD133+ stem cells 
into the skeletal muscle of scid/mdx mice was 
shown to significantly ameliorate the muscle 
structure and function [71]. A phase 1, double-
blind clinical trial based on the autologous 
transplantation of muscle-derived CD133+ 
stem cells into patients with DMD was found to 
be safe [72]. 

Mesoangioblasts are vessel-associated stem 
cells [73]. In skeletal muscle, they can be iso-
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Table 3. Descriptions of registered clinical trials for studies aiming to compensate for the lack of dystrophin. (Current status, December 2015)
Drug/compound Description Company/Institute Status Clinical trial no. Remarks Ref.
Anti-inflammatory/fibrotic/oxidant
    HT-100 Halofuginone Akashi Therapeutics Phase 1/2 NCT01847573,

NCT01978366,
NCT02525302

    CATENA/RAXONE Idebenone Santhera Pharmaceuticals Phase 3 
completed

NCT01027884 Showed reduction in loss of respira-
tory function.

[83]

EPA, DHA Coordinación de Investigación en Salud (Mexico) Phase 2 NCT01826422
    CAT-1004 Salicylate and DHA conjugate Catabasis Pharmaceuticals Phase 1/2 NCT02439216

Epigallocatechin-Gallate Charite University, Berlin, Germany Phase 2/3 NCT01183767
    TAS-205 Prostaglandin D synthase inhibitor Taiho Pharmaceutical Co., Ltd. Phase 1 

completed
NCT02246478

Myostatin pathway inhibitor
rAAV1.CMV.huFollistin344 Nationwide Children’s Hospital (USA) Phase 1/2 NCT02354781

    Givinostat Histone deacetylases inhibitor Italfarmaco Phase 1/2 NCT01761292
    PF-06252616 Anti-myostatin monoclonal antibody Pfizer Phase 2 NCT02310763
nNOS pathway enhancement
    LY450190/Cialis Tadalafil Eli Lilly and Company Phase 3 NCT01865084

Tadalafil and sildenafil Cedars-Sinai Medical Center (USA) Phase 1 
completed

NCT01580501 Improved functional ischemia and 
exercise-induced muscle blood flow.

[100]

L-citrulline and Metformin University Hospital, Basel (Switzerland) Phase 3 NCT01995032
L-Arginine and Metformin University Hospital, Basel (Switzerland) Phase 1 NCT02516085

Utrophin up-regulation
    SMT C1100 5-(ethylsulfonyl)-2-(naphthalene-2yl) 

benzo[d]oxazole
Summit Therapeutics Phase 1b 

completed
NCT02056808
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lated from the muscle vasculature, and they 
can differentiate into muscle fibers which 
migrate from the vessel into the surrounding 
muscle fibers where they eventually differenti-
ate into local tissues [73]. The intra-arterial 
delivery of wild-type mesoangioblasts in DMD 
dogs led to the recovery of dystrophin expres-
sion, muscle morphology and muscle function 
[74]. Recently, a phase 1-2a, nonrandomized, 
open-label clinical trial of intra-arterial mesoan-
gioblast transplantation in five patients with 
DMD was reported to be relatively safe, where 
one patient developed a thalamic stroke with 
an unknown relationship to the therapy but with 
inconclusive effects on muscle function [75]. 

The utilization of iPS cells, which are still at the 
preclinical investigation stage, is expected to 
be one of the most promising strategies for 
future applications. Indeed, the transplantation 
of human iPS-derived myogenic cells into mdx 
mice had favorable outcomes in terms of dys-
trophin expression and muscle function [76].

Therapies that compensate for the lack of 
dystrophin

Reports of animal models and patients with 
both out-of-frame mutations in the DMD gene 
and the complete lack of dystrophin in muscle 
specimens with minimal muscle weakness 
have attracted researchers to using genetic 
and epigenetic disease-modifying factors. The 
potential of environmental circumstance modu-
lation in DMD may lead to the dramatic amelio-
ration of this phenotype. 

Anti-inflammatory and anti-fibrotic agents/
antioxidants

Muscles from patients with DMD exhibit the 
infiltration of inflammatory cells, predominantly 
by macrophages and lymphocytes [77]. M1 and 
M2 macrophages, which are both observed in 
the muscles of patients with DMD, have been 
reported to play individual roles, where M1 
macrophages occur acutely to phagocytize cell 
debris and the M2 macrophages then regener-
ate myofibers [77, 78]. In addition, several other 
immune cells and cytokines regulated by nucle-
ar factor-kappa B (NF-κB), a major inflammatory 
and transcription factor, are known to be 
involved in the pathophysiology of DMD. A study 
that depleted macrophages from mdx mice 
reported reductions in the muscle pathology 

[79]. Together with evidence of the positive 
effects of glucocorticoids in patients with DMD, 
the rationale for pursuing the anti-inflammatory 
approach in DMD therapy has come into clear-
er focus. 

Endomysial fibrosis in the muscles of patients 
with DMD is correlated with clinical severity 
and because the transforming growth factor-β 
(TGF-β) pathway plays an important role in 
fibrotic tissue formation, this has now become 
the major target of antifibrotic approaches in 
DMD [80, 81]. Increases in reactive oxygen 
species have also been found in DMD, which 
are considered to contribute to membrane per-
meability, protein degradation, and inflamma-
tory pathway activation [82], and thus they are 
potential therapeutic targets.

A recent phase 3 clinical trial using idebenone, 
an antioxidant that inhibits lipid peroxidation 
and is capable of stimulating mitochondrial 
electron reflux as well as cellular energy pro-
duction, demonstrated the reduced loss of 
respiratory function in patients with DMD [83]. 
Other drugs such as halofuginone, a TGF-β-
mediated pathway inhibitor [84], and epigallo-
catechin-gallate , a polyphenol that is a poten-
tial antioxidant, are also in clinical trials (Table 
3). Additionally, the clinical trials on CAT-100, a 
conjugate of salicylate and docosahexaenoic 
acid acting as an NF-κB inhibitor (http://www.
catabasis.com/), and a prostaglandin D syn-
thase inhibitor [85] are underway (Table 3). 

Myostatin pathway inhibitor

Myostatin is a member of the TGF-β superfam-
ily that is essential for the appropriate regula-
tion of skeletal muscle mass, and it was first 
reported in 1997 [86]. When the Myostatin 
gene is disrupted, the skeletal muscle of myo-
statin-null mice becomes significantly larger 
than that in the wild type, which is a conse-
quence of the increased number and size of the 
muscle fibers [86]. In addition, it has been indi-
cated that inhibiting the function of myostatin 
may be useful in the treatment of musculode-
generative diseases including muscular dystro-
phies. Animal studies with mdx mice that 
genetically lacked or that had postnatally 
blocked myostatin exhibited improved muscle 
phenotypes [87, 88]. Activin receptor type IIB, a 
receptor of TGF-β superfamily members includ-
ing myostatin and follistatin, an activin-binding 
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protein that inhibits myostatin from binding to 
the receptors, have also been studied in mdx 
mice with favorable outcomes [89, 90]. Clinical 
trials of Follistatin gene transfer via AAV vector, 
follistatin expression induction by deacetylase 
inhibitors [91], and anti-myostatin monoclonal 
antibody administration are currently under 
way (Table 3).

Neuronal nitric oxide synthase (nNOS) pathway 
enhancement

There are three major isoforms of nitiric oxide 
(NOS), which are neuronal NOS (nNOS), endo-
thelial NOS, and inducible NOS. Among the 
three isoforms, nNOS is the most prominent 
type expressed in skeletal muscle, where it is a 
component of DGC and it is the predominant 
source of NO. Alternative splicing yields two 
functionally distinct nNOS forms; that is, nNOSμ 
localizes to the sarcolemma and nNOSβ local-
izes in the Golgi [80, 92]. The NO produced by 
nNOSμ attenuates vasoconstriction to deliver 
adequate blood and oxygen to the muscle, 
whereas the NO generated via nNOSβ main-
tains the ability of contracting muscle to gener-
ate force during and after exercise [80]. 

NO stimulates soluble guanylate cyclase to pro-
duce cyclic guanosine monophosphate (cGMP), 
which acts to relax smooth muscle in the vascu-
lature. Studies have shown that in dystrophin-
deficient muscle nNOS is aberrantly translocat-
ed from the sarcolemma to the cytosol, while 
the overall nNOS level is decreased compared 
with that in normal muscle [93, 94]. These 
observations have attracted interest in nNOS 
because of its role in pathogenesis but also as 
a potential target for therapeutic strategies. 

It has been proposed that the ischemic process 
plays a role in the pathogenesis of muscle fiber 
necrosis in DMD [95]. It was also reported that 
the vasoconstrictor response to reflex sympa-
thetic activation was defective during exercise 
in nNOS null mice, mdx mice, and patients with 
DMD but not in other nNOS-intact muscle dis-
eases. Therefore, nNOS deficiency may lead to 
functional muscle ischemia as well as contrib-
ute to the pathogenesis of DMD [96, 97].

The administration of phosphodiesterase-5 
inhibitor (PDE5I), which can increase the intra-
cellular cGMP level in vascular smooth muscle 
cells and cause vasodilation, was shown to 

have a beneficial effect in mdx mice [98]. 
Another study demonstrated that genetically-
overexpressed cGMP production in the hearts 
of mdx mice reduced cardiomyopathic changes 
[99]. A phase 1, open-label, crossover trial with 
PDE5I (tadalafil or sildenafil) in patients with 
DMD indicated the alleviation of functional 
ischemia and normalized exercise-induced 
increases in muscle blood flow [100]. In addi-
tion, a phase 2, double-blind, randomized, pla-
cebo-controlled study of sildenafil found no 
improvement in cardiomyopathy in DMD [101].

Utrophin upregulation

Utrophin, a dystrophin homologue, was discov-
ered in a study of proteins that share sequence 
similarity with dystrophin C-terminal domain 
[102]. In healthy skeletal muscle, utrophin was 
observed at neuromuscular junctions, but utro-
phin was upregulated at the sarcolemma in 
muscles from patients with DMD and mdx mice 
[103]. In a therapeutic context, the genetic 
upregulation of utrophin and the subsequent 
development of an orally bioavailable small 
molecule (SMT C1100) to upregulate utrophin 
led to improved muscle pathology and function 
in mdx mice [104-106]. SMT C1100 was devel-
oped in a high-throughput screening assay to 
identify compounds with the ability to increase 
the transcription of endogenous utrophin using 
a human muscle-specific utrophin A promoter 
cell-based assay [106]. A phase 1a clinical 
study of SMT C1100 in healthy volunteers dem-
onstrated its safety [107], and another study 
using a second-generation compound from the 
SMT C1100 family with improved physicochem-
ical properties and more robust metabolism 
profiles obtained a favorable outcome in mdx 
mice [108]. 

The main concern related to utrophin-targeted 
therapy is that utrophin does not anchor nNOS 
to the sarcolemma, and thus unmet metabolic 
needs related to blood flow defects in DMD 
may remain [109].

Future perspectives

The innovative therapeutic approaches illus-
trated in this review are supported by a ratio-
nale and accumulated preclinical data. One of 
the most promising therapies is arguably ASO-
based exon skipping. However, the main prob-
lem of the current ASO drug-based approach is 
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its limited efficacy owing to poor cellular uptake. 
The hydrophobic plasma membrane consti-
tutes an almost insurmountable barrier around 
muscle fibers, resulting in poor delivery of ASO 
and preventing optimization of ASO-mediated 
therapy for DMD or other muscular dystrophies. 
In regard to this issue, we have recently report-
ed that PMO and 2’OMePS entries into muscle 
fibres are dependent on the myogenic stage 
rather than on an intrinsic defect in the mem-
brane of muscle fibres lacking dystrophin: the 
“leaky-membrane” hypothesis [110]. Further- 
more, we have demonstrated scavenger recep-
tor-mediated uptake for a range of therapeutic 
ASO chemistries depending on their self-
assembly into nanoparticles. The success in 
understanding the uptake mechanism of ASOs 
provides a platform for designing an entirely 
new ASO with efficient cellular uptake.

In parallel to the work on ASO-based exon skip-
ping studies, intensive pre-clinical research for 
DMD therapy is underway. Recent data showed 
significant amount of evidence on clustered 
regularly interspaced short palindromic repeats 
(CRISPR)-based genome editing for DMD. 
CRISPR system is a gene editing technology 
evolved from the adaptive immune system 
found in microbes to defend themselves 
against invading viruses by targeting their DNA 
sequences [111-113]. Mdx mice were treated 
with CRISPR/Cas9 system delivered by AAV 
vector, and have shown restoration of dystro-
phin in muscle fibers and improvement in mus-
cle function [114-116]. In addition, this CRISPR-
based gene editing in mdx mice restored 
dystrophin in cardiomyocytes. Other studies 
using animal models have indicated the possi-
bility of long-term muscle regeneration through 
the granulocyte colony-stimulating factor 
(G-CSF) receptor axis [117], potential effect of 
gene editing by CRISPR/Cas9 [118], and 
marked amelioration of the phenotype by over-
expressing the Jagged1 gene [119]. These find-
ings may also shed light on novel avenues of 
DMD therapy.

Irrespective of the great efforts made to devel-
op novel therapies by basic scientists and phy-
sicians, many of these approaches have failed 
to exhibit the same efficacy in patients as 
shown in animal models. Several factors may 
explain why it is so difficult to replicate preclini-
cal research data in patients. One is the small 

number of patients of DMD, therefore, this 
issue hinders the design of large cohort studies 
with sufficient power to detect the efficacy of 
therapies. The second main problem is the het-
erogeneity in the severity of DMD, which may 
also be a factor that prevents comparisons of 
the functional outcomes between the treated 
and placebo groups. The third issue is the lack 
of optimal outcome measures to evaluate the 
efficacy of new drugs for DMD. For example, 
compelling argument has been provided for the 
clinical use of 6MWT in the evaluation of 
patients with DMD. In addition, 6MWT cannot 
be applied to patients who are non-ambulatory. 
Surrogate biomarker such as dystrophin also 
has limitation, since the assessment of dystro-
phin levels in a small piece of muscle repre-
sents only a crude estimate of clinical efficacy. 
It might be fundamental to understand the 
natural history of DMD and its covariates 
including gene mutations, which can influence 
the sensitivity of clinical trials, will help in the 
design of future clinical trials [120]. Together, 
the development of a therapeutic approach 
and outcome measures, including biomarkers, 
with more versatility is urgently required.

Conclusion

Over recent years, there has been great prog-
ress in DMD therapy development.

With the advances in the innovative therapeu-
tic approaches, the development of clinical trial 
networks and optimization of outcome mea-
sures for evaluating clinical efficacy have been 
conducted. As exemplified in TREAT-NMD (http: 
//www.treat-nmd.eu/) or MDCTN (http://www.
mdctn.jp/) in Japan, the clinical trial networks 
have made more accessible to resources and 
expertise, thereby making the researchers and 
pharmaceutical companies much easier to 
conduct clinical trials. These platforms have 
accelerate the path for pre-clinical discoveries 
to be utilized in clinical settings and are not 
only applicable to DMD but also to other neuro-
logical and muscular disorders that have no 
cure. 
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