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Abstract: This study tested the hypothesis that combination therapy using extracorporeal shock wave (ECSW)-mela-
tonin (Mel) was superior to either alone at ameliorating neuropathic pain (NP). NP was induced by chronic constric-
tion injury (CCI) to the left sciatic nerve in rats. Animals were categorized into sham control (group 1), CCI only (group 
2), CCI-ECSW (group 3), CCI-Mel (group 4) and CCI-ECSW-Mel (group 5). By days 2 and 8 after CCI, the mechanical 
paw withdrawal threshold (MPWT)/thermal paw withdrawal latency (TPWL) were highest in group 2, lowest in group 
1, significantly lower in group 5 than in groups 3 and 4 (all p<0.0001), and not significantly different between 
groups 3 and 4. The protein expressions of inflammatory (TNF-α/NF-κB/MMP-9/IL-1ß/GFAP/ox42), oxidative-stress 
(NOX-1/NOX-2/NOX-4/oxidized protein), DNA/mitochondrial-damaged (γ-H2AX/cytosolic mitochondria), apoptotic 
(cleaved capase-3/PARP), and MAPK family biomarkers (p-P38/p-JNK/p-ERK1/2) in dorsal root ganglia and spinal 
dorsal horn expressed a similar pattern of MPWT/TPWL among the five groups, except for significantly higher in 
group 4 than in group 3 (all p<0.0001). The protein expressions of Nav.1.3, Nav.1.8 and Nav.1.9 in sciatic nerve 
displayed an identical pattern to inflammation among the five groups (all p<0.001). Pain facilitated cellular expres-
sions (p-P38+/peripherin+ cells, P38+/NF200+ cells) displayed an identical pattern to inflammation among the 
five groups (all p<0.0001). In conclusion, ECSW-Mel combination therapy markedly ameliorated NP induced by CCI.
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wave, melatonin 

Introduction

Neuropathic pain (NP) disorders are common 
and have significant psychological and func-
tional effects on individuals, leading to wider 
socioeconomic impact [1, 2]. NP typically re- 
sults from lesions or diseases involving the 
peripheral nerve, dorsal root ganglion, dorsal 
root, or central nervous system [3]. Despite 
advanced pharmaceuticals for NP such as tricy-
clic antidepressants, anticonvulsants, calcium 
channel ligands and topical lidocaine [4-6], 
many patients continue to experience refracto-
ry pain. There thus remains a need for a new 

safe and effective treatment modality for this 
unresolved problem. 

The hallmarks of NP are peripheral and central 
sensitization, which arise through various com-
plex pathophysiological mechanisms making 
the disorder difficult to treat [3]. Studies have 
consistently identified that persistent inflam-
mation [7-9], oxidative stress [10-12], inflam-
matory cell infiltration and cytokine production 
[7-9] in the damaged/inflammatory tissue and 
organ, play central roles for the initiation and 
propagation of NP. A management strategy 
involving (1) anti-inflammation, (2) suppression 
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of oxidative stress and (3) relief from pain with-
out significant side effects would thus seem 
ideal. 

Extracorporeal shock wave (ECSW) treatments 
were originally used to fragment painful body-
calculi. However, its application for treating soft 
tissue pain is gaining interest since significant 
pain relief has been reported even in circum-
stances where the symptomatic calcium depos-
its have not successfully been disintegrated 
[13]. ECSW therapy is known to suppress mus-
culoskeletal pain and tendinopathyor fasciitis, 
implicating a role in attenuating certain inflam-
matory and pain disorders [14-16]. We have 
additionally shown that ECSW therapy possess-
es anti-inflammatory, anti-oxidative, anti-apop-
totic, and neuroprotective capacities in the set-
tings of diabetic neuropathy [17] and ischemic 
organ dysfunction [18, 19]. Separately, melato-
nin, an indole hormone secreted mainly by the 
pineal gland, appears to play important roles in 
pain relief [20-23], maintenance of cell mem-
brane stability, and enhancing cell survival 
within stressed environments mainly by reduc-
ing cellular susceptibility to oxidative stress 
and free radical damage, and by suppressing 
the inflammatory reaction [20, 23-28].

Combining therapies with discrete neuropro-
tective, anti-inflammatory and antioxidant ca- 
pabilities may have additive benefits to those 
already provided by current NP treatments [29]. 
Combination therapies often have synergistic 
effects, offering greater than expected benefits 
for patients with intractable medical condi-
tions. Based on the aforementioned reports 
[14, 15, 17-21, 23, 25], this experimental study 
tested the hypothesis that combined therapy 
using ECSW and melatonin may be superior to 
either alone for offering antinociceptive effects 
in a rat model of NP.

Materials and methods

Ethics

All animal experimental procedures were ap- 
proved by the Institute of Animal Care and Use 
Committee at Kaohsiung Chang Gung Memorial 
Hospital (Affidavit of Approval of Animal Use 
Protocol No. 2015051303) and performed in 
accordance with the Guide for the Care and 
Use of Laboratory Animals [The Eighth Edition 
of the Guide for the Care and Use of Laboratory 
Animals (NRC 2011)].

Animals were housed in an Association for 
Assessment and Accreditation of Laboratory 
Animal Care International (AAALAC)-approved 
animal facility in our hospital with controlled 
temperature and light cycles (24°C and 12/12 
light cycle).

Animal model of neuropathic pain

Left sciatic mononeuropathies in rats were 
induced using the chronic constriction injury 
(CCI) procedure as previously described [30]. 
Under adequate isoflurane anesthesia, the left 
sciatic nerve was surgically dissected and 
exposed. Four chromic gut ties (4-0) were used 
to ligate the nerve at 1 mm intervals loosely 
enough so that, under microscope inspection, 
the epineural blood circulation was not 
obstructed. The incision was then closed in lay-
ers and animals recovered from anesthesia. 
Sham surgery involved dissecting and exposing 
the sciatic nerve without performing ligations. 

Animal grouping and treatment strategy

Pathogen-free, adult male Sprague-Dawley 
(SD) rats (n = 40) weighing 325-350 g (Charles 
River Technology, BioLASCO Taiwan Co. Ltd., 
Taiwan) were randomly divided into five groups: 
group 1 [sham control (SC), i.e., sciatic nerve 
exposure without ligatures], group 2 (CCI only), 
group 3 [CCI + ECSW (0.12 mJ/mm2, 200 
impulses/time at post-CCI 3 h, day 3, and 7, 
skin surface above the femoral areas)], group 4 
[CCI + melatonin (50 mg/kg at post-CCI 3 h and 
20 mg/kg at post-CCI 18/48 h, intra-peritone-
al), and group 5 (CCI + ECSW + melatonin). 
ECSW energy and melatonin dosages used for 
treating CCI-induced neuropathic pain were 
based on our previous reports [17, 25, 31-33]. 

Behavioral assessments

To elucidate the impact of ECSW-melatonin 
therapy on suppressing the neuropathic pain at 
acute and subacute stages, thermal and 
mechanical nociceptive thresholds were mea-
sured before CCI and on post-CCI days 2 and 8. 
To assess for thermal hyperalgesia, the animal 
was placed on a glass plate and radiant heat 
(Plantar Test Apparatus; UgoBasile, Italy) was 
applied to the plantar surface of the operated 
hind paw. The withdrawal latency and duration 
were recorded, with a minimum value set at 0.1 
s and a cut-off latency set at 30 s to avoid paw 
injury. Each rat was tested three times at an 



ECSW-melatonin against neuropathic pain

4595 Am J Transl Res 2017;9(10):4593-4606

interval of 5 min, and mean values were used in 
the analysis.

To assess for mechanical allodynia, the animal 
was placed in a chamber and a servo-con- 
trolled mechanical stimulus (Dynamic Plantar 
Aesthesiometer; UgoBasile, Italy) was applied 
to the plantar surface of the operated hind  
paw repeatedly at 5-min intervals with increas-
ing punctate pressure until the rat withdrew  
its paw.A maximal cut-off value was set at 50 g 
to prevent paw damage. The threshold was 
tested thrice for each time point andmean  
values were used in the analysis.

Western blot analysis

The ipsilateral sciatic nerve, L4-L5 dorsal root 
ganglia (DRGs) and corresponding dorsal horn 
of the spinal cord from the rats of the sham 
control and experimental groups were harvest-
ed as previously described [25, 33-36]. Equal 
amounts (50 µg) of protein extracts were load-
ed and separated by SDS-PAGE using 8-12% 
acrylamide gradients. After electrophoresis, 
the separated proteins were transferred elec-
trophoretically to a polyvinylidene difluoride 
(PVDF) membrane (Amersham Biosciences). 
Nonspecific sites were blocked by incubation  
of the membrane in blocking buffer [5% nonf- 
at dry milk in T-TBS (TBS containing 0.05% 
Tween 20)] overnight. The membranes were 
incubated with the indicated primary antibod-
ies [cleaved caspase 3 (1:1000, Cell Signaling), 
cleaved poly (ADP-ribose) polymerase (PARP) 
(1:1000, Cell Signaling), cytosolic cytochrome C 
(1:2000, Millipore), NADPH oxidase (NOX)-1  
(1:2000, Sigma), NOX-2 (1:750, Sigma), NOX-4 
(1:1000, Abcam),interleukin (IL)-1β (1:1000, 
Cell Signaling), tumor necrosis factor (TNF)-α 
(1:1000, Cell Signaling), nuclear factor (NF)- 
κB (1:600, Abcam), matrix metalloproteinase 
(MMP)-9 (1:3000, Abcam), phosphorylated his-
tone H2AX (γ-H2AX) (1/1000, Abcam), phos-
phorylated (p)-p38 (1:1000, Cell Signaling), 
p-JNK (1:1000, Abcam), p-ERK1/2 (1:1000, 
Abcam), Nav 1.3 (1:200, Alomone Labs), Nav 
1.8 (1:2000, Abcam), Nav 1.9 (1:200, Alomone 
Labs) and actin (1:10000, Millipore)] for 1 hour 
at room temperature. Horseradish peroxidase-
conjugated anti-rabbit immunoglobulin IgG 
(1:2000, Cell Signaling) was used as the sec-
ondary antibody for onehour incubation at ro- 
om temperature. The washing procedure was 
repeated eight times within an hour, and immu- 

noreactive bands were visualized by enhanc- 
ed chemiluminescence (ECL; Amersham Bi- 
osciences) after exposure to Biomax L film 
(Kodak). For quantification, ECL signals were 
digitized using Labwork software (UVP).

Immunofluorescent (IF) staining

IF staining proceeded as our previously repo- 
rted [37, 38]. Rehydrated paraffin sections 
were first treated with 3% H2O2 for 30 minutes 
and incubated with Immuno-Block reagent 
(BioSB, Santa Barbara, CA, USA) for 30 minutes 
at room temperature. Sections were then in- 
cubated with primary antibodies specifically 
against p-p38 (1:500, Gene Tex), NF-200 (7.5 
µg, Abcam), and peripherin (1:1000, Ab- 
cam). Sections incubated with irrelevant anti-
bodies served as controls. Three sections of 
DRG specimens were analysed in each rat. For 
quantification, three randomly selected high 
power fields (HPFs) were analysed per section. 
The mean number of positively-stained cells 
per HPF for each animal was determined across 
all nine HPFs.

Oxidative stress reaction inlung parenchyma 

The procedure for assessing protein expres-
sion of oxidative stress has previously been 
described [17, 25, 39], using the Oxyblot 
Oxidized Protein Detection Kit (Chemicon S7- 
150, Billerica, MA, USA). For quantification, ECL 
signals were digitized using Labwork software 
(UVP, Waltham, MA, USA).

Statistical analysis

Quantitative data are expressed as mean ± SD. 
Statistical analysis was performed by ANOVA, 
followed by Bonferroni multiple-comparison 
post hoc test. Statistical analysis was also per-
formed using SPSS (SPSS for Windows, version 
13; SPSS, IL, U.S.A.). The threshold for statisti-
cal significance was considered P<0.05.

Results

Mechanical paw withdrawal threshold (MPWT) 
and thermal paw withdrawal latency (TPWL) at 
days 2 and 8 after CCI (Figure 1)

By day 2 after CCI, MPWT was significantly 
reduced in group 2 (CCI), group 3 (CCI-ECSW), 
group 4 (CCI-Mel) and group 5 (CCI-ECSW-Mel) 
compared to group 1 (SC), significantly reduced 
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in group 2 than in groups 3 to 5, and not signifi-
cantly different amongst groups 3 to 5. By day 
8 after CCI, MPWT was significantly reduced in 
groups 2 to 5 compared to group 1, significantly 
reduced in groups 3 and 4 than group 5, more 
significantly reduced in group 2 than in group 5, 
but not significantly different between groups 3 
and 4. This suggested that combined therapy 
was superior to either one alone for reducing 
MPWT. 

By day 2 after CCI procedure, TPWL was signifi-
cantly highest in group 1, lowest in group 2, sig-
nificantly lower in groups 3 and 4 than in group 
5, and not significantly different between 
groups 3 and 4. By day 8 after CCI procedure, 
TPWL showed an identical pattern among the 
five groups. 

The protein expressions of sciatic nerve- and 
L4-5 DRGs-voltage-gated sodium channels 
and inflammatory biomarkers in L4-5 DRGs by 
day 8 after CCI (Figure 2)

The protein expressions of Nav.1.3, Nav.1.8 
and Nav.1.9, three indicators of voltage-gated 
sodium channels for sciatic nerve, were lowest 
in group 1, highest in group 2, significantly high-
er in groups 3 and 4 than in group 5, and signifi-
cantly higher in group 4 than in group 3. 
Additionally, the protein expressions of Nav.1.3, 

Nav.1.8 and Nav.1.9, indicators of voltage-gat-
ed sodium channels for L4-5 DRGs, exhibited 
an identical pattern to sciatic nerve among the 
five groups.

The protein expressions of TNF-α, NF-κB, 
MMP-9 and IL-1ß, four inflammatory biomark-
ers in L4-5 DRGs, were highest in group 2, low-
est in group 1, significantly higher in groups 3 
and 4 than in group 5, and significantly higher 
in group 4 than in group 3. 

Protein expressions of apoptotic, mitochon-
drial-damaged, DNA damaged and oxidative 
stress biomarkers in L4-5 DRGs by day 8 after 
CCI (Figure 3)

The protein expression of cleaved caspase 3 
and cleaved PARP, two indicators of apoptosis, 
were highest in group 2, lowest in group 1, sig-
nificantly higher in groups 3 and 4 than in group 
5, and significantly higher in group 4 than in 
group 3. Additionally, the protein expressions  
of γ-H2AX, an indicator of DNA damage, and 
cytosolic cytochrome C, an indicator of mito-
chondrial-damage, exhibited an identical pat-
tern to apoptosis among the five groups. 

The protein expressions of NOX-1, NOX-2, 
NOX-4 and oxidized protein, four indicators of 
oxidative stress, were highest in group 2, low-

Figure 1. MPWT and TPWL at days 2 and 8 in an experimental model of CCI. Left Panel: A. By day 0, the analytical re-
sults of MPWT did not differ among the five groups. B. By day 2, the analytical results of MPWT, * denotes statistical 
significance vs. other groups with different symbols (†, ‡), p<0.0001. The symbol † indicated CCI + ECSW, CCI + Mel 
and CCI + ECSW + Mel groups. C. By day 8, the analytical results of MPWT, * denotes statistical significance vs. other 
groups with different symbols (†, ‡, §), p<0.0001. The symbol ‡ indicated CCI + ECSW and CCI + Mel groups. Right 
Panel: D. By day 0, the analytical results of MPWT did not differ among the five groups. E. By day 2, the analytical 
results of TPWL, * denotes statistical significance vs. other groups with different symbols (†, ‡, §), p<0.0001. The 
symbol ‡ indicated CCI + ECSW and CC I + Mel groups. F. By day 8, the analytical results of TPWL, * denotes statisti-
cal significance vs. other groups with different symbols (†, ‡, §), p<0.0001. The symbol ‡ indicated CCI + ECSW and 
CCI + Mel groups. All statistical analyses were performed by one-way ANOVA and Bonferroni multiple comparison 
post-hoc test (n = 8 for each group). Symbols (*, †, ‡, §) indicate statistical significance. MPWT = mechanical paw 
withdrawal threshold; TPWL = thermal paw withdrawal latency; SC = sham control; CCI = chronic constriction injury; 
ECSW = extracorporeal shock wave; Mel = melatonin.
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Figure 2. The protein expressions of sciatic nerve- and L4-5 dorsal root ganglions (DRGs)-voltage-gated sodium 
channels and the protein expressions of inflammatory biomarkers in L4-5 DRGs by day 8 after CCI. A. Protein ex-
pression of Nav.1.3 in sciatic nerve, * denotes statistical significance vs. other groups with different symbols (†, ‡, 
§, ¶), p<0.001. B. Protein expression of Nav.1.8 in sciatic nerve, * denotes statistical significance vs. other groups 
with different symbols (†, ‡, §, ¶), p<0.001. C. Protein expression of Nav.1.9 in sciatic nerve, * denotes statistical 
significance vs. other groups with different symbols (†, ‡, §, ¶), p<0.001. D. Protein expression of Nav.1.3 in L4-5 
DRGs, * denotes statistical significance vs. other groups with different symbols (†, ‡, §, ¶), p<0.0001. E. Protein 
expression of Nav.1.8 in L4-5 DRGs, * denotes statistical significance vs. other groups with different symbols (†, 
‡, §, ¶), p<0.001. F. Protein expression of Nav.1.9 in L4-5 DRGs, * denotes statistical significance vs. other groups 
with different symbols (†, ‡, §, ¶), p<0.001. G. Protein expressions of tumor necrosis factor (TNF)-α, * denotes sta-
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tistical significance vs. other groups with different symbols (†, ‡, §, ¶), p<0.0001. H. Protein expression of necrosis 
factor (NF)-κB, * denotes statistical significance vs. other groups with different symbols (†, ‡, §, ¶), p<0.0001. I. 
Protein expression of matrix metalloproteinase (MMP)-9, * denotes statistical significance vs. other groups with dif-
ferent symbols (†, ‡, §, ¶), p<0.0001. J. Protein expression of interleukin (IL)-1ß, * denotes statistical significance 
vs. other groups with different symbols (†, ‡, §, ¶), p<0.0001. All statistical analyses were performed by one-way 
ANOVA, followed by Bonferroni multiple comparison post hoc test (n = 8 for each group). Symbols (*, †, ‡, §, ¶) 
indicate significance at the 0.05 level. SC = sham control; CCI = chronic constriction injury; ECSW = extracorporeal 
shock wave; Mel = melatonin. 

Figure 3. Protein expressions of apoptotic, mitochondrial-damaged, DNA damaged and oxidative-stress biomarkers 
in L4-5 dorsal root ganglions by day 8 after CCI procedure. A. Protein expression of cleaved caspase 3 (c-Casp 3), * 
denotes statistical significance vs. other groups with different symbols (†, ‡, §, ¶), p<0.0001. B. Protein expression 
of cleaved poly (ADP-ribose) polymerase (PARP), * denotes statistical significance vs. other groups with different 
symbols (†, ‡, §, ¶), p<0.0001. C. Protein expression of γ-H2AX, * denotes statistical significance vs. other groups 
with different symbols (†, ‡, §, ¶), p<0.0001. D. Protein expression of cytosolic cytochrome C (cyt-Cyt C), * denotes 
statistical significance vs. other groups with different symbols (†, ‡, §, ¶), p<0.001. E. Protein expression of NOX-1, 
* denotes statistical significance vs. other groups with different symbols (†, ‡, §, ¶), p<0.0001. F. Protein expres-
sion of NOX-2, * denotes statistical significance vs. other groups with different symbols (†, ‡, §, ¶), p<0.0001. 
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G. Protein expression of NOX-4, * denotes statistical significance vs. other groups with different symbols (†, ‡, 
§, ¶), p<0.0001. H. Oxidized protein expression, * denotes statistical significance vs. other groups with different 
symbols (†, ‡, §, ¶), p<0.0001. (Note: left and right lanes shown on the upper panel represent protein molecular 
weight marker and control oxidized molecular protein standard, respectively). M.W = molecular weight; DNP = 1-3 
dinitrophenylhydrazone. All statistical analyses were performed by one-way ANOVA, followed by Bonferroni multiple 
comparison post hoc test (n = 8 for each group). Symbols (*, †, ‡, §, ¶) indicate significance at the 0.05 level. SC = 
sham control; CCI = chronic constriction injury; ECSW = extracorporeal shock wave; Mel = melatonin.

Figure 4. Protein expressions of signaling transduction molecules in L4-5 dorsal root ganglions (DRGs) and inflam-
matory, apoptotic, mitochondrial-damaged and DNA damaged biomarkers inspinal dorsal horn (SDH) by day 8 after 
CCI procedure. A. Protein expression of phosphorylated (p)-p38 in L4-5 DRGs, * denotes statistical significance 
vs. other groups with different symbols (†, ‡, §, ¶), p<0.0001. B. Protein expression of p-JNK in L4-5 DRGs, * 
denotes statistical significance vs. other groups with different symbols (†, ‡, §, ¶), p<0.0001. C. Protein expres-
sion of p-ERK1/2 in L4-5 DRGs, * denotes statistical significance vs. other groups with different symbols (†, ‡, §, 
¶), p<0.0001. D. Protein expression of tumor necrosis factor (TNF)-α in SDH, * denotes statistical significance vs. 
other groups with different symbols (†, ‡, §, ¶), p<0.0001. E. Protein expression of interleukin (IL)-1ß in SDH, * 
denotes statistical significance vs. other groups with different symbols (†, ‡, §, ¶), p<0.0001. F. Protein expression 
of nuclear factor (NF)-κB in SDH, * denotes statistical significance vs. other groups with different symbols (†, ‡, §, 
¶), p<0.0001. G. Protein expression of matrix metalloproteinase (MMP)-9 in SDH, * denotes statistical significance 
vs. other groups with different symbols (†, ‡, §, ¶), p<0.0001. H. Protein expression of cleaved caspase 3 (c-Casp 
3) in SDH, * denotes statistical significance vs. other groups with different symbols (†, ‡, §, ¶), p<0.0001. I. Protein 
expression of cleaved poly (ADP-ribose) polymerase (c-PARP) in SDH, * denotes statistical significance vs. other 
groups with different symbols (†, ‡, §, ¶), p<0.0001. J. Protein expression of γ-H2AX in SDH, * denotes statistical 
significance vs. other groups with different symbols (†, ‡, §, ¶), p<0.0001. K. Protein expression of cytosolic cyto-
chrome C (cyt-Cyt C) in SDH, * denotes statistical significance vs. other groups with different symbols (†, ‡, §, ¶), 
p<0.0001. All statistical analyses were performed by one-way ANOVA, followed by Bonferroni multiple comparison 
post hoc test (n = 8 for each group). Symbols (*, †, ‡, §, ¶) indicate significance at the 0.05 level. SC = sham control; 
CCI = chronic constriction injury; ECSW = extracorporeal shock wave; Mel = melatonin.
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est in group 1, significantly higher in groups 3 
and 4 than in group 5, and significantly higher 
in group 4 than in group 3. 

Protein expressions of signaling transduction 
molecules in L4-5 DRGs and inflammatory, 
apoptotic, mitochondrial-damaged and DNA 
damaged biomarkers in spinal dorsal horn 
(SDH) by day 8 after CCI (Figure 4)

The protein expression of p-p38, p-JNK, 
p-ERK1/2 in L4-5 DRGs, three indicators of 
extracellular signal-regulated kinases (i.e., MA- 
PK family) for response to stress stimulations, 
were lowest in group 1, highest in group 2, sig-
nificantly higher in groups 3 and 4 than in group 
5, and significantly higher in group 4 than in 
group 3. 

The protein expressions of TNF-α and IL-1ß in 
SDH, two inflammatory biomarkers, were high-
est in group 2, lowest in group 1, significantly 
higher in groups 3 and 4 than in group 5, and 
significantly higher in group 4 than in group 3. 
Additionally, protein expressions of NF-κB and 
MMP-9 in SDH, another two indicators of in- 
flammation, showed a similar pattern to TNF-α 
among the five groups.

The protein expression of cleaved caspase 3 
and cleaved PARP in SDH, two indicators of 
apoptosis, were highest in group 2, lowest in 
group 1, significantly higher in groups 3 and 4 
than in group 5, and significantly higher in 
group 4 than in group 3. Additionally, the pro-
tein expressions of γ-H2AX in SDH, an indicator 
of DNA damage, exhibited an identical pattern 
to apoptosis among the five groups. Further- 
more, protein expression of cytosolic cyto-
chrome C in SDH, an indicator of mitochondrial-
damage, displayed a pattern similar to γ-H2AX 
among the five groups. 

Protein expressions of oxidative stress bio-
markers and signaling transduction molecules, 
microglia and astrocyte activity in SDH by day 
8 after CCI (Figure 5)

The protein expressions of NOX-1, NOX-2, NOX- 
4 and oxidized protein, four indicators of ox- 
idative stress, were highest in group 2, lowest 
in group 1, significantly higher in groups 3 and 
4 than in group 5, and significantly higher in 
group 4 than in group 3. 

The protein expressions of p-p38, p-JNK, 
p-ERK1/2, three indicators of extracellular sig-

nal-regulated kinases, were lowest in group 1, 
highest in group 2, significantly higher in groups 
3 and 4 than in group 5, and significantly higher 
in group 4 than in group 3.

The neuroinflammatory protein expressions of 
ox42, an indicator of microglial activation, and 
GFAP, an indicator of astrocyte activation, dis-
played an identical pattern to extracellular sig-
nal-regulated kinases among the five groups. 

IF microscopy for co-localization of p-P38 and 
peripherin in DRG neurons (Figure 6)

To elucidate the presence of a peripheral nerve 
injury,the expression of p38 MAPK activation 
(i.e., phosphorylated p38) was measured. IF 
microscopy identified that p-P38 expression in 
peripherin, an indicator of small unmyelinated 
C-fiber and thinly myelinated A-δ fiber of DRG 
neuronsthat transmit signals of thermal and 
noxious stimuli, were lowest in group 1, highest 
in group 2, significantly higher in groups 3 and 
4 than in group 5, and significantly higher in 
group 4 than in group 3.

IF microscopy for co-localization of p-P38 and 
NF200 in L4-5 DRG neurons (Figure 7)

IF microscopy identified that p-P38 expressi- 
on in NF200, an indicator of large myelinated 
A-β fiber of DRG neurons that transmit informa-
tion of non-noxious mechanical stimuli as well 
as abnormal mechanical allodynia in the pa- 
thologic neuropathic pain, was lowest in group 
1, highest in group 2, significantly higher in 
groups 3 and 4 than in group 5, and significant-
ly higher in group 4 than in group 3.

Discussion

This study investigated the impact of ECSW- 
Mel combination therapy on NP in rat and yield-
ed several striking implications. First, MPWT 
and TPWL were increased in CCI animals com-
pared to SC animals, suggesting that our exper-
imental model was successfully created for  
the purpose of this study. Second, both MPWT 
and TPWL were significantly suppressed in CCI 
+ ECSW-Mel animals compared to CCI only ani-
mals, and no ECSW-Mel-related complication 
was noted, highlighting both the safety and 
effectiveness of this combination treatment. 
Third, inflammation, oxidative stress, and MAPK 
family signaling pathway were found to be 
involved in NP and were markedly suppressed 
by ECSW-Mel therapy. 
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Figure 5. Protein expressions of oxidative stress biomarkers and signaling transduction molecules, microglia and 
astrocyte activity in spinal dorsal horn (SDH) by day 8 after CCI procedure. A. Protein expression of NOX-1, * denotes 
statistical significance vs. other groups with different symbols (†, ‡, §, ¶), p<0.0001. B. Protein expression of NOX-2, 
* denotes statistical significance vs. other groups with different symbols (†, ‡, §, ¶), p<0.0001. C. Protein expres-
sion of NOX-4, * denotes statistical significance vs. other groups with different symbols (†, ‡, §, ¶), p<0.0001. D. 
Oxidized protein expression, * denotes statistical significance vs. other groups with different symbols (†, ‡, §, ¶), 
p<0.0001. (Note: left and right lanes shown on the upper panel represent protein molecular weight marker and con-
trol oxidized molecular protein standard, respectively). M.W = molecular weight; DNP = 1-3 dinitrophenylhydrazone. 
E. Protein expression of phosphorylated (p)-p38, * denotes statistical significance vs. other groups with different 
symbols (†, ‡, §, ¶), p<0.0001. F. Protein expression of p-JNK, * denotes statistical significance vs. other groups 
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Clinical studies have previously shown that 
pain derived from the musculoskeletal system 
(i.e. tendonitis, plantar fasciitis, shoulder pain) 
were significantly inhibited by ECSW therapy 
[14-16]. Additionally, experimental studies have 
shown that Mel treatment inhibited NP [20-23]. 
The most important finding in the present study 
was that, as compared with CCI animals, the 
MPWT and TPWL, two standard tests for identi-
fying the degree of NP, were found to be signifi-
cantly attenuated in CCI animals treated with 
ECSW or Mel, and further significantly attenu-
ated in CCI animals after receiving combination 
ECSW-Mel treatment. Accordingly, our findings 
extended those of previous studies [25, 26, 33, 
35, 40, 41]. 

The underlying mechanisms involved in NP 
have been keenly investigated [3, 7, 8, 42-44] 
and are known to be complicated, involving per-
sistent inflammation, generation of oxidative 
stress and elicitation of MAPK family signaling 
pathways [7-9, 12, 42, 45-51]. A principal find-
ing in the present was that, as compared with 
SC group, the inflammatory reaction and gen-
eration of oxidative stress were markedly high-
er in the CCI group. Additionally, the MAKP fam-
ily signaling pathways (i.e., p-p38, p-JNK, 
p-ERK1/2) were markedly upregulated in CCI 
animals than in SC animals. Therefore, our find-
ings corroborated those of previous studies 
[45, 48, 51-53]. Importantly, the present study 
found that either ECSW or Mel treatment could 

with different symbols (†, ‡, §, ¶), p<0.0001. G. Protein expression of p-ERK1/2, * denotes statistical significance 
vs. other groups with different symbols (†, ‡, §, ¶), p<0.0001. H. Protein expression of ox42, * denotes statistical 
significance vs. other groups with different symbols (†, ‡, §, ¶), p<0.0001. I. Protein expression of grialfibrillary acid-
ic protein (GFAP), * denotes statistical significance vs. other groups with different symbols (†, ‡, §, ¶), p<0.0001. All 
statistical analyses were performed by one-way ANOVA, followed by Bonferroni multiple comparison post hoc test (n 
= 8 for each group). Symbols (*, †, ‡, §, ¶) indicate significance at the 0.05 level. SC = sham control; CCI = chronic 
constriction injury; ECSW = extracorporeal shock wave; Mel = melatonin.

Figure 6. Immunofluorescent (IF) microscopic finding of colocalization of p-P38 and peripherin indorsal root gan-
glion (DRG) neurons. A-E. Illustrating the IF microscopic finding (200x) positively stained p-P38 in DRG neurons (red 
color spots). F-J. Illustrating the IF microscopic finding (200x) positively stained peripherincells (green color). K-O. Il-
lustrating the IF microscopic finding (200x) of merged positively-stained p-P38 and peripherin (green-red colocaliza-
tion). P. Analytical results of number of p-P38+/peripherin+ cells, * denotes statistical significance vs. other groups 
with different symbols (†, ‡, §, ¶), p<0.0001. All statistical analyses were performed by one-way ANOVA, followed 
by Bonferroni multiple comparison post hoc test (n = 8 for each group). Symbols (*, †, ‡, §, ¶) indicate significance 
at the 0.05 level. SC = sham control; CCI = chronic constriction injury; ECSW = extracorporeal shock wave; Mel = 
melatonin.
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significantly suppress the inflammatory reac-
tion and generation of oxidative stress in SDH 
and DRG neurons of CCI animals. Of particular 
importance was that combined ECSW-Mel was 
superior to either therapy alone at suppressing 
the expressions of inflammation and oxidative 
stress. In this way, our findings support the 
reports of synergism from combined therapy in 
previous studies [25, 26, 33, 35, 40, 41], and 
also explain why MPWT and TPWL were sub-
stantially ameliorated in CCI animals after re- 
ceiving ECSW-Mel treatment. 

An association between inflammation/oxida-
tive stress and DNA/mitochondrial damage  
has been well recognized [7-10, 12, 17, 47]. 
Intriguingly, a link between inflammation/oxida-
tive stress and DNA/mitochondrial damage as 
well as apoptotic biomarkers in the present 
study were notably higher in CCI animals than 
in SC animals. However, these biomarkers were 
downregulated by ECSW or Mel treatment and 

further downregulated by combination ECSW-
Mel. Our findings, in addition toreinforcing the 
previous reports [25, 26, 33, 35, 40, 41], im- 
plicated that ECSW-Mel therapy effectively 
attenuated the DNA/mitochondrial damage 
through the suppressing the role of inflamma-
tion/oxidative stress reaction. Our previous 
study demonstrated that ECSW therapy pro-
tected the sciatic nerve against diabetic-
induced neuropathy [17] by inhibiting the 
inflammatory reaction and oxidative stress and 
DNA/mitochondrial damage. Accordingly, the 
findings of our previous study [17] were consis-
tent with those from this current study. 

Nav.1.3, Nav.1.8 and Nav.1.9 are three indica-
tors of voltage-gated sodium channels of sciat-
ic nerve/DRG neurons for ectopic discharges or 
activities in response to mechanical and ther-
mal stimulations [54, 55]. Their protein expres-
sions in sciatic nerve/DRG neurons were mark-
edly increased in CCI animals compared to SC 

Figure 7. Immunofluorescent (IF) microscopic finding of colocalization of p-P38 and NF200 indorsal root ganglion 
(DRG) neurons. A-E. Illustrating the IF microscopic finding (200x) positively stained p-P38 in DRG neurons (red color 
spots). F-J. Illustrating the IF microscopic finding (200x) positively stained NF200 cells (green color). K-O. Illustrating 
the IF microscopic finding (200x) of merged positively-stained p-P38 and NF200 (green-red colocalization). P. Ana-
lytical results of number of p-P38+/NF200+ cells, * denotes statistical significance vs. other groups with different 
symbols (†, ‡, §, ¶), p<0.0001. All statistical analyses were performed by one-way ANOVA, followed by Bonferroni 
multiple comparison post hoc test (n = 8 for each group). Symbols (*, †, ‡, §, ¶) indicate significance at the 0.05 
level. SC = sham control; CCI = chronic constriction injury; ECSW = extracorporeal shock wave; Mel = melatonin.
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animals. Additionally, the co-existing p-P38-pe-
ripherin+ and p-P38-NF200+ cells in DRG neu-
rons were substantially higher in the CCI groups 
than in the SC group. Our findings are thus com-
parable with those from previous studies [45, 
46, 48, 53] and could, at least in part, explain 
why MPWT and TPWL were significantly higher 
in CCI animals than in SC animals. However, 
these two parameters were notably suppressed 
by ECSW or Mel treatment and further sup-
pressed by ECSW-Mel combined treatment, 
highlighting that the regulation of voltage-gated 
sodium channels and the expressions of 
p-P38+/peripherin+ and p-P38+/NF200+ cells 
were crucial for stifling NP. 

Study limitation

This study has limitations. First, although out-
comes observed in the present study were 
promising, the study period was only eight days 
in duration. Therefore, long-term outcomes 
from the present study remain uncertain and 
invite further study. Second, although exten-
sive work was done in the present study, the 
exact underlying mechanisms of ECSW-Mel 
therapy for relieving NP remain unclear. 

In conclusion, the present study demonstrated 
that ECSW-Mel combination therapy effectively 
ameliorated NP in rat. These findings raise the 
need for a prospective clinical trial to answer 
whether this therapeutic option is also effec-
tive for patients with NP that is refractory to 
conventional therapy. 
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