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Abstract: In addition to antibiotic therapy for treatment of peritonitis, biologics have also been found to exhibit 
both anti-inflammatory and inflammation-resolving properties. Here, we first developed NF-κB transgenic mice with 
zymosan-induced acute peritonitis to investigate the effects of a novel anti-Toll-like receptor (TLR)2 antibody (anti-
T20). In this mouse model, anti-T20 treatment significantly attenuated the increase of peritoneal NF-κB activity and 
serum levels of inflammatory cytokines, including monocyte chemoattractant protein (MCP)-1, interleukin (IL)-6 and 
tumor necrosis factor (TNF)-α, in a dose-dependent manner compared to mice treated with isotype control antibody. 
Additionally, anti-T20 treatment significantly reduced MCP-1 levels as well as the leukocyte and total protein con-
centrations in the peritoneal exudates of peritonitis mice. Moreover, anti-T20 treatment significantly reduced TLR2 
signal transduction in the leukocytes in peritoneal exudates from the experimental peritonitis mice. In conclusion, 
we developed a zymosan-induced acute peritonitis mouse model that facilitated visualization of NF-κB activity and 
demonstrated that anti-T20 treatment plays a protective role in this model concomitant with the inhibition of the 
zymosan-induced inflammatory response.
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Introduction

Acute inflammation and its timely resolution 
are important in the host response to danger 
signals. Unresolved inflammation is associated 
with various recurrent diseases. Mechanisti- 
cally, the resolution of inflammation involves 
active biochemical programs that enable in- 
flamed tissues to return to homeostasis [1, 2].

Peritonitis is a common and serious complica-
tion that occurs especially in patients with end-
stage renal disease treated by peritoneal dia- 
lysis (PD). Although less than 5% of peritoni- 
tis episodes result in death, peritonitis is the 
direct or major contributing cause of death in 
approximately 16% of PD patients [3]. A varie- 
ty of micro-organisms, including gram-positive 
and gram-negative bacteria and fungi, cause 
peritonitis [4]. Antibiotic treatment, even if non-
specific, is essential for the rapid resolution of 
inflammation and preservation of peritoneal 
membrane function [3], as unresolved inflam-

mation exacerbates tissue injury and causes 
functional damage in the form of abscess or 
scar formation [5]; however, the side effects of 
antibiotic treatment, including drug resistan- 
ce, are becoming a serious concern. Thus, spe-
cific treatment for peritonitis is of particular 
urgency.

Peritonitis in animal models is usually initiated 
by microbial agents, such as zymosan, which is 
a ligand found on the surface of fungi. Zymosan 
is a glucan that contains repeating glucose 
units connected by β-1,3-glycosidic linkages, 
which bind to Toll-like receptor 2 (TLR2) and 
induce an inflammatory response cascade [6]. 
Therefore, specific blockade of TLR2-mediated 
inflammatory signaling and hypersensitivity re- 
actions may offer a novel therapeutic strate- 
gy for prevention of a variety of TLR2 agonist-
induced inflammatory conditions. We produced 
a novel TLR2 antibody (named anti-T20) against 
a 20-mer peptide that encodes the amino acid 
sequence of the predicted B cell-dominant epi-
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tope (DSQS LKSIRDIH HLTL HLSE), which is 
located in the extracellular specific domain  
of mouse TLR2. We then demonstrated that 
anti-T20 specifically binds to TLR2 and signi- 
ficantly inhibited tumor necrosis factor (TNF)- 
α and interleukin (IL)-6 production induced by 
the TLR2 ligands peptidoglycan (PGN), lipotei-
choic acid (LTA), and the synthetic triacylated 
lipoprotein Pam3CSK4 in mouse monocyte 
RAW264.7 cells [7].

In the current study, we established a novel 
mouse model of zymosan-induced acute peri-
tonitis in nuclear factor (NF)-κB transgenic  
mice and then investigated the role of anti- 
T20 on the inflammatory response in an ef- 
fort to illuminate potential strategies for the 
prevention of peritonitis.

Materials and methods

Animals

Six-to-eight-week-old NF-κB-RE-luc (Oslo) trans-
genic mice (NF-κB transgenic mice) were pur-
chased from Xenogen Corporation (Alameda, 
California, USA) and maintained in the specific 
pathogen-free facility of the experimental ani-
mal center at Guangzhou Institute of Biome- 
dicine and Health, Chinese Academy of Sci- 
ences with the approval of the Ethics Commit- 
tee for Experimental Animals. Peritonitis in NF- 
κB transgenic mice was induced by i.p. inject- 
ion of 1 mg zymosan per mouse [8, 9]. The 
experimental protocol was approved by the 
Committee for the Ethical Care and Use of 
Laboratory Animals of the Guangzhou Insti- 
tute of Biomedicine and Health, Chinese Aca- 
demy of Sciences.

Reagents

Zymosan A was purchased from Sigma-Aldrich 
(St. Louis., MO, USA). The Mouse Inflammation 
Cytometric Bead Array (CBA) kit was purch- 
ased from Bender Medsystems (Burlington,  
CA, Germany). Antibodies against phospho- 
p38 mitogen-activated protein kinase (MAPK), 
p38 MAPK, phospho-extracellular signal-regu-
lated kinase (ERK)1/2, ERK1/2, phospho-IκBα, 
IκBα, phospho-Akt, Akt, and β-actin were ob- 
tained from Cell Signaling Technology, Inc. 
(Waltham, MA, USA). The NF-κB-luciferase re- 
porter assay system was obtained from Pro- 
mega Corporation (Madison, WI, USA). The Im- 
mobilon-P membrane was obtained from Milli- 

pore UK Ltd. (Watford, UK), and the enhanced 
chemiluminescence (ECL) kit was purchased 
from Amersham Life Science Ltd. (Little Chal- 
font, UK). Evans blue was purchased from  
the Laboratory Reagents Center of Southern 
Medical University and prepared as a working 
solution with normal saline.

Establishment and treatment of acute perito-
nitis model

Acute peritonitis was established by i.p. injec-
tion of 1 mg zymosan per individual NF-κB 
transgenic mouse [8, 9]. Animals were treated 
with anti-T20 or isotype control antibody 0.5 h 
post-injection with zymosan. The animals were 
then observed for 8 h. After experiments, all 
animals were sacrificed by cervical dislocation 
under appropriate anesthesia.

Measurement of NF-κB activity

Approximately 0, 4, and 8 h after i.p. injection  
of zymosan, NF-κB transgenic mice also re- 
ceived an i.p. injection of the luciferase sub-
strate D-amino phenol (150 mg/kg in 250  
μL sterile saline) and immediately transferred 
into a dark chamber of the IVIS Imaging Sys- 
tem 200 (Xenogen Corporation, Alameda, CA, 
USA) for image acquisition. Also, control mice 
received an i.p. injection of luciferase sub-
strate, and 3 min later, luminous signals were 
counted as the number of collected released 
photons for 5 min. Control mice were used a 
baseline reference. The normalized luciferase 
activity is presented as fold-change of relative 
light units (RLU).

Measurement of monocyte chemoattractant 
protein (MCP)-1, IL-6, and TNF-α

Serum levels of MCP-1, IL-6, TNF-α, and MCP-1 
in peritoneal exudates were analyzed using  
the mouse inflammation CBA kit according to 
the manufacturer’s instructions. The data were 
analyzed using CBA software (Bender Medsys- 
tems), and standard curves were generated for 
each cytokine using the mixed cytokine/che-
mokine standard.

Measurement of leukocyte numbers and total 
protein concentration in peritoneal exudates

Peritoneal exudates were collected by lavage 
using 3 ml of sterile saline at 0, 4, and 8 h after 
establishment of acute peritonitis. Cells and 
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supernatants from exudates were obtained for 
analyses as previously described [8, 9]. Briefly, 

0.5% Evans blue (150 μl/mouse) was adminis-
tered via the tail vein of the experimental mice, 

Figure 1. Effects of anti-T20 treatment on NF-kB activity during zymosan-induced peritonitis. NF-kB-RE-luc (Oslo) 
luciferase reporter transgenic mice were treated with zymosan (1 mg/mouse) followed immediately by treatment 
with anti-T20 (0.1 mg/mouse), anti-T20 (1.0 mg/mouse), or with isotype control (1.0 mg/mouse) antibodies. One 
group of peritonitis mice was not treated with antibody. A: In vivo images were taken at 0, 4, and 8 h after challenge 
with zymosan. B: Representative samples showing NF-κB activities measured as described in Methods. Data are 
expressed as means ± SD (n=5). *P<0.05, **P<0.01.
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and then animals were sacrificed at the indi-
cated time points. The peritoneal cavity was 
irrigated, exudative fluid was collected, and 
cells were separated by centrifugation. Cell  
precipitates were then stained with Turk’s so- 
lution containing 0.01% crystal violet and 3% 
acetic acid and then counted. The absorption 

value of the supernatant was measured at  
650 nm using a Beckmann 520 spectropho- 
tometer.

Western blotting

Expression of TLR2 signal transduction pro-
teins in peritoneal leukocytes from experimen-
tal peritonitis mice were semi-quantitatively 
analyzed by western blotting using antibodies 
against phospho-p38 MAPK, p38 MAPK, phos-
pho-ERK1/2, ERK1/2, phospho-IκBα, IκBα, 
phospho-Akt, Akt, and β-actin. Analysis of the 
western blotting results was conducted using 
BandScan software.

Statistical analysis

Data are presented as means ± S.D. Multiple 
group comparison was performed using one-
way ANOVA, followed by Bonferroni or Dunnett 
post-hoc tests. If significance was reached, an 
unpaired two-tailed Student’s t-test was per-
formed between each compared population, 
unless otherwise indicated. P<0.05 was con-
sidered statistically significant. Statistical anal-
ysis was performed using SPSS 15.0 software.

Results

Anti-T20 treatment attenuates the increase of 
NF-κB activity in the acute peritonitis mouse 
model

After injection of zymosan, NF-κB activity was 
increased in a time-dependent manner in peri-
tonitis model mice according to luciferase ex- 
pression (Figure 1A). Thus, this acute perito- 
nitis model in NF-κB transgenic mice allows  
the visualization of inflammatory NF-κB acti- 
vity. Compared with the untreated and isotype 
control-treated peritonitis mice, anti-T20 treat-
ment significantly attenuated the increase of 
NF-κB activity in peritonitis model mice in a 
time- and dose-dependent manner (all com- 
parisons, P<0.05) (Figure 1). No difference in 
NF-κB activity was detected between the un- 
treated and isotype control-treated peritonitis 
mice (Figure 1).

Anti-T20 treatment attenuates the increase of 
serum levels of MCP-1, IL-6 and TNF-α in the 
acute peritonitis mouse model

Because MCP-1, IL-6, and TNF-α are down-
stream of TLR2 signaling, we assessed the lev-

Figure 2. Effects of anti-T20 treatment on serum 
MCP-1, IL-6, and TNF-α levels in mice with peritonitis. 
Peritonitis was induced by i.p. injection of 1 mg zymo-
san followed immediately by treatment with anti-T20 
(0.1 mg/mouse), anti-T20 (1.0 mg/mouse). Or iso-
type control (1.0 mg/mouse) antibodies. Additionally, 
one group of peritonitis mice was not treated with an-
tibody. Serum samples were collected for measure-
ment of MCP-1, IL-6, and TNF-α levels using a specific 
CBA kit. Data are expressed as means ± SD (n=5). 
*P<0.05, **P<0.01, and ***P<0.001.



Protective effect of a TLR2 antibody on peritonitis

696 Am J Transl Res 2017;9(2):692-699

els of these inflammatory cytokines in our peri-
tonitis mouse model in NF-kB transgenic ani-

mals. Levels of MCP-1, IL-6, and TNF-α were 
increased in the peritonitis model animals.

Compared with no treatment and isotype con-
trol antibody treatment, anti-T20 treatment sig-
nificantly attenuated the increase in serum lev-
els of MCP-1 (Figure 2A), IL-6 (Figure 2B), and 
TNF-α (Figure 2C) in peritonitis model mice  
in a time and dose-dependent manner (all  
comparisons, P<0.05). No differences in these 
three parameters were found between the un- 
treated and isotype control antibody-treated 
groups (Figure 2).

Anti-T20 treatment attenuates the increase 
of MCP-1, leukocyte number, and total protein 
concentration in peritoneal exudates of perito-
nitis mice

Followed, we analyzed MCP-1, leukocyte num-
ber, and total protein concentration in the exu-
dates of peritonitis mice for comparison with 
the results of the anti-T20 group.

Compared with the no treatment and iso- 
type control antibody-treated groups, the anti-
T20 treatment group exhibited significantly 
attenuated MCP-1 levels (Figure 3A), leukocy- 
te numbers (Figure 3B), and total protein con-
centration (Figure 3C) in the peritoneal exu-
dates of peritonitis mice in a time- and dose-
dependent manner (all comparisons, P<0.05). 
No differences in these three parameters were 
found between the untreated and the isotype 
control-treated peritonitis mice (Figure 3).

Anti-T20 treatment attenuates the increase of 
TLR2 signal transduction in peritoneal leuko-
cytes of peritonitis mice

In the peritonitis mouse model, TLR2 signal 
transduction factors including phospho-p38 
MAPK, p38 MAPK, phospho-ERK1/2, ERK1/2, 
phospho-IκBα, IκBα, phospho-Akt and Akt in 
peritoneal leukocytes was analyzed by western 
blotting.

Following anti-T20 treatment, peritoneal leuko-
cytes from peritonitis mice exhibited signifi-
cantly attenuated increase in these TLR2 sig-
nal transduction factors 8 h post injection of 
zymosan compared with the untreated and iso-
type control antibody-treated peritonitis mice 
(all comparisons, P<0.05) (Figure 4). No differ-
ence in these parameters was found between 

Figure 3. Effects of anti-T20 treatment on leukocyte 
number and total protein content in peritoneal exu-
dates of mice with peritonitis. Peritonitis was induced 
by i.p. injection of 1 mg zymosan followed immedi-
ately by treatment with anti-T20 (0.1 mg/mouse), 
anti-T20 (1.0 mg/mouse), or isotype control (1.0 mg/
mouse) antibody. One group of peritonitis mice was 
not treated with antibody. Peritoneal exudates from 
mice were collected at 0, 4, and 8 h after zymosan 
challenge to measure total leukocyte counts and to-
tal protein content. A: MCP-1, B: Leukocyte counts, 
and C: Total protein content in peritoneal exudates 
are shown for the four treatment groups. Data are 
expressed as means ± SD of three independent ex-
periments (n=5). *P<0.05 and **P<0.01.
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the untreated and the isotype control anti- 
body-treated groups (Figure 4).

Discussion

In addition to antibiotic therapy for treatment of 
peritonitis, biologics have also been found in 
both humans and experimental animals to have 
anti-inflammatory and inflammation-resolving 
properties [10-12]. To date, specific biologics 
validated for the treatment of peritonitis are 
few [13-15], and the cellular and molecular 
mechanisms for the treatment of peritonitis 
still require in-depth investigation before these 
novel treatment strategies can even be consid-
ered for clinical use. Animal models of zymo-
san-induced peritonitis have been established 
for a long time. In this study, we established a 
novel acute peritonitis mouse model in NF-κB 
luciferase transgenic mice to allow visualiza-
tion of zymosan-induced NF-κB activity. We uti-
lized this novel animal model to demonstrate 
that anti-T20 treatment attenuated the increase 
in NF-κB activity in peritonitis mice. As NF-κB 
plays a key role in the transcriptional regulation 

of proinflammatory cytokine expression, this 
result suggests that blockade of TLR2 signal- 
ing may affect cytokine expression by influenc-
ing the activity of NF-κB. Consistent with this 
finding, the increase in serum levels of the cy- 
tokines MCP-1, IL-6, and TNF-α in peritonitis 
mice was abrogated following treatment with 
anti-T20 antibody. Similar tendencies in levels 
of inflammatory cytokines, including TNF-α, IL- 
1β, and IL-6, have been previously described  
in peritonitis mice [8]. MCP-1, also known as 
monocyte chemotactic and activating factor 
(MCAF), was characterized as a monocyte-spe-
cific chemoattractant that was later shown to 
attract T lymphocytes and NK cells as well [16-
19]. This cytokine is mainly expressed by mac-
rophages in response to a wide range of stimu-
lants; however, this factor is also produced by 
other cells, such as fibroblasts, endothelial 
cells, and certain tumor cells [20, 21]. In this 
study, MCP-1 levels in serum and the perito- 
neal exudates of peritonitis mice were signifi-
cantly increased following i.p. injection of zy- 
mosan, suggesting that MCP-1 plays an impor-
tant role in the induction of systemic and local 

Figure 4. Effects of anti-T20 treatment on TLR2 signal transduction in peritoneal leukocytes from mice with peritoni-
tis. The cell lysates of peritoneal leukocytes from zymosan-induced peritonitis mice that had been left untreated or 
treated with anti-T20 (0.1 mg/mouse), anti-T20 (1.0 mg/mouse), or isotype control (1.0 mg/mouse) antibody were 
(A) immunoblotted with antibodies against phospho-p38 MAPK, p38 MAPK, phospho-ERK1/2, ERK1/2, phospho-
IκBα, IκBα, phospho-Akt, Akt, or β-actin and (B) subjected to semi-quantitative analysis. The experiments were 
repeated three times with similar results. MAPK, mitogen-associated protein kinase; ERK, extracellular signal-regu-
lated kinase; IκBα, nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha; Akt, serine/
threonine kinase. *P<0.05 and **P<0.01.
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inflammation in this peritonitis model. Similarly, 
IL-6 [19] and TNF-α were also induced in zy- 
mosan-induced peritonitis inflammation, and 
the levels of these cytokines were also sig- 
nificantly decreased by anti-T20 treatment in 
peritonitis mice.

Finally, we investigated the effect of anti-T20 
treatment on TLR2 signal transduction in the 
peritoneal leukocytes of peritonitis mice. The 
zymosan-induced inflammatory response is 
based on the binding of this molecule to TL- 
R2, as this binding induces a cascade of  
well-known inflammatory responses [6]. In this 
study, anti-T20 treatment attenuated the in- 
crease in TLR2 signal transduction in peritone-
al leukocytes of zymosan-induced peritonitis 
mice, as evidenced by the abrogation of levels 
of downstream inflammatory mediators in the 
presence of anti-T20 antibody. Thus, this novel 
anti-TLR2 antibody specifically blocks TLR2-
mediated inflammatory signaling induced by 
zymosan. Additionally, we previously reported 
that anti-T20 specifically binds to TLR2 and 
inhibits PGN, LTA, and Pam3CSK4-driven TNF-α 
and IL-6 production by monocytic RAW264.7 
cells [7]. Therefore, anti-T20 may serve as a 
useful agent to block these stimulant-induced 
inflammatory responses; however, its effects 
on other TLR2 agonists, such as lipomannan 
from Mycobacterium smegmatis (LM-MS) and 
lipopolysaccharide (LPS) from Porphyromonas 
gingivalis, warrant further investigation in the 
future.

In summary, a novel acute zymosan-induced 
peritonitis mouse model that allowed visualiza-
tion of NF-κB activity was developed. Our ex- 
periments with these animals demonstrated 
that anti-TLR2 treatment functions in a protec-
tive role via inhibition of the zymosan-induced 
inflammatory response. Humanized antibodies 
and preclinical studies of this TLR2-targeting 
antibody are urgently needed in order to further 
explore the use of this biologic in the treatment 
of peritonitis.
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