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Abstract: Hyperglycemia-mediated damage to retinal pigment epithelial (RPE) cells plays a central role in the patho-
genesis of diabetic retinopathy. Dysregulation of microRNA (miR)-383 modulates pancreatic beta cell survival in 
diabetes; however, its role in diabetic retinopathy remains unclear. In this study, we examined the expression of 
miR-383 in ARPE-19 human RPE cell lines after high glucose treatment and investigated its functions in high glu-
cose-induced reactive oxygen species (ROS) generation and apoptotic responses. The downstream target gene that 
mediated the action of miR-383 was functionally characterized. It was found that high glucose induced a 2.4-fold 
increase in miR-383 abundance, compared to ARPE-19 cells treated with normal glucose. Overexpression of miR-
383 inhibited cell viability and promoted apoptosis and ROS formation in ARPE-19 cells, which was coupled with 
deregulation of Bcl-2 and Bax. Peroxiredoxin 3 (PRDX3) expression was repressed by miR-383 in ARPE-19 cells. 
Restoration of PRDX3 counteracted miR-383-induced ROS generation and apoptosis, while silencing of PRDX3 phe-
nocopied the detrimental effects of miR-383 on ARPE-19 cells. Delivery of anti-miR-383 inhibitors led to an increase 
of PRDX3 expression and prevented high glucose-elicited ROS formation and apoptosis in ARPE-19 cells. Overall, 
miR-383 upregulation accounts for high glucose-induced oxidative stress and apoptosis in RPE cells by repressing 
PRDX3 expression. Targeting miR-383 may have therapeutic potential in the treatment of diabetic retinopathy. 
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Introduction

Diabetic retinopathy is a serious complication 
of diabetes, leading to vision loss and even 
blindness [1]. Retinal pigment epithelial (RPE) 
cells are an important component of the outer 
blood-retina barrier (BRB) that selectively regu-
lates the flux of molecules into and out of the 
retina [2]. It has been suggested that in the set-
ting of diabetes, sustained hyperglycemia trig-
gers apoptosis in RPE cells [3, 4], thereby con-
tributing to the progression of diabetic 
retinopathy. Induction of reactive oxygen spe-
cies (ROS) generation is causally linked to high 
glucose-mediated toxicity to different types of 
cells [5, 6]. Attenuation of ROS production via 
activation of glucagon-like peptide-1 receptor 
can confer protection against high glucose-

induced apoptosis in RPE cells [4]. Therefore, 
understanding the mechanisms for regulation 
of ROS formation is of importance in developing 
effective therapeutic approaches for diabetic 
complications.

microRNAs (miRNAs) are a class of endoge-
nous, small non-coding RNAs implicated in a 
broad range of biological processes [7]. They 
regulate gene expression by binding to the 
3’-untranslated region (UTR) of target mRNAs, 
causing mRNA degradation and/or translation-
al suppression. Numerous miRNAs have been 
identified to modulate the pathogenesis of dia-
betic retinopathy [8, 9]. For example, miR-15a is 
downregulated in diabetic retina and shows 
anti-inflammatory and anti-angiogenic activity 
[8]. miR-200b was found to prevent vascular 
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endothelial growth factor (VEGF)-mediated per-
meability and angiogenesis in diabetic retinop-
athy [10]. Despite these reports, many miRNAs 
that are dysregulated in diabetes have not been 
functionally characterized. It has been docu-
mented that miR-383 is deregulated before the 
onset of diabetes and can regulate pancreatic 
beta cell apoptosis [11]. This miRNA also shows 
apoptosis-regulatory activity in several types of 
malignant cells [12, 13]. For instance, the pres-
ence of miR-383 induces apoptosis in breast 
cancer cells by increasing cellular sensitivity to 
DNA damage [12]. However, the role of miR-
383 in hyperglycemia-induced RPE cell apopto-
sis is still unclear.

In this study, we examined the expression of 
miR-383 in RPE cells in response to high glu-
cose and determined the function of miR-383 
in high glucose-induced apoptosis and oxida-
tive stress in RPE cells. Furthermore, the target 
genes mediating the function of miR-383 in 
RPE cells were identified.

Materials and methods

Cell culture and high glucose treatment

A human PRE cell line ARPE-19 was purchased 
from the American Type Culture Collection 
(ATCC, Manassas, VA, USA). Cells were main-
tained in Dulbecco’s Modification of Eagle’s 
Medium (DMEM)/F12 medium supplemented 
with 10% fetal bovine serum (FBS; Sigma, St. 
Louis, MO, USA). For high glucose treatment, 
ARPE-19 cells were exposed to 33 mM (HG 
group) or 5 mM (control group) D-glucose for 48 
h [14] and then examined for gene expression, 
apoptosis, and reactive oxygen species (ROS) 
production.

Real-time PCR analysis of miR-383 expression

Total RNA was extracted from cells using TRIzol 
(Invitrogen, Frederick, MD, USA). Reverse tran-
scription was achieved using the RevertAid first 
strand cDNA synthesis kit (Thermo Scientific, 
Waltham MA, USA) with a stem-loop primer 
specific for miR-383. Real-time PCR was per-
formed using the Fast SYBR Green Master Mix 
(Applied Biosystems, Foster City, CA, USA). PCR 
primers are as follows [12]: miR-383 forward: 
5’-GTGCAGGGTCCGAGGT-3’, miR-383 reverse: 
5’-AGATCAGAAGGTGATTGTGGCT-3’, and U6 for-
ward: 5’-CTCGCTTCGGCAGCACA-3’, U6 reverse: 

5’-AACGCTTCACGAATTTGCGT-3’. Cycling condi-
tions were as follows: initial denaturation at 
95°C for 5 min and 36 cycles of denaturation at 
95°C for 10 s, annealing at 58°C for 10 s, and 
extension at 72°C for 20 s. miR-383 levels 
were normalized to U6 levels.

Oligonucleotides and plasmids

Mature miR-383 mimic, locked nucleic acid 
(LNA)-modified anti-miR-383 inhibitor, and cor-
responding negative controls were synthesized 
by Exiqon (Vedbaek, Denmark). Small interfer-
ing RNA (siRNA) targeting Prdx3 and scrambled 
control siRNA were purchased from Santa Cruz 
Biotechnology Inc. (Santa Cruz, CA, USA). For 
generation of PRDX3-expressing plasmid, 
human Prdx3 cDNA (SinoBiol. Co. Inc., Beijing, 
China) lacking the 3’-UTR was amplified by PCR 
and cloned into pcDNA3.1(+) vector.

Cell transfection

ARPE-19 cells were seeded 24 h before trans-
fection and transiently transfected with miR-
383 mimic, miR-383 inhibitor, and Prdx3 siRNA 
(50 nM for each) using Lipofectamine 2000 
(Invitrogen). Transfected cells were cultured for 
48 h before gene expression, apoptosis, and 
ROS measurement. In some experiments, cells 
were pretreated with N-acetyl-l-cysteine (NAC, 
Sigma; 10 mM) for 1 h prior to transfection. In 
rescue experiments, cells were seeded at a 
density of 2 × 105 cells/well in 24-well plates 
and co-transfected with miR-383 mimic (50 
nM) together with the pcDNA3.1/Prdx3 plas-
mid (1 μg).

Measurement of cell viability

Cells (6 × 103/well) were cultured in 96-well 
plates for 48 h, and viability was determined 
using the 3-(4,5-dimethylthiazol-2-yl)-2,5-di-
phenyltetrazolium bromide (MTT) assay. In 
brief, 0.5 mg/ml MTT (Sigma) was added to the 
cell culture and incubated for 4 h. Dimethyl sulf-
oxide (DMSO) was then added to dissolve the 
formazan. Absorbance was measured at 570 
nm.

Apoptosis analysis

Cell apoptosis was assessed using the Ann- 
exin-V/propidium iodide (PI) Apoptosis Dete- 
ction Kit (KeyGEN, Nanjing, China). In brief, cells 
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were collected 48 h after transfection and sus-
pended in 1 × binding buffer. Fluorescein iso-
thiocyanate-conjugated Annexin-Vand PI were 
added into the cell suspension and incubated 
for 15 min in the dark. Stained cells were ana-
lyzed by a FACSCalibur flow cytometer (BD 
Biosciences, San Jose, CA, USA).

Western blot analysis

Whole cell lysates were prepared using ice-cold 
RIPA buffer containing protease inhibitors (Pi- 

erce, Rockford, IL, USA). Protein samples were 
resolved by sodium dodecyl sulfate polyacryl-
amide gel electrophoresis and transferred to 
nitrocellulose membranes. The membranes 
were probed with the following primary antibod-
ies: rabbit anti-Bcl-2 monoclonal antibody 
(ab32124, Abcam, Cambridge, UK), rabbit anti-
Bax monoclonal antibody (ab32503, Abcam), 
rabbit anti-PRDX3 polyclonal antibody (AV52- 
341, Sigma), rabbit anti-PRDX6 polyclonal anti-
body (AV48268, Sigma), and rabbit anti-β-actin 

Figure 1. Upregulation of miR-383 in response to high glucose triggers apoptosis in ARPE-19 cells. A. qRT-PCR analy-
sis of miR-383 levels in ARPE-19 cells exposed to normal or high glucose. High glucose treatment increased the 
expression of miR-383. *P < 0.05 vs. cells under normal glucose conditions. B. ARPE-19 cells were transfected with 
control miRNA (control) or miR-383 mimic and tested for viability at 48 h posttransfection by MTT assay. miR-383 
overexpression caused a reduction of cell viability. C. Flow cytometric analysis of apoptosis after Annexin-V/PI stain-
ing. Ectopic expression of miR-383 induced apoptosis in ARPE-19 cells. Left, representative dot plots of apoptotic 
cells. D. Western blot analysis of Bcl-2 and Bax protein levels. Right, quantification of the Bax/Bcl-2 protein ratio. *P 
< 0.05 vs. cells transfected with control miRNA.
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polyclonal antibody (ab8227, Abcam). After fur-
ther incubation with peroxidase-conjugated 
goat anti-rabbit IgG (Sigma), immunoreactive 
bands were visualized by enhanced chemilumi-
nescence (ECL) reagents (Pierce, Rockford, IL, 
USA). Signal intensity was quantified using 
Quantity One software (Bio-Rad, Hercules, CA, 
USA).

Measurement of ROS production

Intracellular reactive oxygen species (ROS) lev-
els were quantified using the cell permeant 
reagent 2’,7’-dichlorofluorescin diacetate (DCF-
DA), as described previously [15]. In brief, cells 
were incubated with 25 μM of DCF-DA (Sigma) 
for 15 min at 37°C in the dark. Cells were col-
lected and analyzed by flow cytometry.

Statistical analysis

Data are expressed as mean ± standard devia-
tion. Multiple group comparisons were conduct-
ed by analysis of variance (ANOVA) followed by 
the Tukey’s test. Differences were considered 
statistically significant at P < 0.05.

Results

Upregulation of miR-383 in response to high 
glucose triggers apoptosis in ARPE-19 cells

Compared to control cells cultured in normal 
glucose-containing medium, ARPE-19 cells ex- 
posed to high glucose displayed a 2.4-fold 
increase in the abundance of miR-383 (Figure 
1A). To determine the biological significance of 

Figure 2. Promotion of ROS release is involved 
in miR-383-induced apoptosis in ARPE-19 cells. 
ARPE-19 cells were transfected with control miR-
NA or miR-383 mimic with or without pretreatment 
with NAC or vehicle. ROS production and apoptosis 
were assessed 48 h posttransfection. A. Measure-
ment of intracellular ROS generation using the 
DCFH-DA probe by flow cytometry. Top, representa-
tive flow cytometric histogram of DCF fluorescent 
levels. Bottom, quantification of intracellular ROS 
levels from three independent experiments. B. 
Quantification of apoptotic death by flow cytometry 
after Annexin-V/PI staining. *P < 0.05. 
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upregulation of miR-383, we transfected miR-
383 mimic to ARPE-19 cells. Overexpression of 
miR-383 was found to suppress the viability of 
ARPE-19 cells by 46%, compared to transfec-
tion with negative control miRNA (P < 0.05; 
Figure 1B). The percentage of apoptosis was 
significantly greater in the miR-383-overex-
pressing ARPE-19 cells than in the control cells 
(22.6 ± 3.5% vs. 5.2 ± 2.4%; P < 0.05; Figure 
1C). Western blot analysis revealed that miR-

383 overexpression increased the expression 
of Bax and decreased the expression of Bcl-2 
(Figure 1D). Collectively, miR-383 shows pro-
apoptotic activity in ARPE-19 cells.

Promotion of ROS release is involved in miR-
383-induced apoptosis in ARPE-19 cells

Induction of oxidative stress is an important 
mechanism underlying high glucose-induced 

Figure 3. Overexpression of PRDX3 reverses miR-383-mediated ROS formation and apoptosis. A. Western blot anal-
ysis of PRDX3 and PRDX6 protein levels in ARPE-19 cells transfected with indicated constructs. *P < 0.05 vs. control 
cells; #P < 0.05 vs. cells co-transfected with miR-383 mimic and PRDX3-expressing plasmid. B. Intracellular ROS 
generation was determined using the DCFH-DA probe by flow cytometry. C. Detection of apoptotic death by flow cy-
tometry after Annexin-V/PI staining. D. Western blot analysis of Bax and Bcl-2 protein levels. Bottom, quantification 
of the Bax/Bcl-2 protein ratio. *P < 0.05.
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apoptosis in RPE cells [16]. Thus, we tested the 
impact of miR-383 upregulation on ROS gener-
ation in ARPE-19 cells. The delivery of miR-383 
mimic resulted in a 7.8-fold increase in ROS 
produced by ARPE-19 cells (Figure 2A). Using 
the antioxidant NAC, miR-383-induced ROS for-
mation was almost completely blocked. 
Notably, NAC pretreatment impaired the apop-
totic response induced by miR-383 in ARPE-19 
cells, leading to a 64% reduction in apoptosis 
(Figure 2B). Therefore, generation of ROS is 
required for miR-383-induced apoptosis in RPE 
cells.

miR-383 promotes ROS formation and apopto-
sis in ARPE-19 cells by targeting Prdx3

Next, we asked how miR-383 affected ROS 
generation and cell survival in RPE cells. It has 
been reported that miR-383 exerts its growth-
suppressive effects on medulloblastoma cells 
by repressing PRDX3 expression [17]. PRDX3 is 
known as an antioxidant enzyme that can pro-
tect cells from oxidative stress [18]. Therefore, 
we examined whether the pro-apoptotic activity 
of miR-383 in RPE cells is mediated through 
downregulation of PRDX3. To this end, we per-

Figure 4. PRDX3 knockdown promotes ROS formation and apoptosis. A. Western blot analysis of PRDX3 protein lev-
els in ARPE-19 cells transfected with control siRNA or PRDX3 siRNA. B. Intracellular ROS generation was determined 
using the DCFH-DA probe by flow cytometry. C. Detection of apoptotic death by flow cytometry after Annexin-V/PI 
staining. D. Western blot analysis of Bax and Bcl-2 protein levels. Right, quantification of the Bax/Bcl-2 protein ratio. 
*P < 0.05 vs. cells transfected with control siRNA. 
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formed rescue experiments with a miRNA-
resistant variant of Prdx3. Delivery of miR-383 
mimic was found to suppress endogenous 
expression of PRDX3 in ARPE-19 cells, which 
was reversed by co-transfection with a PRDX3-
expressing plasmid (Figure 3A). The PRDX6 
protein expression was also examined to vali-
date the specificity to PRDX3. In contrast to 
PRDX3, PRDX6 protein levels remained unch- 
anged after transfection with miR-383 mimic or 
the PRDX3-expressing plasmid (Figure 3A). 
Notably, restoration of PRDX3 reduced ROS 
amounts by 62% (Figure 3B) and apoptosis by 
40% (Figure 3C) in miR-383 mimic-transfected 
cells. The deregulation of Bcl-2 and Bax by miR-
383 mimic was also reversed by co-transfec-
tion with the PRDX3-expressing plasmid (Figure 
3D).

To confirm the role of PRDX3 in the survival of 
RPE cells, siRNA-mediated downregulation of 

PRDX3 was achieved (Figure 4A). Similar to the 
findings with miR-383 mimic, transfection with 
Prdx3 siRNA was found to enhance ROS gener-
ation (Figure 4B) and trigger apoptotic death 
(Figure 4C) in ARPE-19 cells. Moreover, silenc-
ing of PRDX3 increased the expression of Bax 
and decreased the expression of Bcl-2 (Figure 
4D). Taken together, miR-383-mediated ROS 
formation and apoptosis in RPE cells are par-
tially ascribed to repression of PRDX3.

Targeting miR-383 blocks high glucose-in-
duced oxidative stress and apoptosis

Finally, we investigated the protective potential 
of targeting miR-383 against high glucose-
induced oxidative injury in RPE cells. LNA-
modified miR-383 inhibitors were transfected 
to ARPE-19 cells to inhibit the gene-regulatory 
activity of miR-383. As expected, the level of 
PRDX3 was increased by 1.8-fold after trans-

Figure 5. Targeting miR-383 blocks high glu-
cose-induced oxidative stress and apoptosis. 
A. Western blot analysis of PRDX3protein lev-
els in ARPE-19 cells transfected with control 
inhibitor (control) or anti-miR-383 inhibitor. B 
and C. ARPE-19 cells were pretransfected with 
control inhibitor or anti-miR-383 inhibitor 24 h 
before exposure to high glucose. B. Intracel-
lular ROS formation was determined by flow 
cytometry. C. Detection of apoptotic death by 
flow cytometry after Annexin-V/PI staining. *P 
< 0.05.
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fection with miR-383 inhibitors (Figure 5A). 
Most importantly, delivery of miR-383 inhibi-
tors significantly prevented ROS formation 
(Figure 5B) and apoptotic death (Figure 5C) in 
ARPE-19 cells after treatment with high glu-
cose. In contrast, transfection with negative 
control inhibitors did not affect ROS generation 
and apoptosis in high glucose-exposed ARPE-
19 cells. Taken together, targeting miR-383 is a 
beneficial approach to improve RPE cell surviv-
al in response to high glucose.

Discussion

miR-383 is implicated in multiple pathological 
processes such as tumorigenesis [13, 19] and 
cerebral ischemia [20]. In the present study, we 
showed that miR-383 was aberrantly induced 
in ARPE-19 cells upon exposure to high glu-
cose. Moreover, ectopic expression of miR-383 
led to reduced viability and increased apopto-
sis in ARPE-19 cells, suggesting an involvement 
of miR-383 in hyperglycemia-induced RPE cell 
damage. The Bcl-2 family members are key reg-
ulators of apoptosis in various types of cells 
[21]. It has been documented that high glu-
cose-induced apoptosis in ARPE-19 cells invo- 
lves the downregulation of Bcl-2 [22]. Consi- 
stently, miR-383 overexpression inhibited the 
expression of Bcl-2 and induced the expression 
of Bax in ARPE-19 cells, which provides an 
explanation for the pro-apoptotic activity of 
miR-383.

It has been suggested that high glucose-
induced apoptotic response in RPE cells is, in 
part, a consequence of ROS overproduction 
[16]. In this study, we confirmed that ectopic 
expression of miR-383 significant promoted 
ROS formation in ARPE-19 cells, which is simi-
lar to the effect elicited by high glucose [16]. 
Our data further demonstrated that blockade 
of ROS generation by NAC significantly prevent-
ed apoptotic response in miR-383-overexpre- 
ssing ARPE-19 cells. These observations sug-
gest that induction of ROS accumulation con-
tributes to miR-383-mediated apoptosis in RPE 
cells. It has been reported that the antioxidant 
enzyme PRDX3 is a direct target gene of miR-
383 [17]. In line with this finding, we showed 
that enforced expression of miR-383 signifi-
cantly repressed the expression of PRDX3 in 
ARPE-19 cells. However, PRDX6 expression lev-
els were not altered by miR-383, indicating the 
specific targeting of PRDX3 by miR-383. Rescue 

experiments provided evidence that miR-
383-mediated ROS generation and apoptosis 
in ARPE-19 cells were causally linked to down-
regulation of PRDX3. Accumulating evidence 
underscores PRDX3 as a positive regulator of 
cell survival [18, 23, 24]. It has been reported 
that PRDX3 overexpression protects prostate 
cancer cells from oxidative stress-induced 
apoptosis [18]. Another study reported that 
PRDX3 downregulation promotes ROS genera-
tion and apoptosis in hepatocellular carcinoma 
Hep3B cells [23]. In agreement with these stud-
ies, we found that silencing of PRDX3 induced 
ROS formation and apoptosis in ARPE-19 cells. 
At the molecular level, PRDX3 downregulation 
increased the level of Bax and reduced the 
level of Bcl-2 in ARPE-19 cells. Therefore, it is 
suggested that the pro-survival activity of 
PRDX3 is associated with modulation of the 
Bcl-2 family members. However, the signaling 
pathway(s) involved in such regulation is not 
clear. A previous study has shown that targeting 
PRDX3 can enhances cisplatin-induced apop-
tosis in ovarian cancer cells via the NF-κB path-
way [24]. There is a close relationship between 
NF-κB and Bcl-2 family members in the regula-
tion of apoptotic response [25], which suggests 
a possibility that PRDX3 coordinates the 
expression of Bcl-2 and Bax through the NF-κB 
pathway.

To explore the potential of miR-383 as a thera-
peutic target for hyperglycemia-induced RPE 
cell death, we performed miR-383 knockdown 
experiments. As expected, silencing of miR-
383 significantly elevated the expression of 
PRDX3 in ARPE-19 cells. Furthermore, miR-383 
downregulation attenuated ROS production 
and apoptotic death induced by high glucose. 
These results provide a rationale to investigate 
the significance of targeting miR-383 in animal 
models of diabetic retinopathy.

In conclusion, we provide evidence that miR-
383 functions as a key mediator for high glu-
cose-induced oxidative stress and apoptosis in 
RPE cells, which is, in part, ascribed to down-
regulation of PRDX3 and subsequent modula-
tion of Bax and Bcl-2. Our data suggest that 
miR-383 represents a promising target in the 
treatment of diabetic retinopathy.
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