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Abstract: Liver ischemia-reperfusion injury (IRI) is a common clinical problem in which neutrophil recruitment is 
an essential event. Our previous study revealed the important role of C-C motif chemokine receptor 2 (CCR2) in 
neutrophils during liver IRI. The aim of the present study was to further investigate the underlying mechanisms 
mediating the changes in CCR2 expression in neutrophils during this pathophysiological process. Herein, we found 
that TLR4 ablation reduced neutrophil mobilization from the bone marrow and the subsequent infiltration into the 
liver during liver IRI; neutrophil-derived CCR2 expression was also repressed. In addition, neutrophil mobilization 
was dependent on CCR2 expression in neutrophils, which in turn relied on activation of the TLR4-p38 axis during 
liver IRI. In conclusion, neutrophil-derived CCR2 expression regulates neutrophil mobilization from the bone marrow 
and infiltration into the liver, which requires activation of the TLR4-p38 axis during liver IRI.
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Introduction

Liver ischemia-reperfusion injury (IRI) is a  
common issue in clinical practice that arises 
from organ transplantation, liver resection, and 
hemorrhagic circulatory shock [1-3]. Liver IRI 
inevitably leads to abnormal liver function, 
acute liver failure, and multiple organ failure or 
even death [1]. Therefore, investigations into 
the detailed mechanisms underlying the patho-
physiological processes that occur during liver 
IRI are of great clinical significance to optimize 
therapeutic measures.

Neutrophils form the first line of defense by the 
innate immune system, and neutrophil mobili-
zation is one of the most important features of 
the innate immune response [4, 5]. Recruitment 
of neutrophils into inflamed tissues is a typical 
phenomenon observed in conditions of infec-
tious or sterile inflammation [6]. Without excep-
tion, neutrophils mobilize from the bone mar-
row and infiltrate into the ischemic primed liver 

during liver IRI, which directly causes liver dam-
age [7-9]. Therefore, studies investigating the 
mechanism of neutrophil migration are of great 
significance for understanding the pathophysi-
ology of liver IRI.

In the physiological state, C-C motif chemokine 
receptor 2 (CCR2) is mainly expressed in mono-
cytes and lymphocytes, but not in neutrophils 
[10, 11]. However, the expression of chemotac-
tic receptors in neutrophils changes in response 
to acute inflammation [12]. Nevertheless, stud-
ies of the relationship between neutrophils and 
CCR2 have mainly been confined to cases of 
infectious inflammation [8]. In our recent study, 
we found that CCR2 regulates neutrophil mobi-
lization during liver IRI [13]. Therefore, we per-
formed the present study to further investigate 
the mechanism by which CCR2 is expressed in 
neutrophils.

Toll-like receptors (TLRs) are expressed in many 
cell types, particularly in the cells of the innate 
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immune system, where they recognize infec-
tions and dangerous potential invaders. Thir- 
teen mammalian TLR analogues have been 
identified to date [14], including TLR4, which 
has been widely investigated in the context of 
various diseases [15, 16]. TLR4 plays a com-
plex, cell type-specific role in liver IRI [17-20]. 
However, the dominant effect of TLR4 on liver 
IRI is to drive damage by promoting the inflam-
matory response to damage-associated molec-
ular pattern molecules, such as high mobility 
group box 1 [21], and its role in mediating the 
expression of CCR2 and neutrophil infiltration 
remains unclear.

In this study, we established a liver IRI mouse 
model, and compared the extent of neutrophil 
mobilization from the bone marrow and infiltra-
tion in the liver between wild-type and TLR4-
deficient (TLR4-/-) mice. Moreover, we evaluated 
the gene and protein-level expression of CCR2 
in the neutrophils of these mice, as well as  
the expression of other chemokines and their 
receptors that may be responsible for attract-
ing neutrophils from the bone marrow into the 
ischemia injury-primed liver. These findings are 
expected to provide new insights into the rela-
tionship between TLR4 and CCR2 expression in 
neutrophils and the underlying mechanisms of 
liver IRI to highlight new therapeutic targets 
and establish clinical management strategies. 

Materials and methods

animals

Adult male C57BL/6 mice were obtained from 
the Center for Animal Experiment of Wuhan 
University. TLR4-/- mice in the C57BL/6 back-
ground were a gift from Dr. Billiar and were 
housed under specific-pathogen-free condi-
tions at Huazhong University of Science and 
Technology (Wuhan, China). Eight to ten-week-
old wild-type (WT) C57BL/6 and TLR4-/- (22-25 
g) male mice were used. Previous studies have 
reported that less than 3% (3/84) of female 
mice successfully showed liver IRI in establish-
ment of the model [22]. This female protective 
effect against renal, liver, and heart IRI has 
been attributed to estrogen and the activation 
of estrogen receptors [23-26]. Therefore, to 
avoid this estrogen effect, we deemed it rea-
sonable to use only male mice in the present 
study. All animal experiments were approved by 
the Animal Care and Use Committee of Wuhan 
Union Hospital and were conducted in accor-

dance with the National Institutes of Health 
Guidelines.

Liver IR model

Non-lethal segmental (70%) liver ischemia was 
induced using previously described methods 
[27]. Mice were anesthetized with pentobarbi-
tal (60 mg/kg, intraperitoneal injection). A mid-
line laparotomy was performed, and the liga-
ments were carefully dissected. The portal 
vein, hepatic artery, and bile duct supplying  
the median and left lateral lobes of the liver 
were clamped with an artery microclamp (Fine 
Science Tools). The temperature was main-
tained at 32-33°C during ischemia using a 
warming incubator chamber. After 60 min of 
segmental liver ischemia, the clamp was 
removed to initiate liver reperfusion. The mice 
were sacrificed at 1 h or 6 h of reperfusion. The 
sham group received identical treatment but 
without microvascular clamp placement. Liver 
tissues were collected for subsequent analy-
ses. The mice were injected with recombinant 
murine (rm) CCL2 (R&D Systems) immediately 
at the time of reperfusion via the tail vein,  
and the bone marrow or peripheral blood cells 
were examined by flow cytometry after 1 h of 
reperfusion. Mitogen-activated protein kinase 
(MAPK) inhibitors, including P38 inhibitor (SB- 
203580, Selleck, USA), c-Jun N-terminal kinase 
(JNK) inhibitor (SP600125, Selleck, USA), and 
extracellular-regulated kinase (ERK) inhibitor 
(PD98059, Selleck, USA), were intraperitoneal-
ly injected at a dose of 10 mg/kg 1 h before 
ischemia. A CCR2 inhibitor (RS504393, 2 mg/
kg; Sigma-Aldrich) was administered 1 h before 
ischemia viaintraperitoneal injection according 
to previously described methods [28, 29].

Isolation of non-parenchymal cells (NPCs)

Hepatic NPCs were obtained from the liver 
using a previously described collagenase diges-
tion method [13, 17]. The purity of the NPCs 
exceeded 95% and the viability was typically 
greater than 90%, as determined by flow cytom-
etry and trypan blue exclusion, respectively. In 
brief, each liver was perfused in situ with phos-
phate-buffered saline (PBS) containing collage-
nase IV (1 mg/mL; Sigma-Aldrich) via the portal 
vein. The liver was removed, placed in PBS, and 
incubated at 37°C for 15 min. The liver was 
then torn using cell scrapers. The cell suspen-
sion was shaken on a shaking table at 37°C for 
20 min and then filtered through a 70-μm nylon 
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mesh. The cell suspension was centrifuged 
(300 g for 11 min) and the supernatant was 
removed. NPCs were obtained after density-
gradient centrifugation (400 g for 15 min) using 
OptiPrep™ (OptiPrep: PBS = 1:2; Axis-Shield) 
and then washed by high-speed centrifugation 
(1500 rpm for 5 min).

Real-time reverse transcription polymerase 
chain reaction (RT-PCR)

Total RNA was extracted from the ischemic 
lobes with TRIZOL reagent (Invitrogen) and was 
reverse-transcribed using an RT reagent Kit 
(Thermo Fisher Scientific). Real-time PCR was 
conducted using primers targeting specific 
genes with SYBR Green Master Mix (Bio-Rad). 
Each sample was assessed in triplicate, and 
mean values were used for quantification. 
Relative gene expression profiles were ana-
lyzed by normalizing the levels of the target 
gene to those of the β-actin gene using the 
2-(ΔΔCt) method. The gene-specific primers were: 
Ccl2, F: 5’-GGTGTCCCAAAGAAGCTGTAGTT-3’, R: 
5’-GAGGTGGTTGTGGAAAAGGTAGT-3’; Ccl7, F: 
5’-TGTCCCTGGGAAGCTGTTAT-3’, R: 5’-GGAGTT- 
GGGGTTTTCATGTCTA-3’; Cxcl1: F: 5’-CCAAACC- 
GAAGTCATAGCCA-3’, R: 5’-TGGGGACACCTTTT- 
AGCATCT-3’; Cxcl2: F: 5’-GCCCAGACAGAAGTCA- 
TAGCC-3’, R: 5’-TCTTTGGTTCTTCCGTTGAGG-3’; 
Cxcr2: F: 5’-GGGTCGTACTGCGTATCCTG-3’, R: 
5’-AGACAAGGACGACAGCGAAG-3’; Ccr2: F: 5’- 
ATCCACGGCATACTATCAACATC-3’, R: 5’-CAAGG- 
CTCACCATCATCGTAG-3’; and β-actin: F: 5’-AGC- 
CATGTACGTAGCCATCC-3’, R: 5’-CTCTCAGCTGT- 
GGTGGTGAA-3’.

Western blot analysis

Total proteins were extracted from the cells 
using RIPA lysis buffer (Beyotime) supplement-
ed with 1 mmol/L phenylmethylsulfonyl fluo-
ride, followed by electrophoretic separation on 
10% polyacrylamide gels and transfer onto 
nitrocellulose membranes (Life Science). The 
membranes were then blocked in Tris-buffered 
saline with Tween 20 (TBS-T) containing 5% 
milk for 2 h at room temperature and incu- 
bated with primary antibodies against p38, 
ERK, and JNK (Cell Signaling Technology) over-
night at 4°C. The following day, the blots were 
washed with TBS-T and incubated with a perox-
idase-conjugated secondary antibody (HuaAn 
Biotechnology) for 1 h at room temperature. 
Immunoreactive bands were assessed using a 
chemiluminescence imaging system (ChemiQ 

4800 mini) after incubation with horseradish 
peroxidase.

Flow cytometry

Mouse femurs were flushed with PBS contain-
ing 0.5% bovine serum albumin to separate the 
bone marrow cells. Red blood cells were lysed 
using Hybri-Max red blood cell lysis buffer 
(Sigma-Aldrich). NPCs (isolated as described 
above) and cells from the bone marrow or blood 
were incubated with fluorochrome-conjugated 
anti-mouse antibodies for 30 min at 4°C in PBS 
containing 1% bovine serum albumin. Flow 
cytometry was performed using the following 
antibodies: Pacific Blue-conjugated anti-CD45, 
PE/Cy7-conjugated anti-CD11b, PE-conjugated 
anti-mouse Ly-6G (BD Biosciences), or anti-
CCR2-APC (R&D Systems). Cells were washed 
with PBS and resuspended in PBS containing 
1% paraformaldehyde at a density of 5 × 106 
cells/mL. Flow cytometry was performed using 
a CyAn ADP analyzer (Beckman Coulter) for 
acquisition and compensation. Data analysis 
was performed off-line using FlowJo version 7.6 
software.

Statistical analysis

All values are reported as means ± standard 
errors of the means. Significance was deter-
mined using Student’s t-test and one-way anal-
ysis of variance, as appropriate. All analyses 
were performed using SPSS 15.0 software. 
Statistical significance was defined as P < 0.05.

Results

CCR2 mediates the effects of TLR4 on neutro-
phil mobilization from the bone marrow and 
infiltration into the ischemic-primed liver

The infiltration of neutrophils into the liver is an 
important event during liver IRI. We used fluo-
rescence-activated cell sorting to investigate 
cell groups gated on the CD45+ NPCs to explore 
this process. Although both groups of mice 
showed significant neutrophil mobilization from 
the bone marrow after 6 h of reperfusion, neu-
trophil mobilization in the TLR4-/- mice was sig-
nificantly decreased compared with that in the 
WT mice (Figure 1A). Similarly, neutrophil infil-
tration was significantly inhibited in the livers of 
the TLR4-/- mice after 6 h of reperfusion com-
pared to those of WT mice (Figure 1B). The 
mRNA expression levels of all chemokines and 
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Figure 1. Deletion of TLR4 inhibits neutrophil 
mobilization from the bone marrow and infiltra-
tion in the liver, accompanied by downregula-
tion of CCR2 in neutrophils. Bone marrow cells 
and liver NPCs were isolated and gated on 
CD45+ cells after 6 h of reperfusion. Neutro-
phils were defined as CD11b+Ly6G+ cells. (A, 
B) Percentages of neutrophils (CD11b+Ly6G+) 
among all CD45+ cells in the (A) bone marrow 
and (B) liver NPCs (n = 4-6). (C) The mRNA 
expression levels of Ccl2, Ccl7, Cxcl1, Cxcl2, 
Cxcr2, and Ccr2 associated with neutrophils 
in sham- or IR-injured liver lobes (n = 4). Error 
bars indicate ± SD, *P < 0.05, “ns” not signifi-
cant, Student’s t-test.
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Figure 2. Deletion of Tlr4 reduces liver injury in IR. Wild-type and TLR4 knockout (KO) mice were subjected to warm 
liver IR or a sham procedure, and then blood and liver tissues were collected. Mouse blood was obtained via car-
diac puncture. Serum alanine aminotransferase (ALT) and aspartate transaminase (AST) levels were measured at 
the Clinical Laboratories of Wuhan Union Hospital (Wuhan, China). A. H&E staining after liver IR treatment in the 
two groups of mice. The necrotic area/whole area ratio was normalized in > 10 random fields. Nonviable tissue is 
marked by black lines. Scale bar, 100 μm. N = 3; error bars indicate ± SD, *P < 0.05, Student’s t-test. B. ALT and 
AST enzyme levels in peripheral blood samples. N = 4-6; error bars indicate ± SD, *P < 0.05, Student’s t-test. C. 
Real-time PCR analysis of the mRNA expression of cytokines in the IR ischemic liver lobes or sham liver of the two 
groups of mice. N = 4; error bars indicate ± SD, *P < 0.05, Student’s t-test.

chemokine receptors were increased in the 
ischemic livers at 6 h of reperfusion compared 
with those in the sham group. However, only 
Ccr2 expression was significantly different 
between the WT and TLR4-/- mice, with lower 
expression in TLR4-/- mice after liver IRI (Figure 
1C).

Moreover, the histological necrosis and levels 
of liver enzymes were significantly reduced in 
the TLR4-deficient mice compared with the WT 
mice after IRI (Figure 2A, 2B), and the mRNA 
expression levels of inflammatory cytokines 
were much lower in the ischemic liver lobes 
from the TLR4-deficient mice than those of WT 
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Figure 3. Knockout of TLR4 
inhibits the expression of 
CCR2 in neutrophils. (A, B) 
Quantification of CCR2 ex-
pression in neutrophils by 
flow cytometry after 6 h of 
reperfusion in the (A) bone 
marrow and (B) liver NPCs 
of WT and TLR4-/- mice 
(n = 4-6). Wild type (WT) 
mice were subjected to 1 
h of ischemia followed by 
1 h of reperfusion (I1R1) 
or a sham procedure. (C, D) 
Percentage of neutrophils 
(CD11b+Ly6G+) among all 
CD45+ cells after 1 h of 
reperfusion in the (C) bone 
marrow and (D) periph-
eral blood (n = 4-6); error 
bars indicate ± SD, *P < 
0.05, Student’s t-test. (E, 
F) Quantification of CCR2 
expression in neutrophils 
by flow cytometry after 1 
h of reperfusion in the (E) 
bone marrow and (F) pe-
ripheral blood (n = 4-6);  
error bars indicate ± SD, 
*P < 0.05, “ns”, not signifi-
cant, Student’s t-test. (G, H) 
Percentage of neutrophils 
(CD11b+Ly6G+) among all 
CD45+ cells in the (G) bone 
marrow and (H) peripheral 
blood of TLR4-/- mice after 1 
h of ischemia followed by 1 
h of reperfusion with injec-
tion of 500 ng of rmCCL2 or 
control IgG via the tail vein 
(n = 4-6). Error bars indicate 
± SD, *P < 0.05, “ns”, not 
significant, Student’s t-test.

mice (Figure 2C). This result is consistent with 
previous studies [17, 20].

TLR4 ablation inhibits CCR2 expression in 
neutrophils during liver IRI

Based on the results above, we next investigat-
ed the potential role of TLR4 in mediating CCR2 
expression in neutrophils during liver IRI. CCR2 

expression was significantly increased in neu-
trophils derived from the bone marrow and liver 
NPCs after the IR process compared with that 
in the sham group only in the WT mice and not 
in the TLR4-/- mice (Figure 3A, 3B). This finding 
indicated that neutrophil-derived CCR2 expres-
sion requires functional TLR4. To further con-
firm this result, we injected rmCCL2 to promote 
the mobilization of CCR2-expressing neutro-
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phils from the bone marrow to the peripheral 
blood. After 1 h of reperfusion, there was sig-
nificant neutrophil mobilization from the bone 
marrow into the blood, along with increased 
CCR2 expression in peripheral neutrophils in 
the WT mice (Figure 3C-F). In addition, rmCCL2 
injection promotes the mobilization of CCR2-
expressing neutrophils from the bone marrow 
to the peripheral blood in WT mice [13]. By con-
trast, the administration of rmCCL2 did not pro-
mote the mobilization of TLR4-/- neutrophils 
from the bone marrow to the peripheral blood, 
indicating that CCR2 expression in neutrophils 
requires intact TLR4 function (Figure 3G, 3H). 

Inhibition of CCR2 function in neutrophils 
blocked their mobilization from the bone mar-
row and infiltration into the liver during IRI

We used a CCR2 inhibitor to further confirm the 
role of CCR2 in neutrophils during liver IRI. As 
expected, neutrophil mobilization from the 
bone marrow was significantly decreased in 
mice injected with the CCR2 inhibitor compared 
with that in control mice after 6 h of reperfu-
sion (Figure 4A). Similarly, we observed a re- 
markable reduction in neutrophil infiltration in 
the livers of mice injected with the CCR2 inhibi-

tor (Figure 4B). Thus, CCR2 expression in neu-
trophils is required for the mobilization of neu-
trophils from the bone marrow and infiltration 
into the liver.

CCR2 expression in neutrophils requires acti-
vation of the TLR4-p38 axis

We used specific inhibitors targeting the MAPK 
pathway, operating downstream of TLR4, to 
determine the signaling pathway that regulates 
CCR2 expression. First, we observed obvious 
up-regulation of the MAPK pathway in the isch-
emic liver lobes of the WT mice after IR com-
pared with that in the sham mice, including 
p38, ERK, and JNK (Figure 5A). We then used 
inhibitors targeting the MAPK pathways to iden-
tify the specific signaling pathways associated 
with CCR2 expression in neutrophils. As shown 
in Figure 5, inhibition of the p38 pathway 
induced an obvious blockade of neutrophil 
mobilization from the bone marrow and neutro-
phil infiltration in the liver compared with the 
vehicle-injected mice (Figure 5B, 5C). Similarly, 
CCR2 expression was inhibited in neutrophils 
derived from the bone marrow and liver NPCs 
of mice treated with the p38 inhibitor (Figure 

Figure 4. CCR2-expressing neutrophils play an important role in neutrophil infiltration of the liver during IR. The 
percentages of neutrophils (CD11b+Ly6G+) among all CD45+ cells in the (A) bone marrow and (B) liver NPCs in the 
sham, IR, and IR + CCR2 inhibitor groups (n = 4); error bars indicate ± SD, *P < 0.05, one-way ANOVA.
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Figure 5. CCR2 in neutrophils is triggered by the TLR4-p38 axis during liver IR. (A) Intracellular MAPKs (p38, ERK, 
JNK) activation in sham- or IR-injured liver lobes of WT and TLR4-/- mice after 6 h of reperfusion determined by 
western blot. Protein expression was normalized by phosphorylated protein/total protein (e.g., p-p38/t-t38); n = 3, 
error bars indicate ± SD, *P < 0.05, Student’s t test. (B, C) Percentages and (D, E) CCR2 expression quantification 
of neutrophils (CD11b+Ly6G+) among all CD45+ cells in the bone marrow (B, D) and liver NPCs (C, E) in the sham, 
IR, and IR + P38 inhibitor groups (n = 4); error bars indicate ± SD, *P < 0.05, one-way ANOVA.

5D, 5E). In addition, we did not observe a 
change in CCR2 expression in neutrophils fol-
lowing injections of the ERK or JNK inhibitors 

(Figure 6). Thus, CCR2 expression in neutro-
phils during liver IRI requires the p38 signaling 
pathway. 
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Figure 6. ERK and JNK inhibition did not reduce 
the expression of CCR2 in neutrophils during liver 
IR. The ERK or JNK inhibitor (10 mg/kg, Selleck, 
USA) was injected intraperitoneally at 1 h be-
fore ischemia. (A, B) Percentages of neutrophils 
(CD11b+Ly6G+) among all CD45+ cells in the (A) 
bone marrow and (B) liver NPCs in the IR, sham, 
and inhibitor-treated groups (n = 4). (C) Quantifica-
tion of CCR2 expression in neutrophils in the bone 
marrow and the liver NPCs of the three groups (n 
= 4). Error bars indicate ± SD, *P < 0.05, “ns” not 
significant, Student’s t-test.

Discussion

Liver IRI is a common issue, and has been 
associated with diverse and complex mecha-

nisms [30]. A murine model of warm partial liver 
IRI is commonly used to investigate the underly-
ing mechanisms, which shows good stability 
and repeatability [17, 27]. However, the clinical 
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translation of these experimental results has 
thus far been difficult because of anatomical 
and physiological differences between mice 
and humans, and the inevitable simplification 
of experimental work [31]. Based on the litera-
ture, we used 70% liver lobe ischemia for 1 h 
and reperfusion for 6 h as a suitable model to 
elucidate the underlying mechanism [21, 22, 
32-34]. In addition, environmental temperature 
is an important factor that impacts the degree 
of liver injury observed during liver ischemia 
[35, 36]. Thus, we placed the mice into a baby 
incubator to maintain their temperature at 
32°C during the ischemia procedure based on 
the results from our previous study [13]. 

Neutrophil mobilization from the bone marrow 
and infiltration into the liver is an important 
phenomenon that occurs during liver IRI and 
directly induces hepatocyte damage. CCR2 is 
highly expressed in neutrophils and plays a piv-
otal role in all major steps during the entry of 
neutrophils into peripheral tissues, including 
egress from the bone marrow into peripheral 
blood, movement from the blood into peripher-
al tissues, and recruitment to the inflammatory 
sites [37, 38]. By contrast, CXCR2 mainly medi-
ates the recruitment of neutrophils into the 
infection focus [39, 40]. Our previous study 
revealed the relationship of CCR2 expression in 
neutrophils with neutrophil mobilization and 
infiltration in a liver IRI model [13]. Here, we 
investigated the underlying mechanisms res- 
ponsible for these observations. 

A previous study demonstrated that TLR4 
expressed in neutrophils regulates neutrophil 
activation and lifespan, and that TLR4 medi-
ates early neutrophil survival in a manner 
dependent on NF-κB and MAPK signaling cas-
cades [41]. This suggested that TLR4 might 
play an important role in neutrophils function. 
Indeed, Parker et al. [42] demonstrated that 
activation of TLR4 results in down-regulation of 
CCR2 expression in human monocytes, and 
Souto et al. [8] found that TLR4 activation 
induced CCR2 expression in neutrophils during 
sepsis. In support of this role, our present study 
demonstrated that the activation of CCR2 in 
neutrophils is TLR4-dependent under sterile 
conditions as well as in liver IRI.

We further showed that TLR4 ablation in neu-
trophils inhibited both neutrophil mobilization 
from the bone marrow and CCR2 expression in 

neutrophils. Since CCL2 is the most important 
ligand for CCR2, we also injected the mice with 
rmCCL2 to promote the mobilization of CCR2-
expressing neutrophils from the bone mar- 
row to the peripheral blood. This method was 
proven to be effective in our previous study, in 
which rmCCL2 injection obviously promoted 
the mobilization of CCR2-expressing neutro-
phils from the bone marrow into the peripheral 
blood after 1 h of reperfusion in WT mice [13]. 
These results were confirmed in the present 
study in the WT mice, whereas rmCCL2 failed 
to accomplish its mission in the TLR4-/- mice. 
Thus, CCR2 expression clearly depends on 
TLR4 signaling. 

TLR2 and TLR4 signaling were found to medi-
ate the up-regulation of CCR2 expression in 
neutrophils in acecal ligation and puncture 
model through the MyD88/NF-kB pathway [8]. 
However, to our knowledge, this is the first 
report to show the relationship between CCR2 
expression in neutrophils and TLR4 in a septic 
inflammation model. To clarify the pathway 
downstream of TLR4 that was responsible for 
the observed effects, we used specific chemi-
cal inhibitors targeting the MAPK pathway, and 
found that the p38 inhibitor reduced neutrophil 
mobilization and blocked CCR2 expression in 
neutrophils. These results suggest that p38 is 
important for this crucial event, and that CCR2 
expression in neutrophils requires activation of 
the TLR4-p38 pathway during liver IRI.

In conclusion, our study provides the follow- 
ing mechanistic insights into CCR2-expressing 
neutrophils in a liver IRI model: (1) increased 
CCR2 expression in neutrophils plays an impor-
tant role in neutrophil mobilization from the 
bone marrow and infiltration into the liver dur-
ing liver IRI, and (2) CCR2 expression in neutro-
phils requires activation of the TLR4-p38 axis. 
Based on these findings, our study helps to 
gain a better understanding of neutrophil 
recruitment during liver IRI as well as the role of 
CCR2 in neutrophils under aseptic conditions. 
Although the detailed mechanism requires fur-
ther study, these insights can suggest new tar-
gets for therapeutic intervention. 
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