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The ZDSD rat: a novel model of diabetic nephropathy
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Abstract: The ZDSD rat is a new obese-diabetic rat model that expresses type 2 diabetes in the presence of an intact 
leptin pathway. During a long pre-diabetic state, the animals exhibit most of the features of metabolic syndrome 
including obesity, hyperlipidemia, hypertension, insulin resistance and decreased glucose disposal. The animals 
used in these studies were either allowed to become spontaneously diabetic at 16-30 weeks of age, or diabetes 
was induced with a diabetogenic diet. In the presence of either spontaneous or diet-induced diabetes, they develop 
progressive albuminuria as well as increases in other urinary markers of impaired renal function (kidney injury mol-
ecule-1 (KIM-1), β2-microglobulin, clusterin and cystatin C). Typical morphological changes of nephropathy, such 
as glomerular capillary basement membrane thickening and podocyte effacement, accompany these marker in-
creases. Lisinopril (ACEi) treatment (30 mg/kg/day via the diet) dramatically reduced diabetes-induced albuminuria 
by 85%, independent of the duration of diabetes or the initial albumin excretion. These results position the ZDSD rat 
as a relevant model of diabetic nephropathy that can be treated with clinically effective compounds.
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Introduction

The physiologic environment of chronic hyper-
glycemia with obesity is associated with a vari-
ety of co-morbidities including cardiovascular 
disease, atherosclerosis, retinopathy, neuropa-
thy and nephropathy. Prolonged exposure to 
hyperglycemia is now recognized as a major 
factor in the pathogenesis of diabetic complica-
tions in type 1 and type 2 diabetic patients [1, 
2]. Chronic hyperglycemia results in accumula-
tion of reactive oxygen species, pro-inflamma-
tory cytokines and advanced glycation end-
products (AGE) that ultimately induce end or- 
gan damage in vasculature, heart and kidneys 
[3]. Diabetic nephropathy (DN) is one of the 
most serious complications of diabetic micro-
vascular changes [4], and is the most common 
cause of chronic kidney injury leading to end-
stage renal disease (ESRD). Chronic hypergly-
cemia induces hemodynamic as well as meta-
bolic changes in the diabetic kidney [5]. Oxi- 
dative stress resulting from hyperglycemia is 
associated with endothelial dysfunction and 
the development of hypertension [6]. Hyper- 
tension is identified in approximately 50% of 
patients with type 2 diabetes and metabolic 

syndrome; the addition of hypertension acce- 
lerates the development of DN and ESRD [7]. 
The prevalence of chronic kidney disease is 
much higher in patients identified as pre-dia-
betic or diabetic compared with normoglycemic 
patients [8]. Insulin resistance, as a precursor 
to hyperglycemia, is also causative in DN due to 
the induction of vasoconstriction, sodium reten-
tion and arterial hypertension [9].

DN is characterized by albuminuria, increases  
in serum creatinine and a decreased glomeru-
lar filtration rate (GFR). Histological changes 
include glomerular mesangial expansion, glo-
merular basement membrane (GBM) thicken-
ing, excessive extracellular matrix proteins and 
fibrosis [7-9]. Severe diabetes is not necessary 
for the development of DN. Indeed, it has been 
shown that pre-diabetic patients with impair- 
ed glucose tolerance and insulin resistance, 
before onset of severe hyperglycemia, exhibit 
the same prevalence for development of chron-
ic kidney disease as overtly diabetic patients 
[8]. Treatment options for diabetic nephropathy 
are directed toward lowering blood pressure 
and improving glycemic control [10]. Angiotensin 
II receptor blockers (ARB) and angiotensin II 
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converting enzyme inhibitors (ACEi) have been 
the mainstay to stop or slow progression to 
ESRD [10-13].

Pre-clinical studies in DN are often carried out 
in diabetic rodents. The most common model is 
the STZ rat which employs a normoglycemic rat 
induced to become diabetic through injection 
of streptozotocin. This model has been used 
extensively to evaluate the mechanisms and 
potential interventions for DN [7, 14-16]. The 
rapid induction of type 1 diabetes in rats after 
a single dose of STZ (>45 mg/kg) increases 
blood glucose levels to more than 500 mg/dL 
within 48 hours [17], and is associated with 
rapidly developing renal damage. Streptozoto- 
cin can also be described as a direct renal 
toxin; it causes tubular and glomerular hyper-
trophy with mesangial expansion and thus 
exerts renal damage in addition to that caused 
by its induction of beta cell apoptosis and 
hyperglycemia [17]. The development of renal 
damage following STZ is likely dramatically dif-
ferent from the development of DN in patients 
with pre-diabetes/metabolic syndrome who 
slowly progress to type 2 diabetes.

Rat models with defective leptin receptors, 
such as the ZDF and ZSF1, have been charac-
terized and used to evaluate compounds to 
treat DN [18-29]. However, although the ZDF 
rat does have kidney changes that appear to be 
specifically associated with the diabetic condi-
tion [23], it also has kidney hydronephrosis [30] 
that makes it less than an ideal model for DN. 
The ZSF1 rat has been used effectively for the 
study of DN, but it has the leptin receptor 
defects from both the ZDF and the SHHF rats 
[24] which, when combined, cause the obesity 
in this model. Although these established mod-
els have, and likely will continue, to be used in 
DN studies, the defects in the morphology of 
the kidney shown by the ZDF, and the leptin 
receptor defects present in both models are 
problematic for a translational model.

Mouse models have also been diligently sought 
as models featuring all of the characteristics of 
human DN. A recent review by Betz and Conway 
states that “no model exhibits with all of the 
features of human DN” [31]. As a consequence, 
the quest for ideal DN models continues. 

The ZDSD/Pco (ZDSD) rat is a new model of 
obesity, metabolic syndrome and diabetes [32]. 
The model was developed by crossing a homo-

zygous lean Zucker diabetic fatty (ZDF) male rat 
with a sub strain of the Crl:CD (SD) rat, selec-
tively bred for high fat diet induced obesity [33, 
34]. The standard Crl:CD (SD) rat is a sub strain 
of SD rats that is significantly heavier and more 
obese than other lines of SD rats; a percentage 
of these rats is very susceptible to developing 
obesity, when fed high fat diets [33, 34]. The 
original design was to combine the defect in 
β-cell gene transcription that is found in lean 
and obese ZDF rats [35] with the obesity of the 
Crl:CD (SD) model, to produce an obese diabet-
ic model that preserves the critical leptin path-
way. The animals were fed regular rodent chow 
(Purina 5008) during the 12 years of the model 
development process. The offspring from the 
initial crosses were screened and selected for 
obesity, the propensity to become diabetic and 
the expression of the other characteristics of 
metabolic syndrome. This model has been se- 
lectively inbred for >30 generations. The ZDSD 
rat has been shown to develop microvascular 
and macrovascular complications of diabetes 
in a fashion similar to that occurring in human 
diabetes [36]. Spontaneous development of 
diabetic complications such as impaired wound 
healing [37], osteoporosis [38, 39], decreased 
nerve conduction velocity [36] and hyperten-
sion [40] have also been identified in the model.

Obesity and metabolic syndrome are clear pre-
dictors of chronic kidney disease largely due  
to the potentiation of chronic inflammation by 
insulin resistance [41]. In addition, the lipopro-
tein abnormalities and increased hemodynam-
ics and vascular dysfunction associated with 
metabolic syndrome have all been implicated 
as causative for the development of renal dis-
ease [42, 43]. This cluster of metabolic dysreg-
ulations is exhibited by the ZDSD rat, position-
ing the model as a unique tool for the study of 
DN.

In validation of the ZDSD rat as a novel tool for 
the study of DN, we have characterized the 
spontaneous development of DN in the ZDSD 
rat and determined the efficacy of the ACEi, 
Lisinopril, in reducing albuminuria.

Materials and methods

Spontaneous development of renal dysfunc-
tion in untreated ZDSD rats

Male ZDSD/Pco rats (n=16) were obtained from 
the PreClinOmics, A Crown Bioscience compa-
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ny (now Crown Bioscience-Indiana), colony. 
They were maintained on Purina 5008 regular 
rodent chow from weaning and throughout the 
study duration. Beginning at 10 weeks of age, 
blood samples (fed) were collected from the tail 
vein for assessment of blood glucose, blood 
urea nitrogen (BUN) and creatinine. Twenty-
four-hour urine samples were collected at room 
temperature and without additives. Blood and 
urine samples were obtained in animals every 
2-4 weeks until 30 weeks of age. Animals were 
considered diabetic when morning blood glu-
cose (fed) reached ≥250 mg/dL. Urine volume 
and body weight were recorded. Urine was 
assayed for cystatin C, clusterin, urinary kidney 
injury molecule-1 (KIM-1) and β2-microglobulin 
using Luminex multiplex kits RKTX1-37K (clus-
terin, KIM-1) and RKTX2-37K (albumin, β2- 
microglobulin, cystatin C). Kidneys were fixed in 
10% buffered formalin and stained with peri-
odic acid Schiff (PAS) and H&E for pathological 
assessment of untreated 33 week old animals. 
Age-matched SD rats (n=10) were included for 
comparison. 

Kidneys from selected diabetic animals at 33 
weeks of age, as described above, were also 
prepared for light microscopy. Representative 
sections were selected for microscopy.

Electron microscopy

Control Crl:CD (SD) (n=2) and ZDSD male rats 
that were spontaneously diabetic for 12 (n=2) 
and 16.5 (n=2) weeks were perfused with 4% 
paraformaldehyde then fixed in 2% paraformal-
dehyde and 2% glutaraldehyde in 0.1M phos-
phate buffer. After fixation the specimens were 
rinsed with phosphate buffered saline (PBS) 
followed by post fixation with 1% osmium tetrox-
ide in phosphate buffer for one hour. After rins-
ing with PBS, the tissue specimens were dehy-
drated through a series of graded ethyl alcohols 
from 70 to 100%. After dehydration, the speci-
mens were infiltrated with 2 changes of 100% 
propylene oxide and a 50:50 mixture of propyl-
ene oxide and the embedding resin (Embed 
812, Electron Microscopy Sciences, Hatfield, 
PA) overnight. The next day the specimens were 
transferred to fresh 100% embedding media 
for a minimum of 2 hours, then embedded in  
a fresh change of 100% embedding media. 
Following polymerization overnight at 60°C, the 
blocks were ready to be sectioned. Thin sec-
tions were cut (70-80 nm), stained with uranyl 

acetate and lead citrate, then viewed on a 
Tecnai BioTwin (FEI, Hillsboro, OR) with digital 
images taken with an AMT (Advanced Micro- 
scope Techniques, Danvers, MA) CCD camera. 
Multiple measurements were taken (144 to 
162 per group) using the software on the Tecnai 
of three peripheral capillary loops in each of 
three glomeruli from each animal. Thickness 
values that were more than 2.5 SD from the 
mean were considered outliers and not used 
leaving 141 to 158 measurements per group.

Effect of Lisinopril on renal function

Male ZDSD rats, were maintained on Purina 
5008 chow ad lib until 18 weeks of age. A dia-
betogenic diet (Purina 5SCA) was initiated and 
continued for 3 weeks to accelerate the devel-
opment of hyperglycemia. Animals were then 
maintained for the duration of the study on 
Purina 5008 regular rodent chow. In this study, 
treatment was started 5, 9 and 13 weeks after 
animals became hyperglycemic (ages 29, 33 
and 37 weeks; respectively). In each age group, 
diabetic rats were sorted into untreated (Purina 
5008 chow, n=12) and treated (5008 chow 
admixed with Lisinopril 250 ppm, n=13) based 
on body weight and fed glucose level. Treatment 
was continued for 4 weeks. Blood and 24-hour 
urine samples were collected before and after 
4 weeks of treatment. Urine was collected at 
room temperature and without preservatives. 
Fed glucose was measured in whole blood by 
StatStrip (Xpress II, Novo Biomedical); HbA1c 
(whole blood), creatinine (serum) and BUN 
(serum) were assayed in serum using a AU480 
clinical analyzer (Beckman Coulter, Brea, CA); 
albumin and creatinine were measured in urine 
by MSD (MesoScale Discovery, Rockville, MD) 
and AU480 analyzer, respectively. Estimated 
glomerular filtration (eGFR) was calculated us- 
ing the following formula: Urine creatinine (mg/
dL) × urine volume (mls/min)/serum creatinine 
(mg/dL). 

Statistical analysis

All data are presented as Mean ± SEM. Sta- 
tistical analysis was performed using Prism for 
Windows (version 6.07 GraphPad, San Diego, 
CA). With regard to data presented on the spon-
taneous development of DN in ZDSD rats, a 
two-way ANOVA was conducted to compare the 
effect of strain on body weight, blood glucose, 
urine volume, urine albumin, urine KIM-1, urine 
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Figure 1. Weight (A), blood glucose (B) and urinary markers (C-H) of renal injury in ZDSD rats compared to age-
matched SD rats. ZDSD rats (■, 10-30 weeks of age) are significantly heavier (A) and have significantly higher blood 
glucose levels (B) compared to age-matched SD rats (●). Renal injury is evident in ZDSD rats compared to SD rats 
as evidenced by significantly higher urine volume, albumin excretion and excretion of renal injury biomarkers (C-H) 
(two-way ANOVA, Sidak’s; *, P<0.05).
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clusterin, urine cystatin C and urine β2-microg- 
lobulin. Post-hoc comparisons between strains 
were made using Sidak’s multiple comparison 
tests and are indicated on graphs. With regard 
to the effects of Lisinopril, means were com-
pared using one-way ANOVA/pooled t-test or 
paired t-tests. Significant effects indicated on 
graphs (*P<0.05). 

Results

Spontaneous development of renal dysfunc-
tion in untreated ZDSD

ZDSD rats were significantly heavier when com-
pared to age-matched SD rats at 10 weeks of 
age (380.5 ± 5.0 vs. 326.4 ± 3.6 g) through 26 
weeks of age (556.8 ± 7.6 vs. 498.5 ± 6.9 g). 
ZDSD weight gain leveled at about 20 weeks 
and subsequently decreased. Body weight in 
28-30 week old animals was not significantly 
different when compared to control SD animals 
(Figure 1A). 

Hyperglycemia developed spontaneously in 
ZDSD rats compared to SD rats and although 
glucose levels tended to run higher in animals 
as young as 10 weeks of age (118.8 ± 2.9 vs. 
139.4 ± 2.1 mg/dL) they do not become statis-
tically significant until 20 weeks of age. Glucose 
levels remained quite steady in SD animals as 
they age, while there was a progressive increase 
in glucose in aging ZDSD rats. Glucose levels 
were significantly higher compared to SD rats 
from 20 weeks of age, and reached 550.9 ± 
21.2 mg/dL at 30 weeks (Figure 1B). 

Urine volume (mls/day) was not significantly dif-
ferent in ZDSD rats compared to age-matched 
SD rats at 10 weeks of age. However, as blood 
glucose increased, urine volume became sig-
nificantly different starting at 24 weeks when 
compared to age-matched SD rats (Figure 1C). 

Albumin excretion was comparable to that of 
SD rats in animals up to 20 weeks of age (6.9 ± 
1.4 vs. 9.5 ± 2.7 mg/day for SD and ZDSD rats, 
respectively). Urinary albumin excretion beca- 
me significantly different, compared to SD rats, 
at 26 weeks reaching 125.7 ± 16.9 mg/day in 
30 week old animals (Figure 1D).

In addition to increased albumin excretion, age-
related increases in the excretion of early uri-
nary markers of renal injury (β2-microglobulin, 
KIM-1, clusterin and cystatin C) were noted in 
ZDSD animals (Figure 1E-H). Figure 1G demon-
strates significantly higher excretion of cystatin 
C in the urine of ZDSD animals compared to SD 
animals starting at 22 weeks of age (8.1 ± 0.1 
vs. 2.6 ± 0.3 µg/day, respectively). Figure 1G 
illustrates that cystatin C levels in urine of SD 
animals remained steady throughout the study 
period; however, levels in ZDSD rats increased 
rapidly compared to baseline values over the 
20-week observation period and were signifi-
cantly higher compared to SD rats at each of 
22 to 30 weeks. In 30 weeks old animals, cys-
tatin C was increased by 9 fold over that of SD 
rats (25.1 ± 2.1 vs. 2.9 ± 0.2 µg/day, respec-
tively). A similar pattern was apparent for KIM-
1, clusterin and β2-microglobulin; significant 
differences in these markers first appeared in 
22 to 24 week old animals (Figure 1E, 1F and 
1H). A seven-fold increase in KIM-1 (10.8 ± 1.1 
vs. 1.6 ± 0.1 ng/day) and a seven-fold increase 
in β2-microglobulin (1441.9 ± 146.5 vs. 194.1 
± 22.5 ng/day) were prominent in 30 week old 
rats. 

Figure 2. Light microscopic pictures of diabetic kid-
ney pathology. The upper panel (A) shows a glomeru-
lus with a nodule in the lower right quadrant of the 
picture. This glomerulus also demonstrates mesan-
gial expansion (A). The lower panel illustrates sclero-
sis in two glomeruli and other pathological changes 
(B).
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Fixed kidneys from 33 weeks old ZDSD rats 
were examined for morphological evidence of 
renal disease. Figure 2 represents a typical 
pattern of tubule, glomerular and interstitial 
changes that developed in ZDSD rats as a 

blood glucose did not change significantly, but 
administration of Lisinopril elicited a significant 
increase compared to baseline and vehicle 
treatment (Table 1). Although hyperglycemia 
was accompanied by elevated HbA1c values 

Figure 3. Electron micrographs of glomerular capillary walls. The picture on 
the left (A) is from a control kidney while the one on the right (B) is from a 
ZDSD rat that was diabetic for 12 weeks. The micrographs are aligned with 
podocytes on the left, and capillary endothelium on the right of the base-
ment membrane. There is a clear thickening of the basement membrane in 
the diabetic ZDSD when compared to control capillary of age-matched SD 
rat. (C) represents the quantification of the basement membrane thickness 
between CD control and ZDSD at 12 weeks and 16.5 weeks of diabetes 
(155, 158 and 141 measurements, respectively; 6 glomeruli from 2 animals, 
one-way ANOVA followed by Dunnett’s multiple comparisons test; *P<0.05).

result of long-standing diabe-
tes. Histopathology scores 
(0-5) were assigned for glo-
merulopathy with mesangial 
expansion and capsule thick-
ening, tubular dilation and 
degeneration, protein casts 
and inflammation. Scores 
averaged 2.5-3.0 for each 
assessment for ZDSD kidneys 
(Figure 2A and 2B). 

Basement membrane thick-
ening was apparent in elec-
tron micrographs of glomeruli 
in ZDSD rats when compared 
to control rats (≈320 nm vs. 
163 nm, respectively) (Figure 
3A and 3B). Podocyte efface-
ment was also evident on the 
convex surface (left side) of 
the diabetic glomerularcapil-
lary (Figure 3B) when com-
pared to regular distribution 
of podocyte foot processes in 
Figure 3A. Figure 3C demon-
strated significant increases 
in thickness of the glomerular 
capillary basement mem-
branes at 12 and 16.5 weeks 
of diabetes.

Effect of Lisinopril on renal 
function in diabetic ZDSD

Body weight: Based on aver-
age feed intake and body 
weight, Lisinopril was deliv-
ered at approximately 30 mg/
kg/day over the 4-week peri-
od. Lisinopril had no signifi-
cant effect on body weight in 
diabetic ZDSD rats following 4 
weeks of treatment (Table 1).

Glucose: Baseline blood glu-
cose in diabetic ZDSD rats 
was not different between  
the two groups (Table 1). 
Following vehicle treatment, 
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from baseline with both vehicle and Lisinopril  
(4 weeks of treatment), Lisinopril treatment 
resulted in a significant increase in HbA1c com-
pared to vehicle treated animals at 4 weeks 
(Table 1).

Urine volume: Baseline urine volume in diabetic 
ZDSD rats was not significantly different bet- 
ween the groups at the beginning and the end 
of treatment; however, urine volume increased 
significantly in both groups as diabetes pro-
gressed. No significant effect of Lisinopril com-
pared to vehicle was noted (Table 1). 

Albumin excretion: Baseline albumin excretion 
averaged 45.5 ± 10.0 mg/day in diabetic ZDSD 
rats and there were no significant differences 
between treatment groups at baseline (Table 
1). Albuminuria increased significantly after ad- 

ministration of vehicle for 4 weeks while admin-
istration of Lisinopril significantly reduced the 
albuminuria compared to vehicle treatment at 
4 weeks and reduced albumin compared to its 
baseline value by 89% (Table 1). 

Lisinopril prevented the progressive rise in 
albumin excretion as diabetes developed, inde-
pendent of the duration of diabetes at the start 
of treatment (-89.2 ± 3.3, -81.8 ± 7.5 and -90.9 
± 1.9%), and lowered the levels compared to 
baseline values in animals that were diabetic 
for 5, 9 and 13 weeks, respectively (Figure 4).

Glomerular filtration: The estimated glomerular 
filtration rate (eGFR) was calculated from urine 
and serum creatinine values. At baseline, eGFR 
averaged 4.8 ± 0.2 mls/min in diabetic ZDSD 
rats and was not different among treatment 
groups. Following 4 weeks of treatment, eGFR 
increased significantly in the vehicle treated 
animals; in contrast, eGFR in Lisinopril treated 
animals decreased significantly and was signifi-
cantly lower following treatment with Lisinopril 
compared to vehicle (Table 1).

Serum creatinine: Baseline serum creatinine 
averaged 0.43 ± 0.004 mg/dL in diabetic ZDSD 
rats and there were no significant differences 
among treatment groups. Serum creatinine did 
not change with the progression of more severe 
diabetes in the vehicle group, but serum creati-
nine in Lisinopril treated rats increased signifi-
cantly compared to baseline values and to 
vehicle treated animals after 4 weeks of treat-
ment (Table 1).

Serum BUN: Baseline serum BUN averaged 
18.9 ± 0.41 mg/dL and there were no differ-

Table 1. Data before and after vehicle and Lisinopril treatment
Vehicle Lisinopril

Measurement Baseline Termination Baseline Termination
Body Weight (g) 496.0 ± 6.7 468.2 ± 6.9† 500.1 ± 6.4 452.6 ± 6.9†

Blood Glucose (mg/dL) 563.2 ± 15.2 572.0 ± 15.7 563.2 ± 17.7 718.3 ± 16.6*,†

HbA1c (%) 10.2 ± 0.21 10.9 ± 0.20† 10.4 ± 0.2 12.3 ± 0.3†

Urinary Volume (ml/day) 171.4 ± 18.4 224.3 ± 9.3† 139.5 ± 18.9 222.5 ± 17.9*,†

Urinary Albumin (mg/day) 47.3 ± 16.8 145.8 ± 39.4† 43.7 ± 12.2 4.6 ± 1.1*,†

eGFR (ml/min) 5.07 ± 0.20 5.72 ± 0.24† 4.63 ± 0.33 3.93 ± 0.19*,†

Serum Creatinine (mg/dL) 0.44 ± 0.01 0.41 ± 0.01 0.43 ± 0.01 0.49 ± 0.02*,†

Serum BUN (mg/dL) 18.8 ± 0.6 22.3 ± 0.7† 18.9 ± 0.6 37.6 ± 1.2*,†

*Significantly different from vehicle at termination, t-test P<0.05. †Significantly different from corresponding baseline data, 
paired t-test P<0.05.

Figure 4. Effect of Lisinopril on urinary albumin ex-
cretion in animals with the duration of diabetes. 
Lisinopril treatment elicited a significant decrease in 
urinary albumin excretion when compared to vehicle 
treatment. When stratified according to the duration 
of diabetes before initiation of treatment, the nor-
malization of albumin excretion by Lisinopril treat-
ment is consistent. All paired groups of animals are 
significantly different (paired t-test; *P<0.05).
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ences among treatment groups. Compared to 
vehicle, administration of Lisinopril elicited a 
significant increase in BUN following the 4-week 
treatment (Table 1).

Discussion

Diabetic nephropathy (DN) is regarded as the 
leading cause of ERSD and is estimated to 
occur in 20-40% of diabetic patients [44]. The 
cluster of conditions known as metabolic syn-
drome carries with it a number of risk factors 
for the development of DN including obesity, 
hypertension and insulin resistance. Obesity 
has been shown to be a predictor for develop-
ment of DN, and high fat feeding has been 
shown to increase body fat and induce renal 
injury in obese mice [45] and in humans, where 
reduction in obesity (via gastric bypass) pro-
duced remission in DN [46]. Hypertension 
occurs in 50% of patients with type 2 diabetes 
and contributes to the development of DN 
through a number of mechanisms associated 
with arterial damage and hemodynamics [47]. 
In addition, increased levels of inflammatory 
mediators and over production of reactive oxy-
gen species (ROS) have been identified in dia-
betic animals and patients. Inflammation and 
ROS have been shown to be major contributors 
to the initiation and progression of DN [48-50]. 
Indeed, current therapeutic approaches for  
DN are centered on the control of blood pres-
sure, reduction of hyperglycemia and life-style 
changes to reduce or eliminate obesity [51, 
52]. Albuminuria represents a biomarker of 
generalized endothelial dysfunction within the 
kidney and is predictive of the existence of 
endothelial dysfunction within the cardiovascu-
lar system [53]. Albuminuria has been identi-
fied as a risk factor for both renal and cardio-
vascular morbidity and mortality in diabetic 
[54, 55] and in non-diabetic patients [56]. 
These risk factors have all been identified as 
contributory to the DN that spontaneously 
develops in the ZDSD rat.

In current clinical practice, DN presents in two 
stages: microalbuminuria (30-300 mg/day) 
and macroalbuminuria (>300 mg/day). Early 
DN is defined as the presence of microalbumin-
uria with a normal or mildly decreased eGFR 
(>60 ml/min/1.73 m2) [57]. While the diagnosis 
of nephropathy in diabetic patients is focused 
on the presence of albuminuria, it has become 
clear that significant changes in renal architec-

ture and function have been shown in patients 
with normal albuminuria [58, 59]. Declining 
renal function in the absence of albuminuria 
has been shown to occur in 25% of diabetic 
patients [60, 61]. Histological examination of 
renal biopsies from diabetic patients with 
impaired renal function in the absence of albu-
minuria indicated vascular and tubulo-intersti-
tial damage [62]. Thus, while concurrent moni-
toring of albuminuria and eGFR are the main-
stay of diagnoses and evaluation of treatment 
for DN, earlier detection is paramount to pre-
venting or slowing the progression to ESRD in 
diabetic patients. Early tubular injury has been 
identified as a major contributor to early DN 
and is predictive of progression to ESRD [63-
65]. Indeed, tubular damage markers are ele-
vated in the urine of diabetic patients [66]. 
Tubular damage markers such as KIM-1 and 
β2-microglobulin were elevated in the urine of 
diabetic patients before the onset of microalbu-
minuria and, as such, represent sensitive mark-
ers for the early detection of DN [64, 67-72]. 
High urinary KIM-1, like albumin, was associat-
ed with increased long term risk. Clusterin is 
upregulated in renal tissues following insult 
and is associated with the process of cellular 
repair. Increases in urinary clusterin have been 
observed in a wide variety of renal diseases 
including glomerulonephritis and renal tubular 
injury [73, 74]. Clusterin was found to be elevat-
ed by 2 fold in the urine of diabetic patients 
compared to normal volunteers [75]. Increased 
urinary [76, 77] and serum [78] cystatin C are 
recognized as markers of renal tubular dysfunc-
tion. Although not yet routinely used in clinical 
practice, measurements of serum cystatin C 
may be preferred over serum creatinine in esti-
mation of GFR especially when renal function is 
not stable, as occurs in early DN [79]. Cystatin 
C was elevated by 4 fold in the urine of diabetic 
patients compared to normal volunteers [65]. It 
is evident from the biomarker profile in human 
diabetic patients that glomerular and tubular 
injury occurs in the setting of hyperglycemia. In 
a similar fashion, biomarkers for glomerular 
(albumin) and tubular injury (KIM-1, clusterin, 
cystatin C and β2-microglobulin) in the setting 
of hyperglycemia are reflected in the spontane-
ous development of DN in the ZDSD rat shown 
in this investigation. 

The interruption of an upregulated renin-angio-
tensin-aldosterone system (RAAS) remains the 
cornerstone of renoprotective strategies for 
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diabetic patients. This is accomplished with 
monotherapy using angiotensin converting 
enzyme inhibitors (ACEi), angiotensin II recep-
tor blockers (ARB), direct renin inhibitors (aliski-
ren), or dual therapy with ACEi/ARB. The ACEi 
Lisinopril is a commonly used first line anti-
hypertensive agent and has been shown to 
reduce blood pressure and reduce albuminuria 
in hypertensive and normotensive diabetic 
patients [80-82]. 

It has been suggested that in early DN, chronic 
hyperglycemia enhances glucose transport to 
the proximal tubule which elicits hyperfiltration, 
increased glomerular pressure and subsequent 
mesangial expansion with proteinuria [83, 84]. 
This hyperfiltration has been documented in 
the early stages of DN in humans [85] and in 
hypertensive rats made diabetic with STZ [86]. 
A reversal of the hyperfiltration is a predomi-
nant benefit with ACEi therapy and is thought to 
be the result of preferential dilation of the effer-
ent arteriole, and a decrease in glomerular cap-
illary pressure, with improvement in renal blood 
flow. Concomitant with this reduction in GFR, 
increases in BUN and serum creatinine have 
been noted in patients with renal insufficiency 
[87]. Similar to human DN, and as illustrated by 
high eGFR in untreated ZDSD rats, hyperfiltra-
tion is also a key feature of DN in this model.

Large increases in creatinine are seen clinically 
in some patients [88], but these are relatively 
rare and even these large increases are not 
typically considered problematic unless other 
clinical signs of worsening nephropathy are 
present. In a clinical study [88] of 13,166 
cases, 31 had increases of serum creatinine 
from <1.2 to >2.5 mg/dL. Although smaller 
increases are more common, they are also not 
typically considered to be an indication of wors-
ening nephropathy but rather considered to be 
indications of drug efficacy [87]. Nevertheless, 
elevated creatinine levels are issues with  
ACEi and ARB treatments [89] and require  
monitoring to identify potentially worsening 
nephropathy. 

The ZDSD rat presents with a progressive 
hyperglycemia and albuminuria consistent  
with DN in human disease. Also, similar to DN  
in patients, urinary biomarkers used clinically 
to assess glomerular and tubular injury were 
prominently elevated in the model prior to the 
development of overt diabetes or albuminuria. 

Histologic lesions that are also identified in 
human DN including basement membrane 
thickening and mesangial expansion were evi-
dent with chronic hyperglycemia in ZDSD rats. 
In addition, this model responded to ACEi treat-
ment in a similar fashion to that of diabetic 
patients with nephropathy. Similar to clinical 
experience, Lisinopril reduced hyperfiltration, 
increased serum BUN and creatinine and pre-
vented albuminuria. The changes in intra-renal 
hemodynamics elicited by ACEi therapy could 
also explain the rises in blood glucose and 
associated increase in HbA1c seen in the paper 
since a decrease in glomerular filtration will 
likely also result in a decrease in glucose excre-
tion in these untreated rats. This may not be 
seen clinically since this phenomenon would 
not be observed with reasonably well treated 
patients.

Conclusion

Obesity and metabolic syndrome are clear pre-
dictors of chronic kidney disease, largely due  
to the potentiation of chronic inflammation by 
insulin resistance. In addition, the lipoprotein 
abnormalities, increased hemodynamics and 
vascular dysfunction associated with metabolic 
syndrome have all been implicated as caus-
ative for renal disease. The ZDSD rat spontane-
ously develops significant renal disease corre-
sponding to hyperglycemia and hypertension 
[40], the severity of which correlates with the 
level of hyperglycemia. Elevations in biomark-
ers for renal dysfunction (i.e., cystatin C, KIM-1, 
clusterin, and β2-microglobulin) as well as sig-
nificant albuminuria and histological analysis 
have proven the ZDSD rat to exhibit nephro- 
pathy that closely mimics that observed in 
obese, insulin resistant patients. 

ACEi treatment, which is the mainstay of  
clinical treatment for DN, was also effective  
in significantly reducing albuminuria in the  
diabetic ZDSD rat. Due to the demonstration  
of hypertension in this model, it should be  
considered that this reduction is likely to be at 
least partially due to a reduction in the hyper-
tension-induced glomerular hyperfiltration [19], 
although it is known that ACEi can reduce  
albuminuria at doses that do not effect blood 
pressure [90]. The increased creatinine and 
BUN levels resulting from ACEi therapy may 
increase acceptance of the model, as these  
are indications of clinical efficacy of ACEi and 
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ARB therapy according to Schoolwerth [87]. 
Interestingly, while reductions in hyperfiltration 
were noted in the STZ rat following Lisinopril, 
the elevations in BUN and creatinine seen both 
clinically and in the ZDSD rat were not apparent 
in the STZ model. 

This study strongly supports the ZDSD rat as a 
translational model of diabetic nephropathy 
with the potential to add value to mechanistic 
as well as drug discovery efforts.
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