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Abstract: Traumatic spinal cord injuries are major health problems and the underlying pathophysiological events 
and treatment strategies are currently under investigation. In this article, we critically reviewed the literature inves-
tigating the effects of estrogen, progesterone, and human chorionic gonadotropin on spinal cord damage or pres-
ervation following traumatic spinal cord injury. The National Library of Medicine database was searched through 
December 2016 using PubMed for articles addressing the clinical relevance of the hormones to improve neural 
structural integrity following traumatic spinal cord injury. It was found that each of these hormones, through varied 
mechanisms, could serve to reduce the harmful effects associated with spinal cord injury, and could aid in restoring 
some function to the injured spinal cord in the animal models. The most striking effects were seen in the reduction 
of inflammation commonly linked to injury of the central nervous system. The effects of human chorionic gonado-
tropin administration following spinal cord injury have received far less attention than those of either estrogen or 
progesterone, and additional inquiry could be of general benefit. In this article, we discussed the outstanding ques-
tions and suggested future directions for further investigation. 
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Introduction

Traumatic spinal cord injuries (SCI), both com-
plete and incomplete can have devastating 
physiological consequences. Depending on the 
severity of injury, patients incur neurological 
deficits ranging from paralysis, loss of sensa-
tion, impaired bowel, bladder and sexual func-
tion, autonomic dysfunction and even death 
[1-4], and the sequelae of impairment carry 
with them systemic complications, including 
impaired wound healing, pneumonia, and venti-
lator dependence, to name a few. The irrevers-
ibility of SCI can be ascribed largely to the  
relative rarity with which axonal regeneration 
occurs in the adult spinal cord [5]. This lack of 
regeneration is attributable to glial scar forma-
tion, inflammation and cell death, dominance 
of inhibitory growth components, and the loss 
of substrates that support growth [2, 6-8].  

The incidence of SCI has been demonstrated, 
through systematic reviews to be more preva-
lent in developing countries than in developed 
nations [9, 10], however, in the United States 
alone, the staggering incidence of SCI approxi-

mates to 40 injuries per million annually or 
about 12,400 injuries across the general popu-
lation as reported in 2010 [11]. The occurrence 
of traumatic SCIs show a bimodal age distribu-
tion with one peak being between the ages of 
15 and 29 years, and the second being above 
age 65 years [11, 12]. Injuries occur more often 
in men. The leading cause of SCI is motor  
vehicle accidents, followed by falls, violence 
(particularly gunshot wounds), and sports  
accidents, in descending order [13, 14]. The 
pronounced mobility of the cervical spine 
causes it to be the most commonly damaged 
spinal region followed by the thoracolumbar 
junction, which has greater mobility than that of 
the thoracic spine; the additional stability con-
ferred by the ribs results in fewer traumatic tho-
racic injuries [10, 12].

The underlying causes of SCI vary dramatically 
including crush injuries, piercing injuries, verte-
bral herniation, and gunshot wounds. Many 
injuries are associated with compression, flex-
ion, extension, distraction, axial loading or rota-
tion of the spinal cord or column.

http://www.ajtr.org
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In recent years, studies have been conducted 
on various substances and biomolecules that 
could be effective in enhancing repair of the 
spinal cord following trauma. As a result, many 
promising advances have come forth in under-
standing the pathophysiological and biological 
processes involved in SCI and developing 
potential treatments.  

Cell transplantation has been explored as a 
useful technique in minimizing the damage 
associated with SCI, and in regenerating the 
injured spinal cord; astrocyte transplantation 
has been studied in particular detail [5]. All 
astrocyte transplantation attempts have not 
provided significant benefit [15, 16]. However, 
recent work with embryonic glial-restricted pre-
cursor-derived astrocytes (GDAs) has proven to 
be effective in limiting lesion size, while also 
preserving white matter [17-24].

Furthermore, there have been promising 
advances in the delivery methods of cell and 
biomolecules that could improve tissue repair 
and regeneration in the central nervous sys-
tem. Methods include encapsulated cell thera-
py, the use of implanted scaffolds, and biomol-
ecule delivery in polymeric nano/microspheres 
and hydrogels [25]. Ji et al. observed that main-
taining the integrity of the blood-spinal cord 
barrier following spinal cord ischemia reperfu-
sion injury could lead to improved outcomes 
[26, 27].

Potential effects of immune modulatory thera-
pies on SCI have also been examined [28]. The 
steroid methylprednisolone has been shown to 
be neuroprotective; it provides functional ben-

efit in SCI through its action on glucocorticoid 
receptors, its interaction with NF-κB, and its 
antioxidant activity [29-35]. Inhibiting neutro-
phil recruitment and adhesion through target-
ing of the ICAM-1 and/or P-selectin has been 
observed to improve results in some cases of 
SCI [36-39], however, one study involving anti-
neutrophil serum did not offer corroboratively 
compelling results [40]. While macrophage 
depletion could modestly improve outcomes 
following SCI [41, 42], there is a relative lack of 
specific methods for targeting macrophages 
which complicates the determination that mac-
rophage impairment, and not another mecha-
nism, is responsible. Despite some conflicting 
results [43-45] with anti-T cell methods, like-
wise therapies aimed at inhibiting T- and B-cells 
have been seen to offer some benefit [46-50]. 
Several anti-inflammatory therapies have been 
shown to provide benefit following SCI; these 
include the administration of anti-CD11d mono-
clonal antibody [51-53], the inhibition of mono-
cytes and neutrophils together (as potential  
collaborators) [54], and the use of intraven- 
ous immunoglobulin [55, 56]. The antibiotic, 
minocycline, provides neuroprotective benefit 
through its ability to attenuate inflammation 
and apoptosis [57-69]. Some plant-derived 
substances such as allicin and gastrodin have 
also been observed to mitigate the effects of 
SCI through anti-inflammatory mechanisms 
[70, 71]. Current research is attempting to elu-
cidate the potential benefits to be derived from 
mediators of inflammation.  

Hormonal therapies such as those involving the 
administration of estrogen, progesterone, and 

Table 1. Effects of hormones in relation to spinal cord injury
Hormone Direct effect Implications
Estrogen Microglial activation, increased VEGF ex-

pression along with increased blood flow 
to site of injury, reduced calpain and cas-
pase 3 expression, attenuated cellular 
calcium influx, decreased TNF-α and iNOS 
expression

Reduction in neuronal death, anti-
apoptotic effect leading the increased 
cell survival, decreased inflammatory 
response; overall increase in preser-
vation of function following injury

Progesterone Downregulation of inflammatory cytokines 
including TNF-α and iNOS, NOS2, MCP-1, 
and IL-1β; downregulation of caspase 3 
and GFAP 

Neuroprotection due to attenuated 
inflammation and reduction of apop-
tosis; improved motor function and 
increased preservation of neuronal 
structural and functional integrity 

Human chorionic gonadotropin Reduced lesion volume in experimental 
stroke models

Potential improvement in functional 
and structural recovery following 
spinal cord injury
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human chorionic gonadotropin (HCG) have 
been shown to improve outcomes following SCI 
(Table 1). These hormones act through various 
mechanisms that will be reviewed in this paper.  
The use of endogenous hormones as SCI thera-
py is attractive because associated results and 
side effects may be limited or more readily 
anticipated as compared to the use of some 
exogenous therapies. These hormones are also 
relatively accessible and inexpensive which 
improve their potential for wide-spread use. 

Hormonal therapy

Historically, regeneration of peripheral nerves 
has been considered plausible in certain situa-
tions, however, the dogma persists that SCIs 
are permanently debilitating without chance of 
recovery. While the reality largely confirms this 
impression, there are areas of research in spi-
nal cord regeneration that are demonstrating 
tremendous promise. Areas that have been 
recently explored include cell transplantation, 
steroid hormone administration, immune mod-
ulatory therapies, and the administration of 
inflammation suppressants and other biomole-
cules among others. This review will focus on 
the hormones, estrogen, progesterone, and 
HCG and their effects on the injured spinal 
cord. 

Estrogen

Many pharmacological agents and their eff- 
ects following traumatic spinal cord injury have 

comes in females relative to males following 
SCI [84].  

The overexpression of cytokines has been 
observed following injury of the central nervous 
system [85, 86]. Upregulation of genes exp- 
ressing cytokines such as tumor necrosis fac-
tor-a (TNF-α), interleukin-1 (IL-1), and interleu-
kin-6 (IL-6) has been observed shortly following 
SCI [87-92] (Figure 1). TNF-α mediates inflam-
matory processes through its activation of 
NF-κB, which in turn upregulates other pro-
inflammatory cytokines [93-97]. Pishva et al. 
[98], determined that administration of estro-
gen twice daily following SCI in rats significant- 
ly reduced the gene expression of TNF-α and  
its downstream cytokine iNOS and this likely 
accounts for at least some of the inhibitory 
effect estrogen has on inflammation following 
SCI (Figure 1).

While estrogen may not be effective in return-
ing complete function and mobility to an indi-
vidual following traumatic spinal cord injury, it 
has been shown to improve functional scores  
in studies performed in rats [80]. However, 
between weeks four and six following the 
induced injury, the group administered a single 
dose of 17b-estradiol intraperitoneally scored 
significantly higher than their control counter-
parts with mean BBB scores being reported as 
15.1 for the estradiol group and 9.3 for the  
control by week 6, which was statistically sig-
nificant [80]. Hubscher et al. [99] likewise 
reported improved scores through the sixth 

Figure 1. Schematic diagram showing underlying causes of SCI and immune 
response activation. Some of the major transcription factors involved in 
inflammatory injury following spinal cord trauma are shown. The complete 
signaling pathways are not depicted. Causes of SCI vary and include motor 
vehicle accidents, falls, violent encounters, and sports injuries. SCI is gener-
ally marked by an increase in cytokines such as TNF-α, IL-1β, and IL-6 that 
lead to upregulation of inflammatory and/or apoptotic agents including NF-
κB, AP-1, JNK, p38 MAPK, and PGE2. The upregulation of these factors often 
contributes to secondary damage which worsens the outcome following the 
initial injury, typically presenting as increased lesion size or increased loss 
of cells.

been studied [72-75]. Among 
these, estrogen has been sh- 
own to exhibit a neuroprotec-
tive effect [76-79]. This effect 
is a result of anti-inflammatory 
processes and activation of 
varied serine proteases by 
estrogen [76]. Letaif et al.  
[80] note that this anti-inflam-
matory activity is perpetrated 
through microglial activation, 
increased blood flow to the 
site of injury, increased levels 
of anti-apoptotic proteins, att- 
enuated cellular influx of cal-
cium following injury and ad- 
ministration of estrogen [81-
83]. In fact, increased estro-
gen levels may be partially 
responsible for improved out-
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week of their experiment. Other studies re- 
viewed cover a short period and only provide 
insight into the initial effects of estrogen follow-
ing SCI [76]. While Ritz and Hausmann reported 
lower BBB scores after the fourth week [77], 
other groups have reported significant improve-
ments in BBB scores in estrogen-treated rats 
earlier than the fourth week [76, 78]. The con-
flicting findings underscores the importance of 
a potential benefit with additional long-term 
studies extending well beyond the fourth week 
to clarify our understanding of the effects of 
estrogen on functional nervous system scores, 
beyond the short-term. Moreover, some investi-
gators have administered estradiol in multiple 
doses [76, 78, 83] and observed good cellular 
and physiological results. Olsen et al. [83] ad- 
ministered estrogen for the first 21 days follow-
ing SCI. The studies employing multiple dosing 
schedules [76, 78] reported earlier improve-
ments in BBB scores compared to those that 
administered a single dose [80] (Figure 2).

In addition, large differences between treat-
ment and control animals have been seen 
using motor evoked potential monitoring (MEP) 
[80]. In this test, latency, or the time taken for 

emia, axon degeneration, and cellular infil- 
tration. However, there has been a marked 
increase in quantity and diameter of axons 
observed in rats treated with estrogen com-
pared to control [80]. The mean number of 
fibers for the estradiol group was reported as 
92.6 and that of the control group was 56.9 
which was statistically significant. Whereas  
the mean diameter of axons for the estradiol 
group was 92.4 compared to a mean of 55.1 
for the control group, which was again, statisti-
cally significant [80]. 

So far, studies examining the effects of estro-
gen injection following SCI have administered 
the treatment directly following the injury. This 
provides useful insight into the results of early 
treatment with estrogen. However, it would be 
of benefit to directly compare the effects of 
early administration with later administration to 
ascertain any differences in benefit that exist.  
In fact, Sribnick et al. found that chronic cases 
of SCI are also amenable to estrogen therapy 
and exhibit improvements in motor function fol-
lowing treatment [78]. The effect on chronic 
cases could be further explored.

Figure 2. Compared to SCI controls, subjects receiving estrogen injections 
following injury exhibit reduction in TNF-α, increased microglial activity, re-
duced calpain and caspase 3 levels, increased levels of anti-apoptotic pro-
tein, decreased cellular calcium influx, increased serine protease activation, 
and increased VEGF expression. This, in turn, leads to attenuated inflamma-
tion, decreased apoptosis, and increased blood flow to the site of injury, re-
sulting in improved scores on the Basso-Bresnahan-Beattie (BBB) scale for 
locomotion, improved conduction velocity on motor evoked potential (MEP) 
monitoring, and increased quantity and diameter of axons.

an electrical impulse to travel 
from the head to the limbs, 
and the amplitude of the 
transmitted impulse were me- 
asured. Letaif et al. [80] re- 
ported a 17-fold increase in 
the speed of travel of the el- 
ectrical impulse in estrogen-
treated rats as compared to 
the control, and a 7-fold in- 
crease in the amplitude of 
same impulse. The strictly ob- 
jective nature of this test ma- 
kes it a valuable and evalua-
tive tool for measuring neural 
function. Thus, MEP proves 
indispensable in future stud-
ies involving injuries of the 
nervous system in evaluating 
the effect of treatment (Figure 
2).

No significant improvement 
has been observed from a his-
tological perspective in rats 
treated with estrogen follow-
ing SCI when analyzed for 
necrosis, hemorrhage, hyper-
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It has been shown that some molecules that 
bind the estrogen receptors such as G-1, 
tamoxifen, and other estrogen receptor ago-
nists, can have neuroprotective functions simi-
lar or identical to those of estrogen following 
SCI [100-108]. High dose estrogen adminis- 
tration has not become a standard of care for 
SCI patients in large part due to the adverse 
effects associated with estrogen levels well 
above normal physiological levels. These side 
effects include increased rates of deep vein 
thrombosis and cancer [109, 110], and the 
development of feminine physical traits in 
males. Samantaray et al. [1] reported that low 
dose estrogen administration attenuates glio-
sis and provides protection for neurons in the 
caudal penumbra following traumatic SCI in 
rats. It was observed that low dose estrogen 
administration (5-10 µg/kg) 48 hours following 
the injury resulted in the attenuation of inflam-
matory events, reduced calpain expression 
which induced an anti-apoptotic effect, redu- 
ced caspase-3 expression also inhibiting apo- 
ptosis, increased expression of the estrogen 
receptors ER-α and ER-β (suggesting effects 
relate to increased receptor signaling), attenu-
ated neuronal death, and increased ex- 
pression of VEGF which is a potent stimulator of 
vasculogenesis and angiogenesis. Apart from 
the increased expression of estrogen recep-
tors, the observations failed to exhibit any  
significant difference between the 10 µg and 
100 µg doses of estrogen.

Thus, the research findings to date suggest 
that low dose estrogen administration and 
estrogen receptor agonists exhibit potential to 
be further explored in animals, and in clinical 
trials in humans following additional knowledge 
on potentially adverse effects. Estrogen has 
been shown to ameliorate SCI, but the undesir-
able effects associated with high-dose estro-
gen administration limit its potential as a stand-
alone therapy.

Progesterone

Progesterone (PROG) is a steroid hormone pro-
duced by the ovaries and placenta in females, 
and by the adrenal glands in both females and 
males. The nervous system has the capacity to 
locally synthesize PROG and convert PROG into 
its active metabolite, allopregnanolone [111]. 
As with estrogen, PROG has been shown to be 
promyelinating, anti-inflammatory, and neuro-

protective in cases of nervous system injury 
[112-115]. When studied in relation to brain 
trauma, PROG was shown to prevent neuron 
loss and mitochondrial dysfunction, reduce 
edema and inhibit inflammatory cytokines, as 
well as, improve motor function on diagnostic 
scales [116-118]. Moreover, PROG has also 
been tested in two Phase II clinical trials which 
suggested its efficacy as a treatment option  
for traumatic brain injury patients [119-121].  
With respect to SCI, PROG has been shown to  
prevent chromatolysis, preserve motor neuron 
structure, upregulate the expression of choline 
acetyltransferase and brain-derived neuro-
trophic factor (BDNF), which increase produc-
tion of acetylcholine and help to support pres-
ervation, growth, and differentiation of neurons, 
respectively. PROG has also been shown to 
reduce the proliferation and activation of astro-
cytes and microglia, and increase the produc-
tion of oligodendrocyte progenitor cells [113, 
122-124]. PROG could be a target for therapies 
aimed at improving neural function following 
injury by modulation of astrocytes and their 
pathogenesis [125]. As was observed with 
estrogen, 10 µg/kg/12 h PROG administration 
significantly reduced the expression of TNF-α 
and iNOS genes following SCI, which lead  
to production of inflammatory mediators and 
nitric oxide (NO) which can contribute to reac-
tive radical damage [126]. Garcia-Ovejero et al. 
[127] observed comparable effects following 
SCI in rats administered PROG subcutaneously 
each day. After 60 days, there was a marked 
increase in spared white matter (SWM) preser-
vation in PROG-treated rats compared to  
control with white matter measurements of 
58.60 ± 4.06% and 22.99 ± 3.03% volume, 
respectively, as measured 2.5 mm rostrally  
and caudally from the epicenter of contusion.  
However, there was no significant difference  
in the volume of spared gray matter (SGM) 
observed between control rats and those tre- 
ated with PROG. Increased oligodendrocytes, 
decreased myelin damage, improved axonal 
preservation, and improved locomotor function 
were all demonstrated following the adminis-
tration of PROG after SCI.

While another study recapitulated the improved 
motor and histological outcome with PROG 
administration [128], the beneficial results  
are not universal: Fee et al. [129] found no im- 
provement with PROG injection following SCI. 
Part of this discrepancy could be a result of  
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differences in the duration of study, as report-
ed observations in the study of Fee et al. [129] 
were limited to 5 days as opposed to 60 days 
and 6 weeks in the studies producing positive 
results.

Guennoun et al. [111] found the binding of pro-
gesterone to intracellular progesterone recep-
tors (PR) via its classical pathway, and it may 
also bind to specific membrane sites (mPR/
PGRMC1 complex) to activate intracellular sig-
naling pathways (Figure 3). Moreover, allopreg-
nanolone may act on GABAA receptors following 
its conversion from PROG [111, 130-135]. They 
also determined that PROG acted on the ef- 
fectors PR, mPRs, and PGRMC1. After conver-
sion to 5a-dihydroprogesterone through a mec- 
hanism involving 5a-reductases, action oc- 
curred on the effectors PR and mPRa (Figure 
3). Following conversion via 3a-HSOR to allo-
pregnanolone (3a5a-THPROG), it can bind to 
GABAA receptors, PXR, and mPRd to induce 
neuroprotective effects [111] (Figure 3). Fur- 
ther understanding of the receptors upon  
which PROG and related molecules act could  
prove useful in developing treatments aimed at  
neuroprotection. Future work is required to 
ascertain potential side effects associated  
with synthetic progestins and allopregnanolone  
as many synthetic progestins may also bind 
androgen and glucocorticoid receptors produc-

causes of chronic pain following SCI [149-151]. 
Cytokines are involved in the modulation of 
neuronal function and pain transmission [151-
156]. Coronel et al. [144] explored the effects 
of PROG on IL-1β and its receptors IL-1RI and 
IL-1RII, antagonist IL-1ra, IL-6, TNF-α, and NR1 
subunit of N-methyl-D-aspartate receptor (NM- 
DAR) following SCI. IL-1β, IL-6, and TNF-α mRNA 
(and protein) levels were significantly lower in 
rats receiving PROG than the placebo, on the 
first day status post injury; however, there was 
only a significant difference in mRNA levels 
observed on day 14 in IL-1β, and no significant 
difference on day 28 of the study.  There was no 
significant difference in IL-1RI mRNA levels 
between the groups on days 1 or 14, but by day 
28, the PROG-treated group had significantly 
lower levels than the placebo. IL-1RII mRNA  
levels were seen to be markedly higher in the 
PROG group on day one, with no significant  
difference thereafter. No differences were ob- 
served between the two groups in IL-1ra mRNA 
levels. These data as well as those showing 
fewer IL-1RI positive neurons in the spinal cords 
of PROG-treated rats compared to those re- 
ceiving placebo suggest that PROG may pro-
vide benefit to those experiencing chronic pain 
following SCI, but may not have the same effect 
or mediate it in the same way in the immediate 
aftermath of the injury. Additional research on 
the effect of PROG following SCI, with a focus 

Figure 3. Compared to SCI controls, subjects receiving progesterone injec-
tions following injury exhibit reduced expression of TNF-α and subsequently 
iNOS, increased acetylcholine production and neuron growth through upreg-
ulation of choline acetyltransferase and brain-derived growth factor (BDNF), 
downregulation of NOS2, MCP-1, IL-1β, caspase-3, and GFAP. Observations 
have been noted of decreased chromatolysis, increased preservation of 
neuron structure, and a reduction of mitochondrial dysfunction in animals 
administered progesterone following SCI. It has been noted that progester-
one and its metabolites 5a-dihydroprogesterone and allopregnanolone act 
on those receptors depicted to contribute to the mediation of the effects 
listed. In this schematic diagram, complete pathways are not depicted, but 
some of the major components are shown.

ing undesirable effects [136, 
137], and allopregnanolone 
has been associated with so- 
me cognitive impairment and 
symptoms such as anxiety, irr- 
itability, aggressiveness, sei-
zure, and increased pain [138- 
142]. Of note, it has been 
determined that PR reduces 
reactive gliosis and preserves 
oligodendrocyte precursor ce- 
lls in the injured spinal cord in 
rats [143].

PROG shows potential as a 
modulator of neuropathic pa- 
in following SCI [144-146]. 
While there may be many 
mechanisms by which pain is 
transmitted following central 
nervous system injury [147, 
148], neuro-inflammation and 
reactive gliosis are primary 
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on IL-1RI, and its utility as a treatment option in 
cases of chronic pain following SCI, is warrant-
ed. There is indication that the effect of PROG 
could differ in acute and chronic settings.

Yang et al. [157] observed that PROG signifi-
cantly reduces axonal dieback and neuronal 
death in mice following SCI when observed at 
intervals of 24 h, 48 h, and 72 h from the initial 
injury. This was mediated via down-regulation 
of inflammatory cytokines, including NOS2, 
MCP-1, and IL-1β as well as activated cas-
pase-3 and GFAP. Interestingly, upregulation of 
myelin basic protein (MBP) was also noted. It 
was also suggested that PROG improved be- 
havioral function following SCI. Further studies  
of a longer duration would help elucidate the 
effects of PROG on axon and neuron preserva-
tion beyond the acute stages.

PROG is effective as an anti-inflammatory 
agent that can improve motor function and  
histological outcomes following SCI. To date, 
the side-effects associated with PROG are  
not as immediately apprehensible as those of 
some others, and it continues to exhibit poten-
tial as an effective treatment following injury of 
the central nervous system.

HCG

Human chorionic gonadotropin (HCG) is a het-
erodimer consisting of an α and a β subunit, 
which are non-covalently linked. The hCGa sub-
unit constitutes part of other hormones such 
as luteinizing hormone, follicle-stimulating hor-
mone, and thyroid-stimulating hormone. HCG  
is produced in the adrenal pituitary gland by 
gonadotropin cells [158, 159].

HCG presents potential as a treatment in the 
case of central nervous system injury. It was 
observed in a preliminary study that HCG 
helped to increase the amount of adrenal 
medulla tissue survival following autologous 
transplant in the lateral ventricles of rat brains 
[160]. Proliferation of endogenous stem cells in 
the subgranular zone and the subventricular 
zone has been observed to increase with 
administration of HCG [161]. Meng et al. [162]  
observed that HCG induced neuronal differen-
tiation of PC12 cells by activating the stably 
expressed lutropin/choriogonadotropin recep-
tor in vitro. In a study of rats with experimental 
strokes, treatment with HCG + erythropoietin 

(EPO) significantly reduced the lesion volumes 
(by 82-89%) and significantly improved neuro-
logical scores compared to three other treat-
ment groups including HCG + saline, saline + 
EPO, and saline + saline [163]. This would also 
suggest that EPO may play a role in the reduc-
tion of lesion size following stroke.

Extensive literature reviews illustrate a relative 
void in research performed using HCG in as- 
sociation with SCI as compared with studies 
using estrogen and progesterone. Patil and 
Nagaraj [164] found that 12 rats receiving HCG 
injections following SCI exhibited a significant 
improvement in functional recovery (assessed 
by measurement and grading of the return of 
bladder function and the ability to climb up an 
inclined plane) within 6 weeks as compared to 
10 rats serving as control. In a later study, Patil 
et al. [165] transected the spinal cords of 21 
rats at the midthoracic level; the 11 rats admin-
istered HCG exhibited significantly increased 
amplitudes of the cortical evoked motor action 
potentials after six weeks compared to the  
control group. These findings suggest that the 
administration of HCG may serve to improve 
spinal cord function following traumatic injury.  
However, the relatively small number of ani-
mals studied and the limited number of retriev-
able studies of the effects of HCG on indi- 
viduals with SCI preclude any conclusive deter-
minations of universal effectiveness or possi-
ble side effects until further research is under- 
taken.

HCG may act to improve motor function and 
minimize neuronal damage following spinal 
cord lesion. The minimal side effects associat-
ed with HCG, and the relative lack of research 
that has been performed on its effect on SCI 
mandate further investigation as a potential 
therapeutic option.

Conclusion

Estrogen, progesterone, and HCG are hor-
mones with diverse functions that could serve 
to attenuate the harmful consequences of  
SCI through their abilities to interact with the 
GABA system, reduce excitotoxicity, free radi-
cals, edema, and apoptosis, inhibit inflamma-
tory cytokines, induce increased angiogenesis, 
mitochondrial recoupling, remyelination [166], 
and induce stem cell migration to the site  
of injury. These functions have potential to 
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improve prognoses for individuals suffering 
after SCI with promise of increased motor func-
tion, preserved structure, and a reduction of 
neuropathic pain. Further investigation into 
each of these methods is of paramount 
importance.
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