
 

 

Introduction 
 

Altered metabolism in human cancers has long 
been recognized. The first observation of in-
creased anaerobic glycolysis in cancer cells was 
made by Otto Warburg, the so called “Warburg 
effect” [1] . The “Warburg effect” has now be-
come a hallmark of the transformed phenotype 
of cancer cells, and is thought to provide growth 
advantages to these cells [2, 3]. One of the 
metabolic changes in cancer is the altered lipo-
genic pathway with increased de novo fatty acid 
synthesis [4].  
 
Fatty acids serve as important substrates of 
metabolism for energy, essential building blocks 
of cellular membranes, intracellular second 
messengers, and anchorage for membrane pro-
teins. Fatty acids exist either as components of 
triacylglycerol, phospholipids and cholesterol or 
in free forms. Free fatty acids include dietary 
ones and the ones derived from de novo synthe-
sis catalyzed by fatty acid synthase (FASN) in 
lipogenic tissues such as liver, adipose tissue, 
lactating breast and cycling endometrium.  

 
However, the altered lipogenic pathway in can-
cers did not become a focus of interest until 
1994, when Kuhjada and colleagues identified 
the oncogenic antigen-519 (OA-519), a mole-
cule found in tumor cells from breast cancer 
patients with markedly worsened prognosis, as 
fatty acid synthase (FASN) [5]. Human FASN is a 
270-kDa cytosolic enzyme [6, 7]. It is also re-
ferred as the cytosolic type I FASN complex 
while type II fatty acid synthesis system exists in 
mammalian mitochondria, which resembles the 
prokaryotic type II FASN. It is believed that the 
type II system produces fatty acids that play 
important roles in the mitochondrial function 
[8]. The type I FASN has recently been shown to 
have oncogenic activity [9, 10] and its inhibition 
has been shown to effectively and selectively 
kill cancer cells, with minimal side effects to 
normal cells [11-17]. Thus, targeting type I 
FASN opens a new window of opportunity for 
metabolically combating cancers. In this review, 
we will focus on the cytosolic type I FASN pro-
tein and perform a critical review on the recent 
progresses in understanding the structure, func-
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tion, and the role of FASN in cancers and phar-
macological targeting FASN for human cancer 
treatment. 
 
Structure and function of mammalian FASN 
 
The de novo synthesis of fatty acids from glu-
cose consists of the following key elements: 1) 
citrate lyase, which converts citrate to acetyl-
CoA; 2) acetyl-CoA carboxylase, which carboxy-
lates acetyl-CoA to malonyl-CoA and is the rate 
limiting enzyme for fatty acid synthesis; 3) 
nicotinamide adenine dinucleotide phosphate 
(NADPH) as a reducing equivalent and ATP as 
the energy source; and 4) FASN, the enzyme 

that condenses acetyl-CoA and malonyl-CoA to 
16-carbon palmitate (Figure 1). 
 
Mammalian FASN is a multifunctional polypep-
tide containing seven catalytic domains: β-
ketoacy l  synthase  (KS) ,  malony l/
acetyltransferase (MAT), dehydrogenase (DH), 
enoyl reductase (ER), β-ketoacyl reductase (KR), 
acyl carrier protein (ACP) and thioesterase (TE) 
[18] (see Figure 2A). In the conventional model 
of mammalian FASN, it was thought that FASN 
forms a fully extended head-to-tail homodimer 
(Figure 2A). However, results from mutant com-
plementation [19, 20], chemical crossl-inking 
[21] and subunit interaction [22] studies were 

 
Figure 1. De novo fatty acid synthe-
sis. The de novo fatty acid synthe-
sis pathway functions in both can-
cers and lipogenic tissues. In both 
cases, excess glucose goes 
through glycolysis and TCA cycle, 
and exits mitochondria as citrate 
which is then converted to acetyl-
CoA by ATP citrate lyase. Carboxyla-
tion of acetyl-CoA to malonyl-CoA is 
catalyzed by acetyl-CoA carboxylase 
(ACC). FASN condenses one acetyl-
CoA and seven malonyl-CoA into 
palmitate which can be then modi-
fied into various lipids such as 
phospholipids.  

 

 
Figure 2. Models of domain organi-
zation of FASN. (A) Conventional 
dimeric model of FASN. In this 
model, the two subunits in the 
homo-dimeric FASN are arranged in 
a fully extended head-to-tail organi-
zation. (B) Revised model of do-
main organization. In this revise 
model, FASN adopts an X-shaped 
dimeric form with each monomer in 
coiled structure to allow multiple 
intra- and inter-subunit interac-
tions. KS = ketoacyl synthase; MAT 
= malonyl/acetyltransferase; DH = 
dehydrogenase; ER = enoyl reduc-
tase; KR=ketoacyl reductase, ACP 
= acyl carrier protein; TE = thio-
esterase. 
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incompatible with this model. Therefore, a re-
vised model was proposed, in which FASN forms 
an intertwined, X-shaped, head-to-head 
homodimer [23] (Figure 2B).  
 
In the new model, each subunit in the dimeric 
FASN adopts a coiled conformation that allows 
multiple intra- and inter-subunit interactions 
between the functional domains, with the KS 
domain located in the central portion of the 
structure. This model was further supported by 
the results from cryo-electron microscopy and 
crystal structure studies [23-26]. The 3.2 Å crys-
tal structure of FASN containing the MAT, KS, 
DH, ER and KR domains demonstrates that 
FASN assembles as an intertwined “X”-shaped 
dimer (Figure 3). The whole structure can be 
divided into two portions: the condensing por-

tion including KS and MAT domains and the β-
carbon modifying portion including DH, ER, and 
KR domains. In addition, two nonenzymatic do-
mains, “pseudo-methyltransferase” (ΨME) and 
“pseudo-ketoreductase” (ΨKR) are located at 
the periphery of the modifying portion. The two 
subunits associate with each other mainly 
through hydrophobic interactions between the 
KD, ER and DH domains of the two subunits 
and have a buried surface area of 5400 Å2.  
 
The FASN-catalyzed synthesis of fatty acids in-
volves three major steps: (1) initiation with the 
condensation of malonyl-CoA and acetyl-CoA 
catalyzed by MAT; (2) elongation, a repeating 
cycle of reduction and dehydration to add 2 car-
bons in each cycle to the elongating fatty acid 
chain catalyzed by KS, DH, ER, and KR; and (3) 

Figure 3. Atomic structure of FASN. The overall structure of FASN dimer is X-shaped (viewed in perpendicular to its 
pseudo-2-fold axis). One subunit is colored by different shades of blue and green for different domains. The other 
subunit is in infrared colors ranging from magenta to orange. The two non-enzymatic domains, pseudo-ketoreductase 
(ΨKR) and pseudo-methyltransferase (ΨME), are colored in gray and black, respectively, for both subunits. This figure 
was created from FASN structure (PDF ID: 2VZ8) 
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termination to release palmitate from ACP cata-
lyzed by TE (Figure 4). Synthesis of one palmi-
tate consumes 1 acetyl-CoA, 7 malonyl-CoA, 7 
ATP, and 14 NADPH molecules. 
 
Regulation of FASN expression 
 
In normal adults, FASN is primarily expressed in 
hormone-sensitive cells and cells with high lipid 
metabolisms [27]. FASN expression in normal 
liver and adipose tissues is controlled mainly by 
nutritional signals. In a well-nourished individ-
ual, normal cells preferentially use circulating 
free fatty acids from diet. Thus, the de novo 
fatty acid synthesis is rarely needed and the 
FASN protein level is low. Carbohydrate inges-
tion, thyroid hormone, insulin, and glucocorti-
coid coordinately up-regulate while unsaturated 
fatty acids, cyclic-AMP, and glucagon down-
regulate FASN expression [28]. In cycling endo-
metrium, FASN expression is high in the prolif-
erative phase and decreases in the secretory 
differentiation phase. Proliferative gland and 
stroma cells have high levels of FASN, as well as 
high levels of estrogen and progesterone recep-
tors and Ki-67, indicating that FASN expression 
may be under the control by hormone and asso-
ciate with proliferation [29]. In lactating breast 
tissues, FASN expression is up-regulated to pro-
duce milk fat [30].  
 
In cancer cells and pre-neoplastic lesions, the 
expression of FASN has been found to be up-
regulated [29, 31-45]. Because of FASN up-
regulation, over 90% of the triacylglycerol in 
cancer cells are synthesized de novo despite 
the presence of high levels of circulating free 
fatty acids. Cancer cells are so dependent on de 
novo fatty acid synthesis that inhibition of lipo-

genesis targeting FASN induces apoptosis selec-
tively in human cancer cells both in vitro and in 
vivo [46-49], with minimal effect on normal cells 
[17, 50, 51].  
 
FASN expression in cancer cells is no longer 
responsive to the nutritional signals and its ex-
pression is regulated at multiple steps including 
gene amplification, transcription, translation 
and post-translational modifications. The in-
creased FASN gene copy number has been 
found in prostate cancer cell line PC-3 and 
LNCaP, as well as in prostate adenocarcinoma 
and metastatic cancers [52]. The increased 
FASN staining in tumor tissues correlates with a 
25% increase in gene copy number, whereas in 
benign tissues, only 1% of the cells with high 
FASN staining showed increased gene copy 
number. Thus, gene amplification in cancer 
cells may partly contribute to the increased 
FASN expression in prostate cancers. 
 
Transcriptional regulation of FASN expression 
has been well-studied and is considered the 
major contributor to the increased FASN expres-
sion in cancer cells. Growth factors, hormones 
and their receptors have been shown to be the 
main factors that cause up-regulation of FASN 
transcription in cancer cells. Epidermal growth 
factor (EGF) can stimulate FASN expression 
through EGF receptor ERBB1 and ERBB2 [53, 
54]. In breast and prostate cancer cells that 
have functional hormone receptors, FASN ex-
pression has been shown to be up-regulated at 
transcriptional level upon hormone treatment 
[55-57].  
 
The effect of growth factors or hormones and 
their receptors on FASN expression involves 

Figure 4. FASN-catalyzed palmitate synthesis. FASN-catalyzed palmitate synthesis involves three steps: initiation, 
elongation, and termination. The initiation step involves condensation of acetyl-CoA and malonyl-CoA catalyzed by the 
MAT domain. The elongation step of condensation of additional malonyl-CoA is catalyzed by KS, KR, DH, and ER do-
mains. The final step of termination is catalyzed by the TE domain to release palmitate from FASN.  
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complicated downstream signaling and cross-
talk between multiple signal transduction path-
ways. The two well-studied major pathways that 
are possibly involved in regulating FASN expres-
sion are the mitogen-activated protein kinase 
(MAPK) and PI3K/AKT pathways. In H-ras trans-
formed and immortalized human mammary 
epithelial cell line MCF10A1, FASN expression 
was significantly elevated upon EGF treatment 
[58]. Treatment of this cell line with MEK-1 in-
hibitor, U0126, blocked ERK activation and sub-
sequently decreased FASN expression, while 
transient transfection of MCF10A1 cells with 
constitutively activated MEK-1 increased FASN 
expression. Similarly, MAPK inhibitors also de-
creased FASN promoter activity and FASN pro-
tein level in MCF7 and HCT116 cancer cells 
[58]. In another study, EGF was found to up-
regulate the promoter activity of FASN and its 
expression while MAPK inhibitor abolished the 
EGF-stimulated FASN expression [59]. These 
observations suggest that MAPK pathway plays 
an important role in regulating and mediating 
EGF-stimulated FASN expression.  
 
Multiple studies have demonstrated the rela-
tionship between PI3K/Akt activity and FASN 
expression. In the first study by Van de Sande et 
al. [60], it was found that the PI3K/Akt pathway 
was involved in FASN expression in the PTEN-
null prostate cancer cell line LNCaP. Treatment 
with PI3K-specific inhibitor, LY294002 and 
transfection with PTEN both significantly de-
creased FASN expression level as well as FASN 
transcriptional activity. Co-transfection of consti-
tutively active Akt with PTEN reversed the inhibi-
tory effect of PTEN on FASN expression and its 
promoter activity. In human prostate tumors, an 
inverse correlation between FASN and PTEN 
expression has also been observed [61]. In sev-
eral later studies of different cell lines, it was 
confirmed that PI3K inhibitors could reduce 
FASN expression in various cancer cell lines 
[58, 61-64]. PI3K/Akt pathway has also been 
suggested to mediate the induction of FASN 
expression by heregulin [63] and diogenin [64]. 
Hypoxia, which causes the generation of reac-
tive oxygen species, can also up-regulate FASN 
expression thorough activation of Akt. Addition 
of H2O2 in several breast cancer cell lines in-
creased FASN expression, which is in good 
agreement with the amount of ROS generated 
in these cell lines under hypoxic condition [65].  
 
The relationship between PI3K/Akt pathway and 
FASN expression has also been observed in 

clinical studies of human cancer tissues. Follow-
ing the initial observation that PI3K/Akt may 
regulate FASN expression in LNCaP cells, van de 
Sande et al. investigated this relationship in 
prostate cancer tissues and found that the in-
creased FASN expression correlates with activa-
tion and nuclear localization of Akt [66]. In an-
other study of more than 400 papillary thyroid 
carcinoma tissues, a significant correlation was 
also observed between FASN expression and 
PI3K/Akt activation using immunohistochemis-
try [67]. Yet in a third study of more than 400 
colorectal cancer tissues on a tissue array, a 
significant correlation between FASN expression 
and PI3K/Akt activation was also found [68]. 
Together, these observations suggest that PI3K/
Akt pathway may play important roles in regulat-
ing FASN expression, not only in cultured cells 
but also in human cancer tissues. However, it is 
noteworthy that the findings of these correlation 
studies are also consistent with the possibility 
that FASN over-expression up-regulates PI3K/
Akt activation (see discussion below). 
 
The major transcription factor that is involved in 
regulating FASN transcription is sterol regulatory 
element binding protein 1 (SREBP-1). SREBP-1 
is one of the two SREBP membrane bound tran-
scription factors of the basic-helix-loop-helix-
leucine zipper family that regulate fatty acid and 
cholesterol synthesis [69]. The membrane-
bound SREBPs are activated and released from 
membranes by protease cleavage in response 
to fatty acid and cholesterol depletion. The ac-
tive SREBPs then translocate into nucleus and 
activate gene transcription. It has been sug-
gested that SREBP-1 is important in regulating 
fatty acid synthesis while SREBP-2 is for choles-
terol synthesis [70, 71].  
 
In the androgen responsive prostate cancer cell 
line LNCaP, it was reported that androgen in-
creased mRNA and protein levels of SREBP pre-
cursors and the mature active SREBP as well as 
elevated FASN transcript and protein levels 
[72]. The increased FASN transcription ap-
peared to depend on the presence of SREBP 
biding site in the FASN promoter sequence. De-
letion of this site abrogated the transcriptional 
activation of FASN by androgen. It has also been 
shown that androgen not only increased expres-
sion and activation of SREBPs, but also the ex-
pression of SREBP-activating protein (SCAP), 
that helps transport SREBP from their synthesis 
site to the proteolytic activation site and, there-
fore, enhances the maturation of SREBP [73].  
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SREBP also appears to mediate the regulation 
of FASN expression by growth factors such as 
EGF [59]. Using LNCaP prostate cancer cell 
lines, it was found that EGF stimulated FASN 
expression and its promoter activity can be 
stimulated by EGF via its SREBP-binding site. 
Introduction of a dominant negative SREBP 
eliminated EGF-stimulated FASN expression. In 
another study, FASN, SREBP-1 and Ki-76 were 
found to co-localize in primary human colorectal 
carcinoma specimens [74]. Similarly, in human 
mammary epithelial cell line MCF-10A1 and 
cancer cell line MCF-7 as well as a panel of pri-
mary human breast cancer tissues, it was found 
that the coordinated elevation of FASN and 
SREBP-1 was under the control of EGF and its 
downstream PI3K/Akt and MAPK pathway [75].  
 
A transcriptome analysis of Her2 (ERBB2) in 
breast cancer cells has revealed a molecular 
connection between FASN and Her2 through 
PI3K-Akt-dependent signaling [53]. In this study, 
the authors used DNA microarray to compare 
and identify genes induced by Her2 in mam-
mary epithelial cell line with ectopic Her2 over-
expression and breast cancer cell lines derived 
from patients with different level of Her2 expres-
sion. They found that Her2 over-expression acti-
vated FASN promoter and transcription as well 
as increased protein production and activity, 
while inhibitors of Her2, Herceptin and CI-1003, 
attenuated the effect of Her2 on FASN expres-
sion. PI3K activity was thought to be the media-
tor of the Her2 control on FASN expression be-
cause LY294002, a known PI3K inhibitor, abro-
gated Her2-induced FASN protein production in 
the Her2-over-expressing normal mammary 
epithelial and breast cancer cells. Thus, the 
transcription of FASN gene may be induced by 
Her2 via the PI3K pathway and possibly by the 
transcription factor, SREBP, as a downstream 
effector of Her2-PI3K pathway [53]. 
 
However, a later study by Yoon et al. showed 
that Her2 regulation of FASN expression might 
be at the step of translational control [76]. In 
this study, breast cancer cell lines SK-BR-3 and 
BT-474 with high expression of Her2 were com-
pared with MCF7 and MDA-MB-231 that have 
low levels of Her2 expression and a correlation 
between the levels of FASN and Her2 was 
found. However, the total and the activated nu-
clear level of SREBP1 and SREBP2 did not cor-
relate with FASN expression. Furthermore, ec-

topically over-expressing Her2 in MDA-MB-231 
breast cancer cells induced an increase in the 
level of FASN protein but not the level of FASN 
mRNA. These findings indicate that Her2-
induced FASN protein production in MDA-MB-
231 cells is not at the transcriptional step via 
SREBP. Nevertheless, the PI3K inhibitor 
LY294002, blocked Her2-induced FASN expres-
sion, suggesting that the PI3K/Akt pathway is 
indeed involved in mediating Her2-induced 
FASN expression. It was further shown that the 
PI3K downstream target mTOR mediates the 
regulation of FASN expression by increasing the 
overall translation rates of FASN mRNA via acti-
vating eIF4E and S6 ribosomal protein and that 
both the 5’- and 3’- UTRs of FASN are involved 
in its translational regulation. 
 
Both above studies clearly showed that Her2 
induces FASN expression via the PI3K/Akt path-
way. However, the difference resides in the 
step, transcription or translation, at which FASN 
expression is up-regulated by Her2. This dis-
crepancy between these two studies may be 
due to the different cell lines used and suggests 
that both transcriptional and translational regu-
lations may be involved in FASN expression. 
These findings clearly indicate that the regula-
tion of FASN expression is complicated. 
 
Regulation of FASN expression at its post-
translational stability/degradation step has also 
been suggested. In prostate cancer cells, FASN 
protein stability has been shown to be regulated 
by an ubiquitin-specific protease, USP2a [77]. 
Knockdown of USP2a reduced FASN expression. 
Microarray analysis from human prostate can-
cers has revealed a significant association be-
tween the genes in fatty acid metabolism and 
high USP2a expression [78]. 
 
In drug-selected breast cancer cell lines, it was 
found that FASN expression was further up-
regulated compared to its parental cancer cell 
line [17]. The mechanism for this further up-
regulation of FASN remains unknown. However, 
it has been observed that treatment with topoi-
somerase inhibitors doxorubicin (Adriamycin) 
and etopside increased FASN promoter activity 
in SK-Br3 breast cancer cells [79]. This drug-
induced transcriptional activation of FASN did 
not appear to be via SREBP-binding site in the 
FASN promoter sequence. In our recent studies, 
both mRNA and protein levels of FASN in-
creased in the series of stepwise drug-selected 
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MCF7/AdVp cell lines compared with drug sen-
sitive MCF7 parental cells (Figure 5). However, 
there is an obvious discordance in the mRNA 
and protein expression level of FASN in these 
drug-selected cells lines. The mRNA level in-
creased to the maximum level in the low resis-
tant cell line MCF7/AdVp100 while FASN pro-
tein level increased to the maximum level only 
in the most resistant MCF7/AdVp3000 cells 
although both mRNA and protein levels dropped 
in the partially revertant MCF7/AdVpRev cells 
that have lost most of its drug resistance follow-
ing extended growth of MCF7/AdVp3000 cells 
in the absence of selection pressure. Based on 
theses observations, it is reasonable to specu-
late that in drug resistant cell lines, FASN ex-
pression is controlled at multiple levels includ-

ing transcriptional and post-transcriptional regu-
lation.  
 
Role of FASN in tumorigenesis and cancer cell 
proliferation 
 
Increased FASN expression level has been 
found in various human cancers of breast [31], 
colon [32], prostate [33], lung [34], bladder 
[35], ovary [36], stomach [37], endometrium 
[29], kidney [38], skin [39], pancreas [40], head 
and neck [41], tongue [42-44], and soft tissues 
[45]. In addition, increased FASN expression 
has been observed in ductal carcinoma in-situ 
(DCIS) [80] and lobular carcinoma in situ (LCIS) 
[81] of breast. Thus, FASN has been considered 
as a metabolic oncogene.  
 
The first evidence that shows the oncogenic 
function of FASN was from in-vitro studies 
where transient over-expression of ectopic FASN 
increased the proliferation, survival, and an-
chorage-independent growth of an immortalized 
breast epithelial cell line HBL100 [10]. Immor-
talized human prostate epithelia cell lines 
(iPrECs) with ectopic FASN over-expression had 
an increased rate of proliferation and anchor-
age-independent growth in soft agar in vitro, 
similar as the breast epithelial cell line HBL100 
[10]. Histological examination of the prostate 
section of FASN transgenic animals showed 
prostate lumens full of proliferating cells, indi-
cating the prostate hyperplasia. Several older 
male mice showed   enlarged prostate which 
blocks the bladder outflow. However, there were 
no invasive prostate carcinomas observed in 
these mice. The above findings suggest that 
FASN over-expression alone may not be suffi-
cient to generate prostate tumors in vivo. In-
deed, over-expression of androgen receptor 
together with FASN transformed iPrECs to form 
invasive tumors in immune deficient mice [9], 
suggesting that the oncogenic function of FASN 
in prostate epithelial cells may require the coor-
dination of androgen receptors. It is also possi-
ble that the oncogenic function of FASN in mam-
mary epithelial cells require estrogen receptor. 
Clearly, this possibility and the mechanism of 
coordination of FASN with hormones in tumori-
genesis require further investigation. 
 
In both the above studies, it was clearly demon-
strated that ectopic over-expression of FASN 
caused significant increase in proliferation of 
the non-tumorigenic mammary and prostate 

Figure 5. FASN expression in MCF7 and the stepwise-
selected drug resistant and revertant cell lines. (A). 
Western blot analyses. 20 mg proteins, each from 
MCF7, its stepwise-selected MCF7/AdVp10, MCF7/
AdVp100, and MCF7/AdVp3000 cells as well as the 
revertant cell line MCF7/Rev, were separated by SDS-
PAGE followed by western blot analyses using FASN 
antibody. GAPDH was used as a loading control. (B). 
Real time RT-PCR analyses. RNAs isolated from 
MCF7, its stepwise-selected MCF7/AdVp10, MCF7/
AdVp100, and MCF7/AdVp3000 cells as well as the 
revertant cell line MCF7/Rev were subjected to real 
time RT-PCR analysis using SYBR green. The relative 
level of FASN mRNA calculated in the fold change 
(2ΔΔCt) relative to that in MCF7 cells after normaliza-
tion by internal control, GAPDH.  
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epithelial cells. Inhibition of FASN by siRNA or 
chemical inhibitors also caused significant 
growth arrest of cancer cells [82-85]. It is, how-
ever, noteworthy that it has also been observed 
that altering the FASN level either by siRNA or 
ectopic over-expression did not affect the 
growth rate of MCF7 and MCF7-derivied drug 
resistant breast cancer cells [17]. Although the 
reason for the difference between these studies 
is not known, it is possible that the extent of 
FASN inhibition may be the culprit. Neverthe-
less, more studies are clearly needed to demon-
strate the role of FASN in promoting cell prolif-
eration. 
 
The possible role of FASN in promoting cell pro-
liferation may be via affecting cell cycle progres-
sion. It was observed that inhibiting FASN activ-
ity by C75 produced rapid and potent blockage 
of DNA replication and inhibits S phase progres-
sion [86]. In another study, it was found that 
inhibiting FASN expression or activity resulted in 
arrest in G1/S phase transition [83]. This arrest 
of G1/S phase transition was thought to be due 
to the effect of FASN on Rb pathway. Inhibiting 
FASN activity reduced phosphorylation of the Rb 
protein, a parameter that governs the interac-
tion of this protein with E2F-1 and subsequent 
entry into S phase; up-regulated p27Kip1, which 
negatively regulates cyclin-dependent kinase 
activity; and down-regulated Skp2, a protein 
component of the E3 ubiquitin ligase that regu-
lates degradation of p27Kip1 [83]. This observa-
tion was later confirmed by a genome-wide 
analysis of FASN knockdown using siRNA [87]. 
In the genome-wide analysis, several other 
genes such as p21 that regulate cell cycle pro-
gression were also found to be up-regulated by 
FASN knockdown. This observation is consistent 
with an earlier study that a biphasic stress re-
sponse was found with a transient accumula-
tion in S and G2 at 4 and 8 hrs and a marked 
reduction in cyclin A- and B1-associated kinase 
activities, and then growth arrest in G1 and G2 

with accumulation of p53 and p21 proteins at 
16 and 24 hrs following FANS inhibition [84]. 
However, it was found later that the cell cycle 
arrest induced by FASN inhibition was independ-
ent of p53 in hepatoma cell lines, but may in-
volve the p38 MAPK pathway [82]. Thus, the 
role of p53 in mediating FASN-inhibition-
induced cell cycle arrest is debatable and cer-
tainly needs further investigation.  
 
Currently, it is not clear how FASN inhibition 

induces cell cycle arrest at G1/S checkpoint. 
However, it is possible that FASN inhibition sig-
nificantly reduces the synthesis of phospholip-
ids [88, 89], which are major components of 
cellular membranes, and phospholipids biosyn-
thesis is highest in S phase in preparation for 
cell division [90]. Thus, shortage in phospholip-
ids due to reduced FASN expression may cause 
arrest at G1/S checkpoint or inhibit S phase 
progression. Nevertheless, supplementation of 
palmitate, the end product of FASN, to culture 
did not appear to affect cell cycle distribution 
[91]. Ectopic over-expression of human FASN in 
MCF7 cells also did not appear to affect cell 
cycle distribution (Figure 6). Hence, whether 
FASN really plays any role in cell cycle regulation 
requires further detailed investigation.   
 
Role of FASN in prognosis and drug resistance 
 
As discussed above, FASN was initially identified 
as an independent prognostic molecule in 
breast cancer cells from patients with markedly 
worsened prognosis [5, 92]. Breast cancers with 
high level of FASN staining were 4 times more 
likely to recur and metastasize than the ones 
with no staining [92]. Further studies of breast 
cancer samples indicated that patients with 
high FASN expression showed significantly 
shorter disease free survival and overall sur-
vival, even in patients with very early stage of 
breast cancer [31, 93]. It is now clear that in-
creased FASN expression associates with can-
cer progression, higher risk of recurrence and 
shorter survival in many other types of cancers 
including prostate cancer [94], ovarian neo-
plasms [36], squamous cell carcinoma of lung 
[34], melanoma [39], nephroblastoma [38], 
renal cell carcinoma [95], soft tissue sarcoma 
[45], endometrium carcinoma [96], head and 
neck squamous cell carcinoma [41], pancreatic 
carcinoma [40], squamous cell carcinoma of 
the tongue [44], and colorectal carcinoma [97].  
 
In-vitro studies with cancer cell lines also 
showed that FASN over-expression may cause 
resistance of cancer cells to treatments and, 
thus, contribute to clinical poor prognosis. In a 
recent study, FASN was found to be over-
expressed in Adriamycin-selected breast cancer 
cell line with multidrug resistance phenotype 
and its expression increases with the level of 
resistance [17]. FASN over-expression in the 
drug selected breast cancer cell line has been 
demonstrated to contribute to the multidrug 
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resistance phenotype of this cell line possibly by 
over-producing palmitate. The observed gradual 
increase in FASN expression in the series of 
stepwise-selected drug resistant breast cancer 

cell lines suggests that tumor cells with ele-
vated FASN expression in a clinical setting may 
be selected following anticancer drug treatment 
which in turn causes relapse of the disease and 
eventual failure of treatments. 
 
In an earlier study, Menendez et al reported that 
inhibiting FASN activity synergistically enhanced 
the cytotoxicity of docetaxel, in the Her2-over-
expressing breast cancer cell lines [98]. Inhibit-
ing FASN expression or activity also sensitized 
cancer cells to vinorelbine [48], paclitaxel [99], 
5-fluorouracil [100], Herceptin [101, 102], and 
TRAIL [103]. Because the Her2-over-expressing 
cancer cell lines were used in most of these 
studies, it was thought that Her2 may play an 
important role in the drug resistance observed. 
Indeed, inhibiting FASN expression and activity 
reduced Her2 expression [98]. Thus, it is possi-
ble that inhibiting FASN down-regulates Her2 
which in turn causes sensitization of the cancer 
cells to the anticancer drugs tested in these 
studies. On the other hand, it was thought that 
the DNA damage-inducible transcript 4 (DDIT4), 
a stress-response gene that negatively regulates 
the mTOR pathway, may mediate the role of 
FASN in TRAIL-induced apoptosis [101]. It is also 
noteworthy that in the study of MCF7-derived 
cells by Liu et al. [17] it was found that FASN 
over-expression caused resistance only to DNA-
damaging anticancer drugs but not to paclitaxel 
and vinca alkaloid vinblastine. Further studies 
are needed to resolve the differences between 
these studies. 
 
Both in-vitro studies and clinical data indicated 
that elevated FASN expression confers cancer 
cell resistance to anti-cancer therapies, which 
may be the reason of shorter survival of pa-
tients with high FASN expression. Although the 
detailed mechanism of drug resistance induced 
by FASN over-expression is currently unknown, 
the findings from the past studies suggest that 
FASN may regulate survival, apoptosis, and DNA 
repair pathways (see discussion below).  
 
Mechanism of FASN action in cancers 
 
As discussed above, several signal transduction 
pathways may mediate the function of FASN in 
tumorigenesis and resistance to drug treat-
ments. Although the detailed mechanism of 
FASN action in signal transduction pathways 
remains to be determined, various hypotheses 
have been proposed.  

Figure 6. Cell cycle analysis of FASN over-expressing 
MCF7 cells and vector transfected control MCF7 
cells. 5×105 cells were harvested, labeled with 
propidium iodide and analyzed by flow cytometry 
analysis for stage of cell cycle, G0/G1, S, G2/M.  
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Fatty acids synthesized by FASN in cancer cells 
are not only used for cellular membrane con-
struction, but also involved in the production of 
lipid signaling molecules, anchorage of mem-
brane proteins, and modulate cellular re-
sponses to anticancer drugs. It is possible that 
the increased de novo synthesis of palmitate by 
FASN over-expression plays an important role in 
mediating FASN effect on Her1/Her2 activation. 
Recently, it was shown that palmitoylation of 
Wnt-1 by enforced expression of ectopic FASN 
in immortalized human prostate epithelia cells 
(iPrECs) stabilized and activated β-catenin and 
resulted in increased oncogenicity of the iPrECs 
cells [104]. It has also been found that supple-
mentation of palmitate to primary mouse embry-
onic fibroblast (MEF) and primary osteoblasts 
compromised the normal response of these 
cells to DNA damages, favoring the mutated 
cells to survive and leading to tumorigenesis 
[91]. Supplementation of palmitate to cancer 
cells also increased the ability of these cells to 
resist DNA damaging anticancer drugs Adriamy-
cin and mitoxantrone [17].  
 
Palmitoylation helps to locate the palmitoylated 
proteins to specific regions of plasma mem-
branes, a detergent-resistant membrane micro 
domain (lipid raft) for their proper functions 
[105]. Many proteins involved in signal trans-
duction, apoptosis, membrane transport, and 
cell adhesion are associated with lipid raft [106-
108]. Her2 is one example of the signaling pro-
teins that co-localize with lipid rafts [101]. It has 
been shown that FASN mainly affects the syn-
thesis of phospholipids that incorporate into 
lipid raft, but has a less effect on the synthesis 
of non-raft associated lipids [88]. Elevated FASN 
expression may also contribute to the increased 
ratio of saturated to unsaturated fatty acids 
and, thus, affect the structure and function of 
membrane lipids [109]. Changes in lipid rafts 
and membrane structures due to FASN over-
expression likely affect the signaling proteins 
residing in the raft to enhance cancer cell sur-
vival and progression.  
 
Recently, it was found that knocking down FASN 
expression using siRNA induced apoptosis by 
activating caspase-8 in tumor cells and inhibi-
tion of FASN sensitized cancer cells to TRAIL 
treatment [103]. It was also found that over-
expressing ectopic FASN blocked caspase-8 
activation-induced by Adriamycin (unpublished 
observation). These findings suggest that FASN 

may function by regulating the apoptosis path-
way upstream of caspase-8 activation. One im-
portant mediator may be ceramide lipid mole-
cules. Inhibition of FASN in several breast can-
cer cell lines by siRNA treatment induced cancer 
cell apoptosis by up-regulating ceramide synthe-
sis. The increased ceramide level is thought to 
be the result of malonyl-CoA accumulation due 
to FASN inhibition, which in turn inhibits car-
nitine palmitoyltransferase  (CPT-1) [110]. It 
was also found that several proapoptotic genes 
including BNIP3, TRAIL and DAPK2 were in-
duced following FASN inhibition and these 
genes may play a role in mediating FASN inhibi-
tion-induced apoptosis [110]. We recently found 
that FASN over-expression in MCF-7 breast can-
cer cells decreased ceramide generation-
induced by Adriamycin and, thus, inhibited the 
drug-induced apoptosis (unpublished observa-
tion). However, a recent study showed that 
FASN over-expression in prostate epithelial cells 
protects these cells from camptothecin induced 
apoptosis by inhibiting caspase-9 activation, but 
did not protect cells from anti-Fas ligand-
induced apoptosis which activates caspase-8 
[9]. The reason for the difference between this 
and the other studies on the role of FASN in 
caspase activation is currently unknown. How-
ever, the normal prostate epithelial cells may 
differ from breast cancer cells in the mecha-
nism of FASN regulation of apoptosis. 
 
PI3K/Akt survival pathway is known to be impor-
tant for cancer cell survival and resistance to 
chemo-and radiation therapy [111-113]. As dis-
cussed above, activation of the PI3K/Akt path-
way can increase FASN expression in human 
cancers for cell survival both in vivo and in vitro. 
However, PI3K/Akt pathway may also play an 
important role in mediating FASN function in a 
feed forward loop. It has been found that inhibi-
tion of FASN activity caused a decrease in the 
level of phosphorylated-Akt, which preceded the 
induction of apoptosis both in vitro and in vivo 
[14, 15, 62, 99]. It has also been observed that 
inhibition of the PI3K/Akt pathway by 
LY294002 sensitized human ovarian and 
breast cancer cells to FASN inhibitor-induced 
apoptosis [62, 114], indicating that Akt could 
serve as a downstream mediator of FASN in cell 
survival and protects cancer cells against FASN 
inhibitor and other drug-induced apoptosis. 
 
FASN has also been suggested to play an impor-
tant role in regulating gene expression. A ge-
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nomic profiling analysis of a breast cancer cell 
line MDA-MB-435 following FASN knockdown 
using siRNA showed that FASN likely regulates 
the expression of genes of a variety of biological 
processes including cell proliferation, DNA repli-
cation and transcription, as well as apoptosis 
[87]. Although the mechanism of this regulation 
is currently unknown, it is possible that several 
signal transduction pathways that are under 
FASN control may mediate the FASN regulation 
of gene expression. In addition to regulating 
genes at their transcriptional level, FASN also 
appears to play a role in regulating gene expres-
sion at translational level. It has been found 
recently that knocking down FASN expression or 
treatment with FASN inhibitor Orlistat inhibited 
phosphorylation of translation initiation factor, 
eIF4E, which regulates the synthesis of many 
growth-controlling proteins [103]. 
 
FASN inhibitors 
 
Cancer cells are so dependent on de novo fatty 
acid synthesis that inhibition of lipogenesis tar-
geting FASN induces apoptosis selectively in 
human cancer cells both in vitro and in vivo [46-
48, 98], with minimal effect on normal cells [17, 
50, 51]. The differential expression of FASN, 
together with the different responses to FASN 
inhibition between cancer and normal cells, 
makes FASN a suitable target for cancer treat-
ment with good therapeutic index. Indeed, phar-
macological inhibitors of FASN have been identi-
fied and shown to block tumor cell proliferation, 
elicit tumor cell death, and prevent tumor 
growth in animal models. These studies con-
firmed the potential use of FASN inhibitors as 
novel antitumor therapeutics (Table 1). These 

pharmacological inhibitors are discussed in 
more detail below. 
 
Cerulenin 
 
Cerulenin [(2R,3S), 2-3-epoxy-4-oxo-7,10-
trans,transdodecadienamide], isolated from the 
culture filtrate of the fungus Cephalosporum 
caerulens, is the first known FASN inhibitor that 
inhibits the biosynthesis of fatty acids and ster-
oids [115, 116]. Cerulenin is a potent non-
competitive irreversible inhibitor [117-119] of 
all known types of FASN, from bacteria to yeast 
to mammal, and is originally used as an antifun-
gal antibiotic. The crystal structure of a fungal 
FASN in complex with cerulenin revealed that it 
covalently binds to a cysteine residue in the 
active site of the KS domain and causes signifi-
cant conformational changes [120]. Cerulenin 
treatment significantly decreased fatty acid syn-
thesis in cancer cells [89] and induced selective 
cytotoxicity in various types of cancer cells [13, 
121, 122], delayed the disease progression in 
an ovarian cancer xenograft model [11], as well 
as suppressed liver metastasis in a colon can-
cer xenograft model [123]. However, cerulenin 
has a limited clinical relevance because of its 
highly reactive epoxy group that may interact 
with other cellular processes besides FASN-
catalyzed lipid synthesis, including palmitoyla-
tion, proteolysis, and antigen processing [124-
126]. 
 
C75 
 
To increase the potential applicability of ceru-
lenin, an analogue, C75 (trans-4-carboxy-5-octyl-
3-methylenebutyrolactone), has been synthe-

Table 1. FASN inhibitors and their acting sites in FASN 

Name FASN Domain targets   References 
Cerulenin KS   [115, 116] 

C75 KS, ER, and TE   [127] 

C93 KS   [141] 

Orlistat and β-lacton derivative 
5-(furan-2-ylmethylene) pyrimidine 2,4,6-trione 

TE 
TE 

  [16, 158-160] 
[161] 

Tea polyphenol (EGCG and ECG) KR   [150] 

EGCG hydrolytic product 
Flavonoid 

MAT 
KR 

  [155] 
[156] 

Triclosan ER   [157] 
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sized by eliminating the reactive epoxy group 
[127]. Different from cerulenin which acts as a 
non-competitive inhibitor of the KS domain only, 
C75 acts as a competitive irreversible inhibitor 
of FASN on the KS domain, as well as the ER 
and TE domains [128] although the reason for 
this difference is currently unknown. In addition, 
C75 appears to be easily inactivated by DTT in 
solutions [128], suggesting that its efficacy in 
vivo may be affected by endogenous thiols such 
as glutathione. Nevertheless, C75 has been 
shown to have significant antitumor effects on 
cancer cell lines of human breast [12], prostate 
[13], mesothelioma [129], and ovary [62], as 
well as renal carcinoma in xenograft animal 
model [95].  
 
Although both cerulenin and C75 have apparent 
antitumor effect, they both also have a side-
effect in inducing profound weight loss which is 
far from ideal for cancer patients undergoing 
chemotherapy. This side effect is apparently 
due to their activity in increasing fatty acid oxi-
dation through direct activation of CPT-1 [130-
136]. They also reduce food intake by blocking 
the production of hypothalamic neuropeptide-Y 
[135, 137, 138]. These side effects clearly hin-
der the further clinical development of cerulenin 
and C75. A newer generation of cerulenin de-
rivative, C93, was rationally designed to have 
FASN inhibitory effect without parallel stimula-
tion of fatty acid oxidation [139] and was shown 
to inhibit tumor growth in vivo in a preclinical 
model of lung cancer, without causing anorexia 
or weight loss [15, 140, 141]. C93 may prove to 
be an interesting lead for further development 
into a clinical useful FASN inhibitor. 
 
Olistat.  
 
Orlistat (tetrahydrolipstatin) is a reduced form of 
the natural product lipstatin and currently mar-
keted as the first US Food and Drug Administra-
tion (FDA) approved over-the-counter anti-
obesity medication. Orlistat works primarily on 
pancreatic and gastric lipase within the gastro-
intestinal (GI) tracts [142] by blocking hydrolysis 
of triglycerides and, thus, uptake of fatty acids 
from the diet [117, 143]. In 2004, Orlistat was 
found to also inhibit FASN in an activity-based 
screening for inhibitors of serine hydrolases in 
prostate cancer cells and it acts as a tight-
binding irreversible inhibitor of the TE domain of 
FASN [16]. Several follow-up studies has shown 
that Orlistat exhibits antitumor effects toward 

melanoma, breast and prostate cancer cells in 
vitro and in vivo by inhibiting FASN activity, with 
no adverse effect on normal cells [16, 17, 50, 
83, 102, 103, 144-146]. Orlistat could also 
sensitize drug resistant breast cancer cells to 
Adriamycin and mitoxantrone via inhibiting 
FASN [17], validating FASN as a chemosensiti-
zation target. Orlistat treatment also appears to 
induce endoplasmic reticulum stress and apop-
tosis of tumor cells [145] and inhibit endothelial 
cell proliferation and angiogenesis [50] al-
though the detailed mechanisms of these ac-
tions are currently unknown. Nevertheless, be-
cause Orlistat has a very poor solubility and oral 
bioavailability, its potential in clinical application 
for systematic use in cancer chemotherapy is 
very limited. 
 
One important aspect of Orlistat is that a co-
crystal structure of Orlistat and the TE domain 
has been solved [147] which shows that Orlistat 
binds to the active sites of TE dimers in two 
forms: a covalent bounded acyl-enzyme inter-
mediate and a hydrolyzed product (Figure 7). 
The intermediate is a Ser2308 adduct that inter-
acts with the protein surface of the TE mainly by 
hydrophobic interactions (Figure 7A). The      
Orlistat-binding pocket in TE domain can be di-
vided into three portions: a cavity that holds the 
N-formyl-L-leucine moiety of Orlistat, the speci-
ficity channel where the 16-carbon palmitate 
core binds and the short-chain pocket that fits 
in the hexanoyl tail. The electrostatic field pre-
sented by Glu2431 and Arg2428 and the constric-
tion caused by Ala2363 and Tyr2424 could be the 
cause of the preference for 16-carbon-
containing substrates. The oxyanion is stabilized 
by the main chain nitrogen atoms of Ile2250 and 
Tyr2309 and a hydrogen bond with Glu2251. The 
interaction between the hexanoyl tail and 
His2481 may help prevent the activation of a wa-
ter molecule that would result in the immediate 
hydrolysis of the intermediate. The hydrolyzed 
product of Orlistat has the C1 atom shifted out 
of the oxyanion hole and the hexanoyl tail 
shifted out of the original short-chain pocket 
(Figure 7B). The palmitate core also shifted 
about two carbon units toward the distal cham-
ber of the cavity. These findings together with a 
molecular docking study [148] provide useful 
information for structure-based drug design 
targeting FASN in finding better inhibitors target-
ing the TE activity of FASN. 
 
Polyphenols/flavonoids 
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Recently, many plant-derived natural com-
pounds have been explored as FASN inhibitors. 
Green tea polyphenols and plant-derived flavon-
oids were mostly studied and shown to have 
promising antitumor effect related to their FASN 
inhibitory activity. Green tea polyphenols, epigal-
locatechin gallate (EGCG) and epicatechin 
gallate (ECG), competitively inhibited the KR 
activity of FASN [149, 150]. EGCG can induce 
selective apoptosis in human breast and pros-
tate cancer cells [151-153]. EGCG suppresses 
FASN expression through down-regulating EFG 
receptor and downstream PI3K/Akt pathway 
[63, 152]. The galloyl-moiety of the green tea 
polyphenol is critical for their effect on FASN 
inhibition, as ungallated polyphoenol showed no 
inhibitory effect on FASN [149]. EGCG had no 
stimulatory effect on fatty acid oxidation and 
does not induce weight loss in experimental 
animals as cerulenin and C75 [134]. Unfortu-

nately, the potency of EGCG in inhibiting FASN is 
low with IC50 of 52 μM [154]. Recently, it was 
found that heating EGCG in acid could increase 
EGCG potency by 350 fold [155]. It was thought 
that EGCG underwent a series of reactions in 
acidic conditions that resulted in a smaller prod-
uct of 211 Dalton which trimerizes to form a 
more active FASN inhibitor. Different from the 
original EGCG, this new trimeric product inhibits 
FASN in a competitive fashion at the MAT do-
main. 
 
Consumption of food rich in flavonoids has been 
shown to decrease the incidence of various 
types of cancers. Flavonoids, such as luteoin, 
have been shown to inhibit FASN in-vitro and 
produce cytotoxic effects in breast, prostate and 
hepatocellular carcinoma cells [156]. The exact 
FASN domains inhibited by flavonoid are un-
known. However, the structural similarity be-
tween flavonoids to EGCG suggests that they 
may also target the KR domain of FASN. 
 
Triclosan 
 
Triclosan (2,4,4-trichloro-2-hydroxydiphenyl 
ether) is a commonly used antibiotic in soaps, 
mouthwashes and oral dentifrices due to its 
ability to inhibit the type II enoyl-reductases in 
bacteria. This antibiotic has also been demon-
strated to inhibit the enoyl-reductase activity of 
mammalian FASN and cause growth arrest and 
reduce cell viability in MCF-7 and SKBr-3 breast 
cancer cells in culture [157]. Triclosan showed 
little toxicity in experimental animals. 
 
Other inhibitors 
 
As discussed above, the FDA-approved anti-
obesity drug, Orlistat, is poorly soluble with low 
bioavailability. To improve this drug, more β-
lactone type FASN inhibitors have been synthe-
sized based on the structure of Orlistat [158-
160]. Some of these compounds showed im-
proved potency in inhibiting FASN activity and 
inducing tumor cell death, and some showed 
improved solubility compared with Orlistat 
[159]. In addition, from a high throughput 
screening of 36,500 compounds, 18 com-
pounds were identified to have a novel 5-(furan-
2-ylmethylene) pyrimidine 2,4,6-trione pharma-
cophore [161]. This class of compounds com-
petitively inhibited the TE activity of human 
FASN, de-novo fatty acid synthesis, and induced 
FASN-dependent death of MDA-MB-435 breast 

Figure 7. Binding mode of Orlistat in the TE domain of 
FASN. Only the molecular surface of the TE domain 
where Orlistat binds is shown. The binding of Orlistat 
in the TE domain exists as a serine adduct intermedi-
ate (pink ball and stick, panel A) and hydrolyzed prod-
uct (gray ball and stick, panel B). The serine interme-
diate is also superimposed to show the shifts and 
changes in the hydrolyzed product in panel B. This 
figure was generated from data in PDB (ID: 2PX6). 
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cancer cells. These inhibitors of TE activity of 
FASN may prove to be useful clinically in future 
studies. 
 
Taken together, the known FASN inhibitors have 
distinct inhibition mechanisms and the active 
site of FASN being inhibited include the KS, KR, 
ER, and the TE domain. Apart from their differ-
ent working mechanisms, these inhibitors were 
all proven to be effective at eliciting anti-tumor 
effects, suggesting that any one of the six cata-
lytic domains of FASN may be a promising target 
for drug discovery to inhibit FASN for cancer 
chemotherapy. As discussed above, the type II 
FASN in mitochondria consists of several disso-
ciated individual enzymes resembling the bacte-
rial type II FASN [162-164]. Although the mito-
chondrial type II FASN accounts for only a few 
percentage of the overall cellular fatty acid pro-
duction, it provides the octanoyl group for the 
endogenous synthesis of lipoic acid. Defective 
mitochondrial type II FASN has been shown to 
cause a lethal syndrome of metabolic acidosis 
and renal tubular acidosis in infant [165] and 
cell death of human embryonic kidney 203T 
cells in culture [166]. Thus, future studies in 
drug discovery targeting FASN may need consid-
eration in avoiding the domains that have high 
resemblance to the type II FASN in mitochon-
dria. 
 
Conclusion and future perspectives 
 
As a large protein with a complex structure and 
multiple catalytic domains, FASN is slowly 
emerging and re-discovered as an important 
metabolic enzyme and potentially a target in 
human cancers. Numerous clinical and basic 
studies have shown that FASN over-expression 
confers cancer cells distinct growth advantages 
and the function of FASN in normal cells is lim-
ited only to the lipid-producing organs. Elevated 
FASN expression appears to be an early event in 
the process of tumorigenesis, and in response 
to chemotherapy and it is under regulation by 
several signaling pathways. Elevated FASN in 
cancer cells also appears to modulate lipid raft 
domains and various biological processes which 
in turn promote cell survival and/or prevent 
apoptosis induced by chemotherapeutic agents. 
However, the detailed mechanism on how FASN 
regulates these various biological processes is 
currently unknown. One hypothesis is the over-
production of palmitate which functions as a 
secondary messenger that relays signals to vari-

ous biological signal transduction pathways for 
cell survival. This hypothesis is waiting to be 
tested. 
 
Although it is now known that FASN may be a 
proto-oncogene and its over-expression pro-
motes tumorigenesis and survival, how FASN is 
up-regulated in the first place in normal or pre-
neoplastic cells to prime tumorigenesis is cur-
rently unclear. Future studies directed to under-
standing what up-regulates FASN may help re-
veal the secret regarding this issue. Findings 
from studies using cancer cells may contribute 
to this endeavor. However, studies using normal 
cells may be more fruitful.  
 
The differences in the FASN expression level 
between normal and cancer cells, together with 
the specific cytotoxicity of FASN inhibition in 
cancer cells, as well as the role of FASN in che-
motherapeutic resistance led to the exploration 
of FASN as a therapeutic target for cancer treat-
ment. With the available crystal structure of 
FASN as well as co-crystal structures of FASN 
with its known inhibitors, more inhibitors of 
FASN are expected to emerge and some of 
these inhibitors may get tested in clinical set-
tings in the foreseeable future. However, cau-
tion should be taken when targeting various 
catalytic domains of FASN for drug discovery to 
eliminate their potential effect on the mitochon-
drial type II FASN. 
 
One other important area to watch for is the 
development of FASN as a diagnostic marker. 
Elevated FASN levels have been detected in the 
blood of patients with breast, prostate, colon, 
and ovarian cancers compared with normal sub-
jects using ELISA [167], suggesting that FASN 
may be used as a diagnosis marker for cancers. 
This line of research may offer an important 
approach for early diagnosis of human cancers. 
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