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Abstract: Objectives: Jumonji C domain-containing (JMJD) 2B (JMJD2B) is a transcriptional cofactor and histone de-
methylase that is involved in prostate cancer formation. However, how its function is regulated by posttranslational 
modification has remained elusive. Hence, we examined if JMJD2B would be regulated by lysine methylation. Meth-
ods: Through in vitro methylation assays and Western blotting with methyl-lysine specific antibodies, we analyzed 
lysine methylation within JMJD2B. Identified methylated lysine residues were mutated to arginine residues and 
the respective impact on JMJD2B transcriptional activity measured with a reporter gene assay in human LNCaP 
prostate cancer cells. Results: We discovered that JMJD2B is methylated on up to six different lysine residues. 
Further, we identified the suppressor of variegation 3-9/enhancer of zeste/trithorax (SET) domain-containing pro-
tein 7/9 (SET7/9) as the methyltransferase being responsible for this posttranslational modification. Mutating the 
methylation sites in JMJD2B to arginine residues led to diminished coactivation of the Ju-nana (JUN) transcription 
factor, which is a known oncogenic protein in prostate tumors. In contrast, methylation of JMJD2B had no impact 
on its ability to coactivate another transcription factor associated with prostate cancer, the DNA-binding protein E26 
transformation-specific (ETS) variant 1 (ETV1). Consistent with a potential joint action of JMJD2B, SET7/9 and JUN 
in prostate cancer, the expression of JMJD2B in human prostate tumors was positively correlated with both SET7/9 
and JUN levels. Conclusions: The identified SET7/9-mediated methylation of JMJD2B appears to impact its coopera-
tion with selected interacting transcription factors in prostate cancer cells. Given the implicated roles of JMJD2B 
beyond prostate tumorigenesis, SET7/9-mediated methylation of JMJD2B possibly also influences the development 
of other cancers, while its impairment might have relevance for obesity or a global developmental delay that can be 
elicited by reduced JMJD2B activity.
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Introduction

Jumonji C domain-containing (JMJD) 2B 
(JMJD2B), also known as lysine demethylase 
4B (KDM4B), is an enzyme that targets lysine  
9 and lysine 36 on histone H3 as well as ly- 
sine 26 on histone H1.4. It can demethy- 
late H3K9me2, H3K36me3, H3K36me2 and 
H1.4K26me3, but most efficiently removes one 
methyl group from H3K9me3 [1-4]. Given that 
H3K9me3 is an eminent epigenetic mark for 
transcriptionally repressed genes [5], JMJD2B’s 
enzymatic activity is predicted to activate gene 
promoters.

JMJD2B performs pleiotropic functions and  
is a potential oncoprotein in various cancers 
[6-10]. This particularly pertains to prostate 
cancer, where JMJD2B is overexpressed and  
its downregulation compromised cell prolifera-
tion and sensitized to anti-androgen therapy. 
Mechanistically, this included the binding of 
JMJD2B to the androgen receptor, the mye- 
locytomatosis (MYC) oncoprotein or the E26 
transformation-specific (ETS) variant 1 (ETV1), 
thereby stimulating the ability of these DNA-
binding proteins to upregulate gene transcrip-
tion [11-19].
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The transcription factor ETV1 can become  
overexpressed in prostate cancer especially 
when chromosomal translocations fuse its 
gene to androgen-inducible regulatory sequenc-
es [20-24], yet ETV1 overexpression may also 
be brought about by fusion-independent mech-
anisms [25]. Upon ETV1 overexpression in 
mouse prostates, development of prostatic 
intraepithelial neoplasia ensued [26-29], indi-
cating that ETV1 overexpression is causally 
related to prostate cancer initiation. Moreover, 
ETV1 and JMJD2A, a close homolog of JMJD2B, 
synergized in promoting prostate tumorigene-
sis in a genetically engineered mouse model, 
and ETV1 cooperated with either JMJD2A or 
JMJD2B in stimulating gene transcription, 
including of the Yes-associated 1 (YAP1) proto-
oncogene [14].

In this report, we explored how JMJD2B might 
be regulated in its activity through posttransla-
tional modification. We discovered that JMJ- 
D2B can be methylated by the suppressor of 
variegation 3-9/enhancer of zeste/trithorax 
(SET) domain-containing protein 7/9 (SET7/9; 
also called SET domain-containing 7 (SETD7)), 
an enzyme that is reportedly overexpressed in 
human prostate tumors and capable of stimu-
lating prostate cancer cell proliferation [30]. 
Our examinations suggest that methylation of 
JMJD2B by SET7/9 can affect its coactivation 
potential, providing a conceivable mechanism 
by which this posttranslational modification 
may promote prostate tumorigenesis.

Materials and methods

Cloning of JMJD2B expression vectors

Human JMJD2B cDNA was obtained from 
Origene (Rockville, MD, USA) and corresponded 
to the transcript variant X1 (GenBank acces-
sion number XM_005259521.4; and the cDNA 
deposited under GenBank BC144292.1), 
whose translation product contains 34 addi-
tional amino acids (position 373-406) com-
pared to the translation product of the NCBI 
JMJD2B reference sequence NM_015015.3. 
To express N-terminally Flag-tagged JMJD2B  
in human cells, its open reading frame was 
cloned into pEV3S-Flag [31]. To express por-
tions of JMJD2B as fusions with GST in bacte-
ria, fragments of the JMJD2B open reading 
frame were cloned into a derivative of pGEX-2T 
[32]. All recombinant plasmids were validated 

by Sanger DNA sequencing [33]. This was done 
at the Oklahoma Medical Research Foundation 
DNA Sequencing Core (Oklahoma City, OK, 
USA) with sequencing primers specific to 
pEV3S-Flag (5’-GGGGGATCTTGGTGGCGTG-3’) 
or pGEX-2T (5’-CCAAAATCGGATCTGG-3’).

Immunoprecipitation and Western blotting

Human embryonic kidney 293T cells (CRL-
3216; American Type Culture Collection, 
Manassas, VA, USA) were transiently transfect-
ed by the calcium phosphate coprecipitation 
method [34]. Cells were lysed 36 h after trans-
fection as described [35] and immunoprecipi-
tations performed with indicated antibodies 
[36]. Then, proteins were subjected to SDS 
polyacrylamide gel electrophoresis [37] and 
separated proteins blotted onto polyvinylidene 
difluoride membrane [38]. After incubation with 
primary and horseradish peroxidase-coupled 
secondary antibodies [39, 40], detection of 
proteins was done with enhanced chemilumi-
nescence and exposure to film [41]. The follow-
ing antibodies were used at a 1:1000 dilution: 
rabbit polyclonal anti-p53-K372me (ab16033; 
Abcam, Cambridge, United Kingdom), rabbit 
polyclonal anti-JMJD2B (TA306832; Origene, 
Rockville, MD, USA), rabbit polyclonal anti-
SET7/9 (07-314; Upstate, Boston, MA, USA), 
mouse monoclonal anti-Flag (F3165; Sigma,  
St. Louis, MO, USA), and rabbit polyclonal anti-
Actin (A2066; Sigma, St. Louis, MO, USA).

Production of glutathione S-transferase (GST) 
fusion proteins

GST-JMJD2B and GST-SET7/9 expression plas-
mids were transformed into Escherichia coli 
BL21-CodonPlus bacteria (Stratagene, San 
Diego, CA, USA) [42]. These bacteria were 
grown in Luria broth media at 37°C to an opti-
cal density of 0.2-0.6 (measured at 595 nm) 
and then induced with 0.05-0.1 mM isopropyl 
β-D-thiogalactopyranoside and further grown 
for 8 h at 18°C. Purification of GST fusion pro-
teins was then done utilizing glutathione aga-
rose as described before [43, 44]. These affin-
ity purified proteins were frozen in liquid 
nitrogen and stored until usage at -80°C.

Methylation assays

In a buffer consisting of 50 mM Tris-HCl pH  
8.5, 5 mM MgCl2, 4 mM dithiothreitol, 1 µM 
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S-[methyl-3H] adenosyl-L-methionine (3H-SAM), 
approximately 2 µg of the GST-JMJD2B fusion 
proteins were incubated with GST-SET7/9 for  
2 h at 30°C. Then, an equal volume of 2× 
Laemmli sample buffer was added and the 
samples incubated for 10 min at 95°C [45]. 
Denatured proteins were then separated via 
SDS polyacrylamide gel electrophoresis [46], 
which was followed by blotting onto polyvinyli-
dene difluoride membrane and Ponceau S pro-
tein staining [47]. The dried polyvinylidene  
difluoride membranes were treated with 
EN3HANCE (Perkin Elmer, Waltham, MA, USA) 
four times and then exposed to film without 
intensifying screen at -80°C [48].

Luciferase assays

Human LNCaP prostate cancer cells (CRL-1740; 
American Type Culture Collection, Manassas, 
VA, USA) were seeded in poly-L-lysine coated 
12-wells and grown in a humidified atmosphere 
with 5% CO2 to a confluency of approximately 
25% [49, 50]. The growth media consisted  
of Dulbecco’s modified Eagle medium (MT- 
10013CV; Corning, Somerville, MA, USA) sup-
plemented with 10% fetal bovine serum [51]. 
Cells were transfected employing 4 µg polyeth-
ylenimine [52] and the following amounts of 
DNA: 500 ng TORU luciferase reporter gene 
construct, 500 ng pBluescript KS+, indicated 
amounts of empty vector pEV3S or ETV1 or  
JUN expression vector, and indicated amounts 
of pEV3S or Flag-tagged JMJD2B expression 
vectors [53]. After 8-10 h, cells were washed 
once with 1 ml phosphate-buffered saline [54] 
and incubated in growth media for another  
~40 h [55]. Then, cells were washed once again 
with 1 ml phosphate-buffered saline and lysed 
in 250 µl of 25 mM Tris-HCl pH 7.8, 10% glyc-
erol, 2 mM EDTA, 1% Triton X-100, 2 mM dithio-
threitol [56]. After removal of debris [57], lucif-
erase activities were determined with the help 
of a luminometer (LB 9507; Berthold, Bad 
Wildbad, Germany) as described [58, 59].

Statistical analysis

Prism 6 for Mac OS X (GraphPad Software, 
Boston, MA, USA) was used to determine statis-
tical significance of experimental data. Aver- 
ages (n=4) with standard deviations are dis-
played in case of luciferase activities, and the 
statistical significance was assessed through 
one-way analysis of variance (ANOVA) with post 
hoc Dunnett’s multiple comparison test. No 

data were excluded as outliers from the analy-
sis. For the analysis of coexpression, the 
Spearman correlation coefficient was calculat-
ed. Statistical significance was assumed if 
P<0.05.

Results

SET7/9 methylates JMJD2B

In our quest to identify potential sites of post-
translational modification in JMJD2B, we noted 
that some of its lysine residues conform to a 
reported SET7/9 consensus methylation site, 
(K/R)(S/T/A)K [60]. One of the known targets  
of SET7/9 is the tumor suppressor p53, whose 
methylation on lysine 372 can be detected  
with respective p53-K372me antibodies [61]. 
Hence, we speculated that such an antibody 
may also recognize a methylated lysine 
residue(s) in JMJD2B. Indeed, when JMJD2B 
was coexpressed with SET7/9, we observed 
that a p53-K372me antibody recognized im- 
munoprecipitated JMJD2B (Figure 1A). No 
methylation was observed in the absence of 
coexpressed SET7/9 or in the presence of the 
catalytically inactive H297A mutant of SET7/9 
(Figure 1A). Further, we found that endogenous 
JMJD2B was also methylated in 293T cells 
(Figure 1B).

To identify which region(s) in JMJD2B could be 
methylated by SET7/9, we divided JMJD2B into 
four fragments and purified respective GST 
fusion proteins. These fragments were em- 
ployed in an in vitro methylation experiment, 
where radioactively labeled 3H-SAM served as 
a methyl donor and purified GST-SET7/9 as the 
methyltransferase. We observed strong meth-
ylation of JMJD2B amino acids 352-580, but 
none with GST alone (Figure 1C). Also, JMJD2B 
amino acids 2-351 and 741-1130 did not  
serve as SET7/9 substrates, but there was a 
marginal methylation observable with JMJD2B 
amino acids 581-740. From these data, we  
conclude that substantial SET7/9-mediated 
methylation only occurs within JMJD2B amino 
acids 352-580. Notably, these amino acids  
are not part of any of the known functional 
domains of JMJD2B (see Figure 1C, top).

Identification of methylation sites within JM-
JD2B

To identify methylation sites within JMJD2B 
amino acids 352-580, we subdivided these 
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Figure 1. SET7/9 methylates JMJD2B. A. Immunoprecipitation (IP) of Flag-tagged JMJD2B with anti-Flag antibodies 
from 293T cells upon coexpression with wild-type SET7/9 or its catalytically inactive H297A mutant. Methylation 
was assessed with p53-K372me antibodies (top), while the bottom three panels show Western blots with the input 
levels of Flag-JMJD2B, SET7/9 or actin. B. Immunoprecipitation of endogenous JMJD2B from 293T cells; IgG and 
anti-RCL antibodies served as negative controls. C. In vitro methylation of JMJD2B by GST-SET7/9 utilizing radioac-
tive 3H-SAM. Either GST or fusions of GST to indicated JMJD2B amino acids (asterisks mark the respective full-length 
proteins, but smaller polypeptides that were likely due to proteolytic degradation are also visible in the Ponceau 
stains) were used as substrates. The top shows a sketch of JMJD2B with its four known domains: catalytic jmjC, 
accessory jmjN, double PHD and double Tudor domains.

amino acids into two parts (amino acids 352-
430 and 431-580) and observed that both of 
these parts were substrates for SET7/9 (Figure 
2A). Therefore, we constructed even smaller 
fragments representing JMJD2B amino acids 
352-387, 388-430, 431-488 and 486-580 
and noted that all of them could be methylated 
by SET7/9 in vitro (Figure 2B), indicating that 
there are at least four different methylation 
sites in JMJD2B.

Within JMJD2B amino acids 352-387, there are 
four lysine residues (see Figure 2C), but only 
the one at position 368 matches the SET7/9 
consensus methylation site, (K/R)(S/T/A)K 
[60]. Hence, we mutated K368 to arginine  
and this R368 mutation abolished SET7/9-
mediated methylation of JMJD2B amino acids 
352-387 (Figure 2C), identifying K368 as the 

one and only methylation site within JMJD2B 
amino acids 352-387. Then, we individually 
mutated all four lysine residues within JMJD2B 
amino acids 388-408 and found that only 
mutation of K397 and K401 resulted into 
reduced methylation; further, joint mutation of 
these two lysine residues (R397/401 mutant) 
completely suppressed SET7/9-mediated me- 
thylation (Figure 2C), identifying K397 and 
K401 as further methylation sites in JMJD2B. 
Next, we focused on amino acids 404-430 that 
harbor five lysine residues. Yet, mutating K415 
alone already abolished SET7/9-mediated 
methylation (Figure 2C), indicating that K415 is 
the only relevant methylation site within amino 
acids 404-430. Similarly, K485 that matches 
the (K/R)(S/T/A)K SET7/9 consensus site is  
the only substrate for SET7/9 in JMJD2B am- 
ino acids 431-488 (Figure 2C), indicating that 
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Figure 2. Identification of methylation sites in JMJD2B. A. Indicated JMJD2B amino acids fused to GST were em-
ployed as substrates in an in vitro methylation assay with purified SET7/9 and the radioactive methyl donor, 3H-SAM. 
B. Likewise with smaller JMJD2B fragments. C. Wild-type and indicated point mutants of GST-JMJD2B fusions were 
subjected to in vitro methylation assays. Below are listed all lysine residues (plus the two preceding amino acids) 
within the respective JMJD2B fragments. Only K368 and K485 match the reported SET7/9 consensus sequence, 
(K/R)(S/T/A)K.

K485 is a fifth methylation site in JMJD2B. 
Lastly, we analyzed JMJD2B amino acids 486-
580. Mutation of K490 to arginine completely 
abolished SET7/9-mediated methylation, while 
mutation of K489 and K491 led to somewhat 
reduced methylation (Figure 2C). We hypothe-
size that mutation of the latter two lysine  
residues alters the affinity of K490 for SET7/9 
and thereby indirectly reduced methylation of 
JMJD2B amino acids 486-580; accordingly, 

K489 and K491 are not considered SET7/9 
methylation sites, while K490 is. Altogether, we 
have identified six lysine residues (K368, K397, 
K401, K415, K485 and K490) that can be 
methylated by SET7/9 in vitro.

We then introduced respective K→R mutations 
into full-length JMJD2B, expressed these 
mutants in 293T cells, and purified them by vir-
tue of a N-terminal Flag-tag through immuno-
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precipitation. These proteins were incubated in 
vitro with SET7/9 and methylation assessed. 
As shown in Figure 3A, mutation of any single 
lysine residue had no obvious effect except for 
the R485 mutation. But joint mutation of K485 
and K490 greatly reduced in vitro methylation, 
while the R368/397/401/415 mutant was just 
slightly affected in its ability to become methyl-
ated. Joint mutation of all six lysine residues 
completely abrogated SET7/9-mediated meth-
ylation (Figure 3A). Altogether, these data impli-
cate that K485 and K490 are major methyla-
tion sites, while K368, K397, K401 and K415 
are minor ones. Please note that the fact that 
the R368/397/401/415/485/490 mutant was 
no longer methylated strongly suggests that 
the marginal amount of methylation observed 
with JMJD2B amino acids 581-740 (see Figure 
1C) was likely an artefact in this truncation due 
to non-natural exposure of lysine residue(s) 
towards SET7/9.

We also expressed the K→R mutants of 
JMJD2B together with SET7/9 in 293T cells and 

probed for in vivo methylation with the p53-
K372me antibody (Figure 3B). Mutation of 
K485, either alone or in combination with other 
K→R mutations, led to JMJD2B no longer be- 
ing recognized by this antibody, indicating that 
this antibody exclusively recognized JMJD2B 
when methylated on K485. This substantiated 
that K485 is an in vivo methylation site for 
SET7/9. Unfortunately, we were unable to find 
commercially available anti-methyl-lysine anti-
bodies that would recognize methylation on 
K368, K397, K401, K415 or K490 in vivo.

JMJD2B methylation modulates its transactiva-
tion potential

To test how methylation of JMJD2B would affect 
its transactivation potential, we utilized a re- 
porter gene construct, in which the firefly lucif-
erase gene is driven by the 12-O-Tetrade- 
canoylphorbol-13-acetate Oncogene Respon- 
sive Unit (TORU) derived from the polyomavirus 
enhancer that can be bound and cooperatively 
induced by ETS and activator protein-1 (AP1) 

Figure 3. Confirmation of methylation sites in full-length JMJD2B. A. Flag-tagged JMJD2B or indicated mutants there-
of (marked by # in Ponceau stain) were immunoprecipitated from 293T cells and then methylated by GST-SET7/9 
(marked by * in Ponceau stain) in vitro. B. Likewise, indicated Flag-JMJD2B proteins were coexpressed with Flag-
SET7/9 in 293T cells and methylation assessed after anti-Flag immunoprecipitation with p53-K372me antibodies 
(top). Bottom two panels show input levels for JMJD2B and SET7/9.
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proteins [62]. Specifically, the ETS transcription 
factor ETV1 has previously been shown to acti-
vate the TORU-luciferase reporter gene [63-
65]. And accordingly, ETV1 stimulated the 
TORU reporter gene by ~50-fold in human 
LNCaP prostate cancer cells (Figure 4). In con-
trast, JMJD2B had only a moderate 3-fold 
effect, probably due to recruitment of JMJD2B 
to the TORU reporter by endogenous ETS or 
AP1 proteins. However, when ETV1 and JMJD2B 
were coexpressed, transcriptional synergy was 
observed (>200-fold activation). No synergy 
was observable with a catalytically impaired 
JMJD2B protein, the H189A/E191Q mutant 
(Figure 4), indicating that catalytic activity of 
JMJD2B is needed for its ability to coactivate 
ETV1, similarly as described before [14]. We 
also tested the ability of the transcription factor 
JUN, which is one component of AP1 [66, 67] 
and that is also capable of binding to JMJD2B 
[68], to cooperate with JMJD2B. Likewise, we 
found that wild-type JMJD2B, but not its 
H189A/E191Q catalytic mutant, synergized 
with JUN in activating the TORU reporter (Figure 
4). Hence, we have established that the TORU 
luciferase reporter assay is a suitable means to 
test the cooperation of JMJD2B with either 
ETV1 or JUN.

Then, we determined how mutation of its meth-
ylation sites would modulate the JMJD2B 

coactivation potential in LNCaP cells. In the 
absence of coexpressed ETV1 or JUN, none  
of the tested methylation site mutants was sig-
nificantly different from wild-type JMJD2B 
(Figure 5). Likewise, we did not observe any 
change in synergy with ETV1 upon mutation of 
JMJD2B methylation sites (Figure 5). In con-
trast, the synergy between JMJD2B and JUN 
was affected by methylation of JMJD2B. The 
most severe effects, a downregulation by 
~60%, were observed with the R485/490 dou-
ble mutant and the 6xR mutant, in which all 
mapped JMJD2B methylation sites were mutat-
ed (Figure 5); in contrast, joint mutation of the 
four minor methylation sites (K368, K397, 
K401 and K415) did not significantly reduce 
the ability of JMJD2B to coactivate JUN (Figure 
5). Further, single mutation of K485 or K490 
also did not significantly affect the coactivation 
potential of JMJD2B (not shown). Altogether, 
these data indicate that SET7/9-mediated 
methylation of JMJD2B has selective effects:  
in case of coactivation of ETV1, it appears  
irrelevant, but in case of modulating JUN,  
methylation of JMJD2B is required for efficient 
coactivation.

Discussion

In this report, we have identified a new sub-
strate for the SET7/9 methyltransferase, name-
ly the JMJD2B epigenetic regulator. This further 
supports the notion that SET7/9 is primarily a 
non-histone methyltransferase [69-71] rather 
than - as originally purported - a histone H3 
lysine 4 methyltransferase [72, 73]. Two major 
methylation sites, K485 and K490, were identi-
fied in JMJD2B, whose joint mutation reduced 
the ability of JMJD2B to coactivate JUN, an 
established oncoprotein [74, 75]. However, 
mutation of JMJD2B methylation sites had no 
impact on coactivating the ETV1 transcription 
factor, indicating that SET7/9-mediated meth-
ylation of JMJD2B will only affect a limited 
cadre of JMJD2B-regulated genes. Given that 
JMJD2 proteins can not only demethylate lysine 
residues on histones, but also on non-histone 
proteins [6, 7, 10], it is conceivable that JMJD- 
2B demethylates repressive methyl marks on 
histones within nucleosomes as well as on to-
be-identified coactivators binding to JUN in 
order to stimulate JUN-dependent gene tran-
scription (Figure 6A). Interestingly, none of the 
six JMJD2B methylation sites are conserved in 
its closest homologs, JMJD2A and JMJD2C 

Figure 4. Synergy between JMJD2B and either ETV1 
or JUN in human LNCaP prostate cancer cells. 6 ng 
JMJD2B (wild-type or H189A/E191Q catalytic mu-
tant) expression vector was cotransfected with 15 
ng of ETV1 or JUN expression vector. Shown is the 
activation of the cotransfected TORU luciferase re-
porter (mean with standard deviation; n=4). ****, 
P<0.0001; n.s., not significant (one-way ANOVA with 
Dunnett’s multiple comparisons).
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(Figure 6B), suggesting that this could be one 
means to differentiate the often overlapping 
functions of these three JMJD2 proteins [6, 7, 
10].

Similar to JMJD2B and SET7/9, JUN is overex-
pressed in prostate tumors and can promote 
disease development [76-78]. Hence, these 
three proteins together may cooperate in the 
neoplastic transformation of prostate cells. 
Consistently, these three proteins are likely co-
overexpressed in prostate adenocarcinomas, 
since JMJD2B mRNA levels were positively cor-
related with both SET7/9 (Figure 6C) and JUN 
mRNA levels (Figure 6D), the latter possibly 
reflecting that JUN is a known JMJD2B target 
gene [79]. And JMJD2B’s cooperation with 
SET7/9 and/or JUN may extend to other can-
cers such as acute myeloid leukemia, clear cell 
renal carcinoma, breast, gastric, colorectal or 
liver cancer, where JMJD2B has also been 
found to be overexpressed [8, 9, 80, 81] and 
accordingly could be inactivated with small 
molecule inhibitors targeting its catalytic cen-
ter [82-84] in order to ameliorate disease 
severity and outcome. Our data suggest that 
suppression of SET7/9-mediated methylation 
of JMJD2B represents another strategy to cur-

mono- and bi-allelic JMJD2B pathogenic muta-
tions were found in patients afflicted with glob-
al developmental delay or autism, and hetero-
zygous Jmjd2b+/- mice showed a reduction in 
brain volume which may cause the aforemen-
tioned phenotypes [90-92]. These latter data 
indicate that haploinsufficiency of JMJD2B is 
already enough to elicit serious defects, and 
accordingly the observed ~60% reduction in 
coactivation of JUN with the JMJD2B-R485/ 
490 mutant strongly suggests that SET7/9-
mediated methylation will profoundly affect 
JMJD2B-dependent biological processes.

Another role of JMJD2B is in stem cell biology. 
In part in conjunction with other histone 
demethylases, JMJD2B was required for embry-
onic stem cell renewal or reprogramming into 
pluripotency, but on the other hand also pro-
moted the osteogenic differentiation of mesen-
chymal stem cells [93-95]. As SET7/9 appears 
to promote pluripotency in human embryonic 
stem cells [96], one may speculate whether 
this also involves SET7/9-mediated methyla-
tion of JMJD2B. Lastly, while JMJD2B is a true 
histone demethylase that acts in the cell nucle-
us, it has also been found in the cytoplasm 

Figure 5. Activity of JMJD2B methylation site mutants. Wild-type or methyla-
tion site mutants of JMJD2B (4 ng expression vector) were cotransfected 
with either ETV1 or JUN (each 10 ng expression vector) into LNCaP cells 
and resultant TORU luciferase activity measured. Shown are means with 
standard deviation (n=4). The statistical significance between respective 
wild-type and methylation site mutants was determined with one-way ANOVA 
(Dunnett’s multiple comparisons). **, P<0.01; n.s., not significant.

tail the oncogenic effects of 
JMJD2B in prostate and other 
cancers.

Aside from its role in cancer, 
JMJD2B performs many func-
tions in normal cells and other 
diseases. Although two differ-
ent Jmjd2b whole-body knock-
out mouse models displayed 
no obvious defects during 
embryogenesis [85, 86], path- 
ologic changes were observ-
able upon Jmjd2b knockout in 
adult mice. For instance, tis-
sue-specific Jmjd2b knockout 
in mammary glands led to 
their delayed development 
[85], while knockout in adipo-
cytes or in the whole body 
caused metabolic abnormali-
ties and obesity [87, 88] and 
knockout in neurons led to 
defective spine maturation, 
deficits in working memory 
and hyperactivity in a novel 
environment [89]. Moreover, 
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Figure 6. A. Model of how SET7/9 methylates and thereby stimulates the coactivator potential of JMJD2B. Please 
note that JMJD2B may in part coactivate JUN-dependent transcription through demethylation (indicated by ---| in 
the figure) of methylated histones within nucleosomes and/or of methylated coactivators binding to JUN. B. No 
conservation of JMJD2B methylation sites in JMJD2A or JMJD2C. Amino acid sequences for JMJD2A (amino acids 
331-619), JMJD2B (amino acids 332-670) and JMJD2C (amino acids 333-596) were derived from the NCBI entries 
NP_055478.2, XP_005259578.2 and NP_055876.2, respectively. Please note that the utilized JMJD2B protein 
was the X1 isoform, which has a 34 amino acids insert (amino acids 373-406) compared to the frequently used 
JMJD2B isoform 1 (NP_055830.1), and that isoform 1 also encompasses four of the identified six SET7/9 methyla-
tion sites, including the two major ones corresponding to K485 and K490. C and D. Correlation between JMJD2B 
mRNA levels and either SET7/9 or JUN mRNA levels in human prostate adenocarcinomas. Data were derived from 
The Cancer Genome Atlas (TCGA) through the GEPIA (Gene Expression Profiling Interactive Analysis) webtool. Shown 
are log2 values of transcripts per million; R = Spearman correlation coefficient.
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where its enzymatic activity regulated the 
unfolded protein response [97]. This suggests 
that JMJD2B is not only demethylating his-
tones, but potentially also other (nuclear and 
cytoplasmic) proteins. Given that some JMJD 
proteins have been shown to hydroxylate vari-
ous proteins [98-100], one can as well imagine 
that SET7/9-mediated methylation of JMJD2B 
not only regulates its demethylation but also 
hydroxylation activity, thereby providing anoth-
er mechanism how JMJD2B may pleiotropically 
affect the proteome and in so doing could  
modulate cell homeostasis and pathological 
changes.

Conclusion

The identification of SET7/9-mediated lysine 
methylation of the JMJD2B protein and how it 
can selectively stimulate the cooperation with 
DNA-binding factors such a JUN has provided 
new insights how posttranslational modifica-
tion may stimulate JMJD2B transcriptional 
activity and thereby prostate cancer develop-
ment. However, some limitations of our study 
that should be addressed in the future are: (i) 
the absence of animal models testing how 
JMJD2B methylation on particularly K485 and 
K490 would modulate its physiological func-
tions in development, homeostasis and malig-
nancy; (ii) the unanswered question whether 
methylation of JMJD2B affects its ability to 
impose epigenetic changes; or (iii) if SET7/9-
mediated methylation of JMJD2B leads to 
enhanced JUN-dependent gene transcription 
and thereby stimulation of tumor cells not only 
in prostate carcinomas, but also in the many 
other cancers where SET7/9, JMJD2B and JUN 
exert cancer-critical functions [9, 67, 101, 102].
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