
 

 

Introduction 
 

Tissue engineering is an interdisciplinary area of 
nanomedicine in which biomaterial and medical 
science understands of pathological tissue and 
the principles used to achieve this understand-
ing are applied to the improving or sustaining of 
tissue function through the development of bio-
logical substitutes. To achieve these goals, an 
artificial extra cellular matrix (ECM) and a 
source of cells are required. Although skin tis-
sue constitutes a small amount of the body 
weight, skin damage such as burns and diabetic 
diseases can cause serious health complica-
tions. Tissue engineered replacements play on 
extremely important role in the treatment of 
chronic skin wounds. Skin tissue replacement 
techniques should be easy to perform for apply-
ing to the wound location. Skin tissue replace-
ments must be readily adherent, have good 
physical and mechanical properties, and be non
-antigenic [1],. The ultimate goal is to design 
and develop skin tissue engineering techniques 
that lead to novel and biomaterials-based skin 
replacement therapies. Skin tissue engineering 

generally requires a biomimetic ECM that can 
be assimilated into the body when the new tis-
sue is regenerated. Biomaterials for such a ma-
trix could be naturally occurring substances 
such as collagen or could be prepared from bio-
degradable synthetic polymers. Resorption, 
along with adequate cell adhesion onto the ma-
trix, gives the biological materials an attractive 
potential in tissue regeneration. 
  
A major part of any strategy for using an engi-
neered skin tissue in which repair and regenera-
tion takes place in an interaction with cells is to 
identify mechanisms and appropriate sources of 
cells by which such interaction can be most ef-
fective and productive.  And, of course, the cells 
must be sufficiently abundant for complete re-
generation to occur. Recently, some of the ma-
jor advances in molecular biology have been 
applied to the understanding of wound healing, 
development and regenerative processes [1, 2]. 
Tissue engineering as a discipline is becoming 
more aware of this knowledge base and there 
are now efforts towards designing artificial tis-
sues using both cells and specifically designed 
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biomaterials. This review article focuses on un-
derstanding the biomaterials, nanotechnology, 
regeneration biology and current advances in 
human skin substitutes. The review is divided 
into three parts: (1) biomaterials with some ex-
amples, (2) nanotechnology and its applica-
tions, and (3) commercially available skin sub-
stitutes. 
       
Biomaterials 

 
Tissue engineered skin replacements require a 
specific process to meet the main objectives [3, 
4]. The specification of this process in skin has 
depended on using both epidermal and dermal 
layers together to produce a replacement skin, 
which can then be grafted in place [3, 4]. ECM 
is used as biomimetic update materials and is 
obtained from natural materials and also those 
manufactured synthetically. Examples of natural 
materials include fibronectin, collagen, chito-
san, hyaluronan, polypeptides, hydroxyapatites, 
glycosaminoglycan, and alginates. These bioma-
terials have the excellent advantage of having 
low toxicity and a low chronic inflammatory re-
sponse. Examples of synthetic materials include 
polylactide–co-glycolide, polylactide, and poly-
glycolide which are used for sutures and 
meshes [5]. Other examples include polytetra-
fluoroethylene and polyethylene terephthalate 
(Table 1). Matrices used, often routinely, in heal-
ing applications are made from polymers that 
are often degraded in the body. 
  
There are two primary fundamental challenges 
to obtaining degradable polymers. First, the first 
generation degradable polymers are widely 
used in tissue engineering but have poor me-
chanical and degradation properties [6]. To 
overcome these deficiencies, new classes of 
degradable materials are being developed. 
 
The second fundamental challenge is how to 
process these polymers into scaffolds that have 
defined pore sizes and shapes that can direct 
tissue growth [7]. New nanotechnologies such 
as three-dimensional printing [8, 9] and electro-
spinng [10, 11] are emerging for accurate 
manufacturing of materials of defined pore size. 
Both the polymer implant and the subsequent 
generation of any degradation products in situ, 
must be non-toxic and non-immunogenic.  It is 
also widely understood that with synthetic mate-
rials there are no cell-recognition signals.  Pro-
gress may come in the form of the ongoing de-

velopment of manufacturing processes that will 
incorporate cell-adhesion peptides into biomate-
rials. It is recognized that such peptides are 
involved in cellular interactions. 
 
Natural materials 

 
A number of natural materials have excellent 
properties that have led to their use in skin tis-
sue engineering because of similar cellular 
properties to human skin tissues, including 
those pertaining to adhesion and infiltration  
Natural materials such as collagen [4], gelatin 
[3], laminin [5] and chitosan [6, 7, 9] et al. have 
been used as electrospun scaffolds for tissue 
engineering. Chitosan nanofiber meshes were 
analysed for their mechanical strength and per-
meability in the case of a rat tissue injury [7, 9]. 
The poor mechanical properties of these con-
structs may restrict their application as nerve 
guide conduits. Collagen, a triple-helix protein, 
is one of the major components of the ECM and 
is found in all connective tissues. For this rea-
son it is one of the most widely studied natural 
biomaterials employed in the field of tissue en-
gineering. Natural biomaterials such as collagen 
are characterized by low mechanical strength, 
good biocompatibility, and low antigenicity. Col-
lagen can be used in crude form or processed 
into porous sponges, gels, and sheets, and has 
the potential of being cross-linked with chemi-
cals to make it stronger or to alter its degrada-
tion rate [12]. The use of a collagen-based ma-
trix has been reported in several studies, not 
only in peripheral nerve regeneration [10, 11], 
but also in spinal cord healing, scar formation 
[13], and tendon regeneration [14]. Despite 
their positive aspects, natural materials have 
several disadvantages. First, they may be immu-
nological and inflammatory responses resulting 
from, as yet,  undefined factors and pathogens 
and for which complete removal by purification 
before implantation is not possible. Second, 
natural materials are not homogeneous as a 
result of growth factors and the presence of 
residual constituents in the product. [15]. Third, 
synthetic materials are less costly and more 
readily characterized than natural materials. 
 
 Synthetic materials 

 
Polymers have several advantages for the pro-
duction of tissue engineering scaffolds, includ-
ing (1) known compositions, (2) can be tailored 
to minimize immunological responses and pro-
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vide a range of nerve prostheses by combining 
different copolymers in various proportions. 
Each combination produces tubular scaffolds 
with specific mechanical properties clearly; 
nerve guide conduits fabricated from biodegrad-
able polymers are preferable to non-
biodegradable polymers because of the advan-
tage of avoiding a second surgery to remove the 
conduit. An important class of biomaterials used 
to develop tubular nerve guides is poly (α-
hydroxy esters). These synthetic polymers are 
readily made into 3-D scaffolds that are biore-
sorped via hydrolysis in carbon dioxide and wa-
ter. Researchers have tested several polyester 
nanofibrous fibers and scaffolds as nerve 
guides that have shown negligible inflammatory 
response, made of poly (glycolic acid) (PGA) 

[16], poly (lactide acid) (PLA) [17], poly (L-lactic 
acid) (PLLA) [18, 19], or of a blend of poly (L-
lactic acid)-caprolactone (PLLA PCL) [20, 21] 
and poly (D,L-lactide-co-glycolide) and poly (ɛ 
caprolactone) (PLGA/PCL). Other synthetic ma-
terials for tissue engineering are hydrogels, in-
soluble hydrophilic polymers having high water 
content and tissue like mechanical properties 
that make them highly attractive scaffolds for 
implantation in empty tubular nerve prosthesis 
or for direct injection into the lesion site to en-
hance cell attachment and growth. Self-
assembling peptides belong to the hydrogel 
class of biomaterials and comprise a well-
defined amino acid sequence that, under 
physiological conditions, self-assembles to form 
a nanonscale fibrous scaffold.. Studies of these 

Table 1. Biomaterials used or potentially suitable for skin replacement and improved properties)[35].  
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materials over several decades for use as bio-
materials have demonstrated their usefulness 
not only for specific 3-D tissue cell cultures but 
also for tissue repair and regenerative thera-
pies. These peptide scaffolds can be custom 
synthesized commercially and are readily modi-
fiable inexpensively and quickly at the single–
amino acid level. Furthermore, these designer 
self-assembling peptide scaffolds have recently 
become powerful tools for regenerative medi-
cine to repair infarcted myocardia [22], to stop 
bleeding in seconds [23], and to repair nerve 
tissue [23]. Ellis-Behnke and colleagues [23] 
showed that the self-assembling peptide 
RADA16-I is a promising scaffold for neural re-
generation in optic nerve lesions in hamster 
pups. Animals were treated by injection of 
RADA16-I in to their surgical wounds. Only in 
animals treated with multiple injections of the 
self-assembling scaffold did the brain tissue 
appear to have healed, whereas in untreated 
animals functional damage was still evident 
after weeks [23]. It was noted earlier in this pa-
per that these synthetic materials have a major 
failing in that they lack cell recognition signals 
and, consequently, there are few cell interac-
tions. Efforts to overcome this weakness are 
focussed on efforts to incorporate cell adhesion 
peptide motifs into synthetic biomaterials. 
 
Nanotechnology 

 
Nanotechnology is an emerging interdisciplinary 
technology whose applications have expanded 
into many areas over the last decade, including 
materials science, medicine and biomedical 
engineering. The essence of this new technol-
ogy is the creation and utilization of surfaces, 
materials and devices at the molecular level 
[23]. Nanotechnology has had a great and sig-
nificant impact in the field of medicine where it 
is used for diagnosis, tissue engineering and 
drug delivery. One of the biggest advantages of 
nanotechnology is the fast surgical recovery and 
its applications in tissue re-engineering. The 
properties of substances change dramatically 
when their size is reduced to the nanometric 
level. When a small amount of nanosize materi-
als is mixed with a polymer matrix the perform-
ance of the resultant system is improved to an 
unprecedented level. These advances in 
nanotechnology based methods to medical 
technologies are a result of increased invest-
ments and directed research in nanotechnology. 
 

Tissue Engineering 
 

Tissue engineering is a development of bioma-
terials research and involves the production of 
various tissue substitutes from a range of biode-
gradable polymers and cells that are able to 
produce new tissues or restore existing ones to 
their original structural characteristics and func-
tions. It is an interdisciplinary field that com-
bines the knowledge of many sciences ranging 
from biology to materials science and medicine 
[24] and has been a subject of intensive re-
search for human health care systems. The hu-
man body is a complex and well organized sys-
tem of tissues and organs. Nutrients, oxygen 
and the suitable environment for cell growth are 
available in tissues. The extracellular matrix 
(ECM) component of tissues is a complex struc-
ture surrounding and supporting the cells within 
mammalian tissues. It is composed of three 
major classes of biomolecules: (1) structural 
proteins, mainly collagen and elastin, (2) spe-
cialized proteins such as fibrillin, fibronectin and 
laminin, and (3) proteoglycans which are pro-
teins to which long chains of repeating disac-
charide units called glycosaminoglycans (GAGs), 
are attached. Cell-extracellular matrix (ECM) 
and cell-cell interactions determine the ability of 
cells to build tissues and maintain tissue-
specific functions. One of tissue engineering's 
primary objectives is to recreate an appropriate 
cellular environment that supports the control 
and regulation of cell functions [25]. During the 
last decade intensive research has been con-
ducted in this field. There are two main compo-
nents of a tissue engineered product cells and 
the carrier. The success rate of tissue engineer-
ing depends in part on carriers which are de-
signed as scaffolds. The best approach is to 
design the scaffold, preferably a biodegradable 
one, to mimic the functions and structure of the 
naturally existing ECM. In constructing an engi-
neered tissue, the cells are initially isolated 
from the donor tissue and cultured under in 
vitro conditions (Figure 1). A polymeric scaffold 
is designed by means of various processing 
methods such as solvent casting, salt leaching, 
phase separation, self-assembly, gas foaming 
and electrospinning [26]. The cells are then 
seeded and cultured on this scaffold (or cell 
carrier). In order to imitate the natural environ-
ment of cells, the above steps are performed in 
either static culture conditions or dynamic biore-
actor systems [26]. The cells that are cultured 
on a scaffold should have a similar behaviour as 
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they would have in the body without a synthetic 
scaffold. Healing occurs as the cells proliferate, 
migrate, differentiate and remodel the scaffold 
and the surrounding tissue. 
 
Scaffold materials 

 
Since most of the cells are dependent on the 
scaffold characteristics, biomaterial choice for 
scaffold design is of great importance for proper 
adhesion, spreading etc. Polymers are the most 
suitable scaffold materials due to their flexibility 
and controllable functional properties. Depend-
ing on the requirements of the target tissue, the 
material is chosen to be either a naturally de-
rived polymer (collagen [27], cellulose [28], chi-
tin [29], starch [30], hyaluronic acid [31], silk 
fibroin [29] or a synthetic one (poly (lactic acid) 
[32], poly (glycolic acid) [32, 33], poly (lactide-co
-caprolactone) [34] poly (ethylene glycol) and 
their combinations (Table 1)[35].  
 
Biodegradable materials are preferred as tissue 

engineering scaffolds since they degrade while 
the new tissue forms. Another requirement is 
that the carrier material and the degradation 
products should be biocompatible so that no 
adverse body reactions occur when the material 
degrades. Copolymers have also been utilized in 
the manufacture of scaffolds since polymers 
with varying degrees of crystallinity, and thus 
with a range of properties, are available. These 
copolymers still crystallize but have the ability to 
melt at lower temperatures, thus making proc-
essing easier. Copolymers have the advantage 
that they degrade in vivo to D-3-hydroxybutyrate, 
which is a normal constituent of human blood, 
and to 3-hydroxyvalerate. Their in vitro biode-
gradability [36] and biocompatibility in the pres-
ence of various cell lines [37, 38] are reported 
in the literature. Further, it was demonstrated 
that even the form of the scaffold affects the 
results [19]. Higher biodegradability was ob-
served with nonwoven, fibrous PHBV8 struc-
tures in comparison to films of the same mate-
rial. Furthermore, the suitability of this non-

Figure 1. Schematic presentation of tissue engineering methodology (A) cell culture (B) biogradable nano-
fiber scaffold (C) cell seeded on scaffold (D) tissue grown on bioreactor. 
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woven, fibrous material as a scaffold for tissue 
engineering [37-40] and it’s in vivo biocompati-
bility [41] has been demonstrated previously. 
 
Types scaffold 

 
As mentioned above, the first step of tissue en-
gineering is the design of a 3-D scaffold that 
mimics the ECM. Therefore, when designing the 
scaffolds there are some very important points 
that should be considered. One of the most cru-
cial is that both the carrier material and its deg-
radation products should have proven biode-
gradability and biocompatibility. Moreover, the 
scaffold should possess appropriate porosity 
and permeability to allow the transfer of nutri-
ents necessary for the cells and wastes pro-
duced by the cells. A surface chemistry that en-
ables attachment and spreading of cells is also 
required. The material should have an appropri-
ate degradation rate and mechanical properties 
so that the artificial material is eliminated in 
time and different stresses that may develop 
during new tissue formation can be handled 
[24, 42]. Finally, the technique that is used to 
fabricate the scaffolds should not affect the 
biocompatibility of the material used [19]. To 
date, scaffolds have been produced and tested 
for their suitability for tissue engineering in dif-
ferent forms such as films [32, 43], foams  [44] 
and fibers [63] with widely differing chemistries 
and a variety of studies ranging from in situ to 
clinical have been carried out. Foam and film 
types proved most popular, initially, but there 
has fibrous scaffolds have been seeing an in-
crease in use recently.  
 
Some recent studies have shown that cells at-
tach, grow and organize well on nanofibrous 
structures even though the fiber diameter is 
smaller than that of the cells [45]. High porosity 
that allows rapid transfer of nutrients and 
wastes and the large surface areas that provide 
sites for the cells to attach are the requirements 
of a successful scaffold. Furthermore, micro 
and nanofeatured scaffolds with controlled pore 
size, geometry, dimension and spatial orienta-
tion are being intensely investigated. Since fi-
brous scaffolds with diameters of fibers on a 
nanometer scale have been found to be satis-
factory for tissue engineering extensive re-
search towards developing processes for the 
fabrication of these fibrous structures is being 
pursued. 
 

Commercial skin substitutes 
 

Fibroblasts also play an important role in skin 
substitutes in addition to the epithelial nature of 
components (cultured epithelial autografts) of 
certain constructs (Figure 2). The dermal com-
ponent improves critical communication path-
ways (i.e.) between the epidermis and the der-
mis) (Figure 2) and enhances the formation of 
more mature basement membrane. Moreover, 
in both fetal development and adult wound re-
pair, the formation of a more complete base-
ment membrane requires epidermal mesenchy-
mal interactions. Advances in tissue culture and 
molecular biology began to merge in the early 
1970’s to render possible the recombinant 
techniques for producing growth factors and the 
cell biology required for tissue-engineering at-
tempts aimed at the reconstitution of injured 
tissues and organs. Rheinwald and Green [46] 
developed techniques for growing human epi-
dermal keratinocytes from small patient biopsy 
samples by providing mesenchymal cells in the 
form of irradiated 3T3 fibroblasts. Subse-
quently, the field advanced to clinical applica-
tions with further developments in basic sci-
ence. Examples of these developments are the 
use of cultured epithelia for burn victims [47], 
epidermal coverage [48] for stimulation of new 
(neodermis) connective tissue [68], and in-
creased graft take when combined with cadaver 
dermis [49-51]. Admittedly, scarring and wound 
contraction remain significant problems [52]. 
These findings may be attributable to dermal 
factors influencing epithelial migration, differen-
tiation, attachment, and growth [53, 54]. De-
creased immunogenicity of human cadaver al-
lografts has been partially circumvented, for 
example, by the use of acellular dermal matrix 
with an intact basement membrane to aid the 
take and healing of ultrathin autografts 
(AlloDerm) [55]. In other studies, investigators 
have redirected granulation tissue formation 
through the use of scaffolds and living cells. For 
example, Yannas et al. [56] designed a collagen
-glycosaminogly can sponge to serve as a scaf-
fold or template for dermal extracellular matrix. 
A commercial version of this material composed 
of bovine collagen and chondroitin sulfate, with 
a silicone membrane covering (Integra), is ap-
proved for use in burns [57-59]. Slowly, resorp-
tion of the dermal layers occurs and followed by 
the eventual removal of the silicon membrane 
and its replacement buy a thin autograft. The 
ability of the matrix to survive long enough to 
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redirect formation of tissue must be balanced 
with effects of the matrix on inflammation. One 
way to accomplish this is to form a biological 
tissue that is recognized as living tissue, not a 
foreign substance. At least partial success with 
this approach has been seen in the use of hu-
man neonatal fibroblasts grown on biodegrad-
able mesh (Dermagraft) [60]. In another ap-
proach, a nylon mesh coated with porcine colla-
gen and layered with a nonpermeable silicone 
membrane (Smith & Nephew, Hull, United King-
dom) was used as a podium for deposition of 
human matrix proteins and associated factors 
by the human dermal fibroblasts [61]. In ongo-
ing series of experiments, Boyce et al. [62] have 
modified the approach first proposed by Yannas 
et al. [11] to form a bilayered composite skin 
made using a modified collagen-
glycosaminoglycan substrate seeded with fibro-
blasts and overlaid with epidermal keratino-
cytes [62, 63]. Several challenges face the use 
of cultured epithelial autografts, including vari-
able results on full-thickness wounds and time 
delays for culture cells to confluence in prepara-
tion for clinical application.   Various schemes 
have been adopted by researchers to reduce 
these problems and include the use of dermal 
allografts and vascularized collagen-
glycosaminoglycan matrices (i.e., Integra) [64].  

Vascularized collagen-glycosaminoglycan matri-
ces were shown to produce a favourable sub-
strate for cultured epithelial autografts and may 
improve the take of cultured epithelial auto-
grafts in burn patients. Another advance in skin 
bioengineering is the combination of seeded 
keratinocytes and tissue-engineered dermal 
matrices. Compton et al. [65] observed in vivo 
regeneration of organized skin structure in a 
month from a biodegradable collagen- glycosa-
minoglycan matrix impregnated with a dilute 
suspension of freshly isolated autologous kerati-
nocytes [65]. This was the first time that an 
acellular matrix was shown to lead to true der-
mal regeneration. In this and other applications, 
epidermal- mesenchymal interaction is critical 
for exchange of information between keratino-
cytes and fibroblasts in skin morphogenesis 
during development, and in maintaining skin 
structure in adults. Epidermal-mesenchymal 
interaction has led to the concept of double 
paracrine signaling, whereby keratinocytes initi-
ate growth factors in fibroblasts, which then 
stimulate keratinocyte proliferation. Moreover, 
fibroblasts can acquire a myofibroblast pheno-
type under the control of keratinocytes [66]. 
Other experiments have shown the cellular ori-
gin of basement membrane and extracellular 
matrix components in epidermal dermal           

Figure 2.  Schematic of skin structure [69]. 
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 Table 2. Commercially created skin substitutes, skin products and representative properties 
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co-cultures [67]. Therefore, epithelial-
mesenchymal co-cultures provide an environ-
ment where the epidermal stem cell phenotype 
and keratinocyte proliferation are supported by 
a synergistic mix of growth factors, extracellular 
matrix components, and direct cell-to-cell con-
tacts [66], epidermal, dermal, or composite; 
bilayered or dermo epidermal) (Table 2); (1) 
duration of the cover (temporary, semiperma-
nent, or permanent); (2) cellular composition 
(cellular or acellular); and (3) material type 
[biological (consisting of autologous, allogeneic, 
or xenogeneic cells/materials) or synthetic 
(biodegradable or nonbiodegradable)]. It should 
be noted that Table 2 is an attempt to provide 
information on many different types of products. 
Some of the products may not be easily com-
mercially available; they have nevertheless 
played a role in the advancement and evolution 
of the field. Initially, especially with such con-
structs as cultured epidermis and living bilay-
ered skin constructs (Graftskin/Apligraf), investi-
gators hypothesized that there could be some 
degree of permanent engraftment. However, it 
is now clear that such constructs act primarily 
not as tissue or cell replacement, but rather as 
a temporary stimulus for tissue repair and/or as 
pharmacologic agents capable of delivering criti-
cal signals to the wound. In fact, it is important 
to understand that a key role of nanotechnology 
tissue may be to deliver growth factors, extracel-
lular matrix proteins and possibly to attract dif-
ferentiated cells (e.g., fibroblasts, endothelial 
cells) or stem cells to the wound. Therefore, 
these nanotechnology skin tissue products 
should not be regarded as being the same as 
autografts. There is generally no true take, al-
though investigative and manufacturing efforts 
are being made to allow some degree of take. 
The skin constructs usually do not stay in the 
wound for more than a few weeks, as shown by 
biochemical markers and DNA evidence. In-
stead, the constructs serve to stimulate and 
augment the wound’s intrinsic healing process 
and wound bed preparation [68]. 
 
Summary and future outlook 

 
Skin tissue engineering's primary goal is to en-
able the rapid formation of a construct that will 
support and enable the complete regeneration 
of functional skin with all the skin appendages, 
the various layers (epidermis, dermit, fatty sub-
cutis), and a fully functioning and scar free inte-
gration of the vascular and nerve network with 
the host tissue. 

There has been progress in skin tissue engi-
neering research such that more use is being 
made of biomaterials and nanotechnology for 
tissue engineering applications and it is antici-
pated that further novel skin tissue biomaterials 
using nanotechnology are coming. 
   
Currently, the success of tissue engineering skin 
is very dependent on the skilful use of surgical 
techniques and preparation of the wound bed 
and so the hope is that future technologies will 
be less dependent upon these factors and 
hence increase the success of tissue replace-
ment and the increase the rate of recovery. 
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