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Abstract: Porcine small intestinal submucosa (SIS [Oasis®]) is an acellular, biological extracellular matrix (ECM) that 
has been found to significantly improve the healing of difficult-to-heal or chronic wounds in humans. Like dermal 
ECM, SIS contains collagen, elastin, glycosaminoglycans, proteoglycans, and growth factors that play important 
roles in healing. Preclinical studies have shown that numerous cell types attach to SIS, proliferate and migrate into 
the matrix, and differentiate. In addition, SIS can reduce the activity of matrix metalloproteinases (MMPs)—endog-
enous proteolytic enzymes whose levels and activities are increased in chronic wounds. Compared to the original 
single-layer SIS, multi-layer SIS has stronger mechanical properties and is more slowly degraded in wounds. To-
gether, these SIS products provide flexibility in the selection of biologically-active ECMs that may be useful for the 
repair of diverse wound types.
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Introduction

Chronic wounds affect millions of Americans 
and cost the country more than $50 billion 
annually [1, 2]. These wounds can dramatically 
reduce quality of life, causing pain, impairing 
mobility, interfering with everyday activities, 
and, in some cases, leading to amputation 
[3-5]. Although standard of care is effective for 
some patients, 40-60% of chronic ulcers 
remain unhealed after 3 or more months of 
treatment [6, 7].

The molecular environment of chronic wounds 
exhibits numerous changes that impede heal-
ing. High levels of inflammatory cytokines are 
associated with chronic inflammation [8], and 
high levels of matrix metalloproteinases 
(MMPs) degrade extracellular matrix (ECM) [9, 
10]. Degradation of the ECM interferes with the 
dynamic and reciprocal cell-ECM interactions 
that are essential in every step of wound 
healing.

Porcine small intestinal submucosa (SIS)—an 
acellular, biological ECM (see Figure 1)—has 
been applied to chronic wounds in an attempt 
to address the ECM deficits and stimulate the 

cell-ECM interactions that are necessary for 
healing to occur. In randomized, controlled tri-
als, SIS has been found to significantly increase 
the percentage of wounds healed and healing 
rate compared to standard of care alone [11-
13]. These clinical findings are buttressed by a 
plethora of preclinical research investigating 
the biochemical and biomechanical features of 
SIS. In this review, we summarize the preclinical 
findings related to the basic properties of SIS, 
comparing the single-layer and triple-layer SIS 
constructs where data are available. 

Structural and biochemical properties of SIS

The structural properties and biochemical com-
position of SIS have been well studied, as docu-
mented in Table 1. Porcine SIS ranges in thick-
ness from 0.05 to 0.22 mm [14] and has a 
variable, porous microstructure with pores 
ranging from 20 to 30 μm [15, 16] that enables 
the oxygen diffusion necessary for maintaining 
cell proliferation and viability. Androjna et al. 
determined the oxygen diffusion coefficients of 
SIS to be 7 × 10-6 - 2 × 10-5 cm2/s [17]. The 
same analyses showed that the oxygen diffu-
sion coefficients of engineered ECMs, human 
dermis (Alloderm®) and canine fascia lata were 
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1.9 - 3.1 x 10-5 cm2/s and 1.6 - 4 x 10-5 cm2/s 
[17].

Like dermal extracellular matrix, SIS is primarily 
composed of type I collagen fibers (see the 
fibrous construct in Figure 2), but also contains 
minor amounts of elastin and collagen types III, 
IV, and VI [18]. Multidomain glycoproteins such 
as fibronectin [19, 20] and laminin [20], which 
mediate cell adhesion to the extracellular 

ment (e.g., due to tissue damage) may induce 
changes in cellular gene expression which then 
alter the extracellular matrix leading to further 
alterations in gene expression and cytoskeletal 
properties.

Cells interact with endogenous ECM largely 
through integrin binding. The mechanism by 
which cells interact with SIS presumably also 
involves integrin binding. Hodde et al. evaluat-

Figure 1. SIS material stretched after being wetted.

Table 1. Structural Properties and Biochemical Composition of Porcine SIS
Property Description
Thickness 0.05 to 0.22 mm [14] 

Ultrastructure Pores varying from 20 to 30 μm [17]
Mechanical strength [40] 1 layer: 20.6 MPa (dry) and 7.2 MPa (wet)

2 layer: 24.7 MPa (dry) and 18.8 MPa (wet)
3 layer: 31.2 MPa (dry) and 22.0 MPa (wet)
4 layer: 36.7 MPa (dry) and 22.4 MPa (wet)

Suture Retention [40] 1 layer: 0.5 N (dry) and 0.7 N (wet)
2 layer: 1.3 N (dry) and 2.6 N (wet)
3 layer: 2.1 N (dry) and 4.1 N (wet)
4 layer: 2.8 N (dry) and 5.2 N (wet)

Oxygen diffusion coefficient 7 x 10-6 - 2 x 10-5 cm2/s [17]
Fiber structure Single, continuous preferred fiber direction, par-

allel to the long axis of the intestine [41]
Biochemical composition Collagen [18, 21]

Elastin [18]
Fibronectin [19, 20]
Laminin [20]
Glycosaminoglycans and proteoglycans [21, 22]
Fibroblast growth factor-2 (FGF-2) [27]
Transforming growth factor-beta1 (TGF-ß1) [26]
Vascular endothelial growth factor (VEGF) [27]

matrix, have been 
identified in SIS. Addi- 
tionally, SIS contains 
glycosaminoglycans 
and proteoglycans [21, 
22] that provide cell 
attachment and grow- 
th factor binding sites, 
sequester matrix-deg- 
rading enzymes, and 
enhance cellular infil-
tration into injured tis-
sue [23-25]. SIS has 
also been reported to 
release growth factors 
including fibroblast gr- 
owth factor-2 (FGF-2), 
transforming growth 
factor-beta1 (TGF-β1), 
and vascular endothe-
lial growth factor (VE- 
GF) [21, 26, 27].

Mechanisms of SIS 
effects on cellular 
growth and differen-
tiation

In vivo, cells and ECM 
exhibit continuous, bi- 
directional interactio- 
ns that have been 
termed dynamic reci-
procity [28]. These 
interactions occur in 
response to altera-
tions in the cellular 
microenvironment and 
under homeostatic co- 
nditions, as well as 
during tissue repair, 
angiogenesis, embryo-
genesis, and maligna- 
nt transformation [29]. 
For example, changes 
in the microenviron-
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ed the peptide sequences within fibronectin 
that may be important in adherence of cells to 
SIS [30]. Results with human microvascular 
endothelial cells showed that the RCG and 
REDV played a role in the attachment to SIS, 
suggesting that the binding of integrins to these 
sequences in SIS may mediate cell attachment. 
Badylak et al. found that attachment of human 
microvascular endothelial cells to SIS depend-
ed on both its composition and architecture 
[31]. In addition, Hurst et al. reported that neu-
tralization of beta 1, beta 4, and alpha 6 integ-
rins altered the adhesion of bladder cancer 
cells to SIS [32], suggesting the importance of 
these integrin subunits in cell attachment.

Hodde et al. has conducted several studies to 
investigate the release of growth factors from 
SIS and resultant effects on cell differentiation 
and angiogenesis in vitro [33, 34]. A neutraliz-
ing antibody against FGF-2 inhibited the differ-
entiation of PC12 cells induced by SIS, [34] 
raising the possibility that FGF-2 may contrib-
ute to the biological response to SIS in vivo. 
Similarly, neutralizing antibodies against VE- 

leagues [35], who reported that levels of prote-
ases decreased as chronic venous ulcers 
began to heal, and by Ladwig and colleagues 
[37], who reported that optimal healing of 
chronic pressure ulcers correlated with low val-
ues of the ratio of MMP-9/tissue inhibitor of 
metalloproteinases-1 (TIMP-1). Thus, control of 
MMP levels may improve the poor healing con-
ditions found in chronic wounds.

Shi et al. conducted several studies to investi-
gate the interaction between SIS and MMPs 
[38]. MMP-1, MMP-2, and MMP-9 displayed dif-
ferent binding affinities, indicated by a loss of 
activity in solution upon incubation with SIS of 
53.8%, 85.9%, and 36.9%, respectively, over 
24 hours. A human keratinocyte cell migration 
study was conducted to evaluate the effects of 
MMPs and SIS-treated MMP solutions on cell 
migration. These data indicated that MMPs 
inhibit keratinocyte migration in vitro, and that 
the inhibition can be significantly reduced by 
pre-incubating the MMP solution with SIS. 
Similar activity was seen in vivo using a diabetic 
mouse wound healing model. Biopsy samples 

GF blocked the ability 
of SIS to induce tube 
formation from human 
microvascular endothe-
lial cells in a fibrin-
based angiogenesis as- 
say [33].

Matrix metalloprotein-
ases interacting with 
SIS

Various studies have 
reported the presence 
of high MMP levels and 
activity in chronic wo- 
und fluid [35, 36]. 
Excess levels of MMPs 
found in chronic woun- 
ds are believed to be a 
key contributor to wou- 
nd chronicity; thus, 
reducing elevated lev-
els of MMPs in chronic 
wounds may promote 
healing.

Clinical evidence sup-
porting this hypothesis 
was provided by 
Trengove and col-

Figure 2. Microstructure of SIS material (Optical microscopy, 10X, dry).

Figure 3. Section pictures showing thickness comparison for one, two, three, and 
four layer SIS constructs (dry).
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were collected on days 3 and 7 following 
wounding for analysis of MMP levels by gelatin 
zymography. MMP activity was found to be 
maximally attenuated by SIS treatment on Day 
3. On Day 7 the attenuation became less sig-
nificant, indicating that the MMP binding ability 
of SIS had become saturated [38]. Overall, 
results with these models indicate that SIS 
reduces MMP activity immediately after appli-
cation and reduces the inhibitory effects of 
MMP-1, MMP-2, and MMP-9 on keratinocyte 
migration.

Enzymatic degradation study of SIS with dif-
ferent thicknesses

To enhance the utility of SIS in different clinical 
situations, the SIS constructs have been 
designed with different thicknesses. These 
constructs consist of 1, 2, 3, or 4 layers of SIS 
matrix (see Figure 3). An in vitro study was 
designed to determine the relative degradabili-
ty of the four SIS thicknesses in a proteolytic 
solution containing collagenases, neutral pro-
tease, and other proteases designed to mimic 
a wound environment [14]. After incubation for 
two hours at 37 °C, the residue dry weight of 
SIS was used for calculating the level of 
degradation.

Results demonstrated that degradation of the 
product was inversely proportional to the num-
ber of layers [14]. The 1-layer matrix was about 
82% digested under the test conditions. The 
2-layer matrix lost 75% of its weight, slightly 
less than the one layer matrix when tested 
under the same conditions. Significantly less 
degradation was found for the 3-layer (49%) 
and 4-layer (47%) matrices, indicating that the 
higher number of layers will likely increase the 
material’s durability and reduces its suscepti-
bility to enzymatic degradation. However, the 
thickness effect became less significant as 
seen between 3 and 4 layer materials, indicat-
ing that at certain levels of thickness, the deg-
radation will saturate.

Durability of SIS in pig wounds and diabetic 
mouse wounds

SIS materials become incorporated into the 
wound bed over time, with some wounds requir-
ing repeated applications to achieve closure. 
Based on the results obtained in proteolytic 
solutions, multiple-layer SIS would be expected 

to persist longer in the wound bed than single 
layer SIS.

The incorporation of different-thickness SIS 
materials in vivo was evaluated in porcine and 
mouse wound pilot studies [39]. In the pig 
model, 1-layer SIS and 3-layer SIS were applied 
to burn wounds after debridement. Four days 
after application, the 1-layer SIS was visibly 
incorporated while substantial unincorporated 
3-layer SIS matrix remained. All wounds formed 
a soft eschar surface layer over the course of 
the study making accurate visual evaluation of 
incorporation impossible later in the study.

Biopsy samples were taken from two wounds 
for each treatment, 10 and 17 days after SIS 
application. Histology demonstrated that 
1-layer SIS had incorporated at the wound sur-
face by day 10, while 3-layer SIS samples still 
exhibited distinct layers not yet incorporated 
into the wound bed. At day 17, all four SIS-
treated samples displayed some degree of 
reepithelialization, while one of two control 
samples exhibited no reepithelialization [39].

In the diabetic mouse model, 1-layer SIS and 
3-layer SIS were applied to full-thickness 
wounds on the day of wounding and 3 days 
later. Inspection of the wounds over time dem-
onstrated that the 1-layer SIS largely or fully 
incorporated into treated wounds, while the 
3-layer SIS had significant unincorporated lay-
ers [39]. These studies suggest that one bene-
fit of increasing SIS matrix thickness may be 
the need for less frequent application.

Comparison of mechanical properties be-
tween SIS with different matrix layers

Mechanical properties of the 1-, 2-, 3-, and 
4-layer SIS constructs were also compared 
[40]. The thickness of one layer is approximate-
ly 50 μm. The ultimate tensile strength, elastic 
modulus, elongation, and suture retention 
strength were determined in both wet and dry 
conditions. When tested in dry conditions, peak 
strength increased with the number of layers 
(Table 1). However, as the number of layers 
increased, the more the material elongated. 
The elastic modulus differed little between the 
SIS materials, suggesting that they all have sim-
ilar material stress-strain characteristics.

Compared to the dry test, the wet peak stress 
was lower for all materials, with the 1-layer SIS 
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sample being significantly lower than the multi-
layer samples [40]. However, no statistically 
significant difference was found between the 
multi-layer samples. Under wet conditions, 
elongation was inversely related to number of 
layers and peak stress. The 1-layer SIS elon-
gated the most (~130%), while all multi-layer 
SIS elongated 30-40%. 

Elastic modulus under wet conditions also dif-
fered from the dry results. A higher modulus 
was measured for each increasing layer. For 
the suture retention test, the wet conditions 
provided higher retention strength. Both wet 
and dry samples displayed the same trend that 
more layers in the material resulted in greater 
suture retention strength (Table 1).

Conclusions

SIS is a well-studied biomaterial that signifi-
cantly improves the healing of chronic wounds 
[11]. As a naturally-occurring ECM, SIS sup-
ports the adherence, proliferation, migration, 
and differentiation of numerous cell types. The 
bioactivity of SIS includes releasing growth fac-
tors, minimizing the destructive activity of 
MMPs, and inducing angiogenesis to support 
new blood vessel in growth. SIS is biodegrad-
able and can be well incorporated into tissue. 
Recently, studies have demonstrated that the 
new multi-layer SIS has stronger mechanical 
properties and is more slowly degraded in 
wounds than single-layer SIS. Thus, the multi-
layer SIS combines the known beneficial prop-
erties of SIS with increased durability to meet 
the needs for repair of diverse tissues and 
wounds.
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