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Abstract: Foxp3+ T regulatory cell (Treg) subsets play a crucial role in the maintenance of immune homeostasis 
against self-antigen. The lack or dysfunction of these cells is responsible for the pathogenesis and development 
of many autoimmune diseases. Therefore, manipulation of these cells may provide a novel therapeutic approach 
to treat autoimmune diseases and prevent allograft rejection during organ transplantation. In the article, we will 
provide current opinions concerning the classification, developmental and functional characterizations of Treg 
subsets. A particular emphasis will be focused on transforming cell growth factor beta (TGF-β) and its role in the 
differentiation and development of induced regulatory T cells (iTregs) in the periphery. Moreover, the similarity 
and disparity of iTregs and naturally occurring, thymus-derived CD4+CD25+Foxp3+ regulatory T cells (nTregs) will 
also be discussed. While proinflammatory cytokine IL-6 can convert nTregs to IL-17-producing cells, peripheral 
Tregs induced by TGF-β are resistant to this cytokine. This difference may affect the role of each in the adaptive 
immune response. 
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Introduction 
 
It is now widely accepted that a cell population 
called “regulatory or suppressor cells” are 
critically involved in immune tolerance and 
homeostasis although clonal deletion and 
anergy are still thought to serve as key 
mechanisms of immunologic central tolerance. 
In the early 1970s, Gershon and Kondo 
observed that adoptive transfer of thymocytes 
from a sheep red blood cell-primed mouse to 
another naïve mouse prevented the latter from 
developing the anti-sheep red blood 
antibodies. They therefore suggested that in 
addition to the recognized effector T cell 
population, the transferred thymocytes 
contained a population of suppressor T cells 
[1]. Other data supporting the existence of a 
suppressor T cell population in normal 
thymocytes came from experiments in which 
neonatal thymectomy (NTx) of normal mice 
between day 2 and 4 after birth resulted in the 
development of thyroiditis, gastritis, orchitis, 
prostatitis, and sialoadenitis [2]. Although 

early studies concluded that the suppressor 
cells phenotypically consisted of CD8+ cells, 
both Sakaguchi et al and Powrie et al found 
CD5+CD4+ cells or memory CD4+ cells 
prevented autoimmunity in their respective 
models [3, 4]. In 1995, Sakaguchi et al 
identified the CD25 molecule (the IL-2 
receptor α-chain) as a much better marker to 
represent suppressor/regulatory T (Treg) cells 
compared with CD5 and CD45RB (or CD45RC 
in rat). These cells constituted 5-10% of 
peripheral CD4+ T cells and less than 1% of 
peripheral CD8+ T cells in normal naïve mice, 
and were confined to the CD5high and 
CD45RBlow fraction of CD4+ T cells. 
Reconstitution with normal CD4+CD25+ T 
cells within a limited period after NTx 
prevented the development of autoimmunity. 
Removal of CD25+CD4+ T cells elicited 
autoimmune diseases and co-transfer of a 
small number of CD25+CD4+ T cells with 
CD25- T cells significantly inhibited the 
autoimmunity in the various animal models 
[5]. 
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Within the last decade the transcription factor 
Foxp3 has been identified as a much more 
specific marker for Treg cells. This protein is 
also critically involved in the development and 
function of Treg cells [6-8]. Despite the fact 
that Foxp3-GFP "knockin" studies clearly 
demonstrate that there is a very broad 
spectrum of CD25 expression on Treg cells, 
without using genetically modified tissues, 
current techniques still preclude the isolation 
of live CD4+Foxp3+ cells, therefore 
CD4+CD25+ cells are widely used in the field 
of the biology of Treg cells. 
 
CD4+CD25+ cells also exist in humans 
although only the CD4+CD25bright cell 
population displayed the immune suppressive 
effect [9]. Recent evidence suggests that 
although Foxp3 expression in murine 
lymphocytes appears to be a definitive marker 
for Treg cells, this may not be the case for 
human Tregs. New data demonstrate that 
FOXP3 (the ortholog of murine Foxp3) may be 
upregulated in rapidly proliferating human T 
cells and might be viewed as an activation 
marker for human T cells [10-12]. 
Nonetheless, mutations of the human FOXP3 
gene cause disease called IPEX (immune 
dysregulation, polyendocrinopathy, 
enteropathy, X-linked syndrome), which is 
characterized by autoimmune disease in 
multiple endocrine organs [13-15]. In addition, 
a decreased frequency and suppressive 
activity of CD4+CD25+ cells and CD4+FOXP3+ 
cells has been observed in many patients with 
autoimmune diseases [16-20]. 
 
Although the Treg cell family is predominantly 
comprised of CD4+ subsets, it also contains 
multiple heterogeneous subsets that include 
CD4+CD25+Foxp3+ cells, IL-10-producing 
CD4+ Tr1 cells, TGF-β-producing Th3 cells, 
CD8+ cells, NK T cells, CD4-CD8- T cells and 
γδ T cells [21, 22]. CD4+ Treg subsets can be 
further classified into two main populations, 
thymus-derived, naturally occurring 
CD4+CD25+Foxp3+ cells (nTregs) described 
as above and induced Tregs (iTregs) generated 
from CD25- precursors in peripheral lymphoid 
organs. Although IL-10-induced Tr1 cells and 
Th3 cells induced by the oral administration of 
peptide also represent some of induced CD4+ 
subsets, they do not express Foxp3 [23, 24]. 
Conversely, iTregs induced ex vivo by TGF-β 
express Foxp3 and makers are not available to 
distinguish iTregs from nTregs at present [25-
28]. TGF-β-induced Tregs will be defined as 

iTregs in this review. 
 
Many studies have revealed that both nTregs 
and iTregs share the similar phenotypic and 
functional characteristics. Most are previously 
activated cells that express CD25, CTLA-4, 
GITR, CCR4, CD62L and Foxp3, and express 
CD45RBlow in mice and CD45RO in humans. 
Both iTregs and nTregs similarly suppress T 
cell activation and proliferation in vitro through 
cell-cell contact and membrane-bound TGF-β 
although they are also thought to exert their 
suppressive activity via suppressive cytokines 
in vivo [29-32]. Adoptive transfer of either 
variety of Treg can inhibit the development of 
autoimmune disease and prolong allograft 
survival in MHC-mismatched organ 
transplantation [5, 25, 31-39]. In addition, 
there is an interactive role between nTregs 
and iTregs that hints both Treg subsets may 
have different targets or they may have a 
synergic role in regulating immune tolerance 
[26]. Despite the fact that both Treg classes 
have a distinct conversion to Th17 cells when 
stimulated with pre-inflammatory cytokine, IL-
6, there are some substantial differences 
regarding the differentiation and functional 
properties of each class. We will discuss these 
differences in this review. 
 
TGF-β belongs to a family of evolutionarily 
conserved molecules that is an important 
immunoregulatory cytokine involved in the 
maintenance of self-tolerance and T-cell 
homeostasis [40]. It is produced by several 
immune and non-immune cell types and 
functions in both an autocrine and paracrine 
manner [41, 42]. TGF-β members consist of 
TGF-β1, TGF-β2, and TGF-β3. TGF-β1 is the 
major form expressed in the immune system 
in mammals. TGF-β is synthesized as a 
precursor protein and released in an inactive 
form as either a small or large latent complex 
[43]. To elicit its biological activity, TGF-β has 
to be converted from inactive form to active 
one [41]. Active TGF-β combines the TGF-β 
type I (TGF-βRI) and type II (TGF-βRII) receptors 
and signals through SMAD proteins or through 
a SMAD-independent pathway [44]. 
 
TGF-β can suppress T cell responses either 
through a direct or an indirect pathway. For 
instance, TGF-β can directly exert its 
antiproliferative effects on CD4+ T cells due to 
its ability to inhibit IL-2 production and to 
upregulate cell cycle inhibitors [45]. TGF-β can 
also directly inhibit the differentiation of Th1 
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and Th2 cells via a downregulation of the 
transcription factors T-bet and GATA-3 that are 
required for the expression of IFN-γ and IL-4 
[46, 47], respectively. In addition, TGF-β can 
inhibit the activation of macrophages and their 
ability to produce pro-inflammatory cytokines. 
Moreover, TGF-β prevents the maturation of 
DCs and decreases MHC-class II expression by 
DCs, and subsequently decreases the ability of 
DCs to present antigens to T cells [45]. 
 
TGF-β’s pivotal functions in suppressing T cell 
responses and maintaining immune tolerance 
can be further documented in studies using 
TGF-β1-deficient mice. These mice develop an 
early and fatal lymphoproliferative and 
inflammatory disease [49, 50]. Other studies 
have employed transgenic mice expressing 
dominant-negative mutants of TGF-βRII in T 
cells and ruled out T cells as a principal direct 
TGF-β1 target in vivo [50-52]. In the absence 
of TGF-β signaling, T cells undergo 
hyperproliferation, activation, and effector T 
cell differentiation that results in infiltration of 
leukocytes into multiple vital organs and a 
neonatal lethal phenotype as severe as that of 
TGF-β1-deficient mice [51, 52].  
 
Of note, TGF-β can also exert a positive effect 
on T cells. While TGF-β suppresses Th1 and 
Th2 differentiation, conversely, it also induces 
the differentiation and development of Foxp3+ 
regulatory T cells. It was initially believed that 
TGF-β selectively expands only endogenous 
nTregs [53], however, further research 
revealed that TGF-β can indeed induce 
CD4+CD25- non-regulatory T cells to become 
regulatory T cells [54]. When Foxp3 was 
identified as Treg marker, several groups 
rapidly found TGF-β was able to induce 
CD4+CD25-Foxp3- cells to express Foxp3 in 
mice [25, 27, 28] and humans [26]. Although 
some investigators suspected CD4+CD25- 
precursor cells in this TGF-β-driven conversion 
were possibly CD4+CD25+ cells but lost CD25 
expression, current several studies using 
transgenic mice and GFP Foxp3 knock-in mice 
have clearly demonstrated that TGF-β is 
capable of inducing CD4+CD25-Foxp3- cells to 
become Foxp3+ Treg cells (55, 56). In contrast 
to nTregs, one group has observed the 
expression of Foxp3 by iTregs is not stable and 
incomplete demethylation in conserved region 
in intron one of the Foxp3 gene is responsible 
for this transient Foxp3 expression in vitro 
[57]. Our research has also revealed that 
Foxp3 expression and maintenance by iTregs 

is transient and rapidly decreases without this 
cytokine in vitro. However, we have also 
demonstrated that the addition of IL-2 to the 
TGF-β-driven cultures can sustain the iTreg’s 
Foxp3 expression, and conversely the addition 
of anti-IL-2 or anti-TGF-β will decrease Foxp3 
expression [58]. Whether IL-2 affects the 
demethylation in Foxp3 locus is under 
investigation in our group. Of special note is 
that Foxp3 expression by iTreg generated in 
the laboratory of Ethan Shevach is stable, and 
they have been successful at maintaining this 
expression more than >50 days in vivo (59). 
We have also observed that when adoptively 
transferred to syngeneic mice, >80% of both 
nTregs and iTregs sustained expression of 
Foxp3 for one month following injection 
(unpublished data). We hypothesize that 
cytokines and/or self-antigenic stimulation 
promotes the maintenance of Foxp3 
expression in the transferred Treg subsets in 
vivo. 
 
The therapeutic effect of TGF-β-induced iTregs 
on autoimmune diseases and transplantation 
tolerance 
 
Compelling evidence has revealed that the 
manipulation of nTreg cell-based therapy can 
control autoimmune disease and improve the 
survival of allografts in organ transplantation 
[5, 25, 31-39]. Similarly, adoptive transfer of 
iTregs has also been developed into a strategy 
that may lead to the restoration of immune 
tolerance in the treatment of autoimmune 
diseases and in the prevention of 
transplantation rejection. Due to the low 
frequency of nTregs in normal humans and to 
the dysfunction of nTregs in patients with 
some autoimmune diseases, it will be very 
significant to develop iTreg cells using an 
alternative approach. 
 
Research in the laboratory of Sharon Wahl has 
demonstrated that adoptive transfer of TGF-β-
converted/induced iTregs prevented house 
dust mite–induced allergic pathogenesis and 
inflammation in lungs in an asthmatic mouse 
model [25]. Weber et al observed that 
injection of murine islet-specific CD4+ iTregs 
generated by TCR stimulation with IL-2 and 
TGF-β prevented spontaneous development of 
type 1 diabetes and inhibited development of 
pancreatic infiltrates and disease onset 
orchestrated by Th1 effectors in NOD mice 
[60]. DiPaolo et al have also reported similar 
therapeutic potential of Ag-specific iTregs to 
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prevent autoimmune diseases. In this study, 
they found iTregs are effective as nTregs at 
preventing organ-specific autoimmunity in a 
murine model of autoimmune gastritis. They 
also provided evidence that iTregs decreased 
B7 expression by DC and this iTregs-DC 
interaction possibly contributes to the 
suppressive effect of iTregs on autoimmunity 
[59]. Similarly, iTreg cells also significantly 
suppressed Th1 mediated colitis on 
CD4+CD62L+ T cell transfer in vivo [61]. Not 
only do iTregs prevent the appearance of 
autoimmune disease, we have also 
demonstrated that injection of iTregs can 
ameliorate established autoimmune disease. 
We have developed a chronic graft-vs-host 
disease model characterized by rapid and 
vigorous formation of SLE-like autoantibodies 
and the formation of severe immune-complex 
glomerulonephritis. DBA/2 mouse T cells 
induce this syndrome when injected into 
(DBA/2 x C57BL/6) F1 mice. We found TGF-β-
treated DBA/2 T cells not only lost their ability 
to induce graft-vs-host disease but also 
prevented other parental T cells from inducing 
lymphoid hyperplasia, B cell activation, and an 
immune complex glomerulonephritis. 
Moreover, a single transfer of TGF-β-
conditioned T cells to animals that had already 
developed anti-dsDNA Abs decreased the titer, 
suppressed proteinuria, and doubled survival 
[36]. We recently also observed injected iTregs 
suppressed DC accumulation and maturation 
in spleen and lymph nodes, and even induced 
tolerogenic or regulatory DC formation. It has 
been documented by an experiment where 
injection of DCs isolated from GVHD (DBA/2 x 
C57BL/6) F1 mice that had received iTregs 
but not control cells was able to prevent other 
parental T cells from inducing typical lupus 
syndromes in (DBA/2 x C57BL/6) F1 mice 
(manuscript in preparation).  
 
It has been also widely accepted that Tregs 
play a pivotal role in transplantation tolerance. 
Many studies have implicated Tregs in the 
maintenance of transplantation tolerance to 
donor antigens in bone marrow and solid 
organ transplantation [62-64]. For instance, 
intrathymic antigen inoculation or monoclonal 
antibodies (mAbs) against CD4, CD8 or CD154 
induced transplantation tolerance through the 
in vivo generation of Tregs (65). While removal 
of Tregs enhanced the allograft rejection, 
conversely, enrichment of Tregs promoted the 
allograft survival [66, 67]. In addition, 
evidence also exists that administration of 

nTregs to the recipients can target or prevent 
solid organ transplantation rejection [68, 69], 
even in inducible liver transplantation 
tolerance models [70]. 
 
We and others have reported iTregs generated 
ex vivo with TGF-β also had the potential to 
protect MHC-mismatched organ grafts from 
rejection. Watanabe et al showed that 
intravenous administration of TGF-β-induced 
CD4+CD25+ iTregs resulted in a significant 
effect on cardiac allograft survival in rat model 
[71]. We also developed a mouse cardiac 
allograft model to test the functional capacity 
of  TGF-β-induced iTregs. We first observed 
that recipient mice developed a T cell non-
responsiveness to donor alloantigens when 
they received iTregs but not control cells. An 
antigen-dependent increase in splenic 
CD4+CD25+ cells derived from the recipient 
mice contributed to this tolerance. We have 
also demonstrated that the transfer of TGF-β-
induced alloantigen-specific iTregs co-incident 
with transplantation of a histoincompatible 
heart results in a marked extension of allograft 
survival [39]. This study raises the possibility 
that natural and induced regulatory T cells 
generated ex vivo have the potential to be 
used as an adoptive immunotherapy to control 
autoimmunity and induce allograft tolerance. 
 
The distinct role of co-stimulatory molecules 
and IL-2 in the development of both Treg 
subsets 
 
Although both nTreg and iTreg subsets share 
similar phenotypes and display comparable 
suppressive activity, several factors distinctly 
affect their development. First, nTregs develop 
in the thymus through recognition of self 
antigens. A high affinity cognate interaction 
between self-peptide:MHC complex and T cell 
receptor is required for this process. They also 
require CD28 co-stimulation because they 
poorly develop in CD28 deficient mice [72]. 
Although IL-2 and TGF-β play an important role 
in the maintenance of the pool size of nTregs, 
both cytokines are redundant for their 
development since both IL-2 and TGF-β knock 
out mice contain CD4+CD25+Foxp3+ 
regulatory T cells in the thymus [73, 74]. By 
contrast, the generation of iTregs is dependant 
upon the presence of both TGF-β and TGF-β 
receptor signals since the absence of TGF-β or 
blocking the TGF-β receptor signal prevents 
the induction of Foxp3 expression and the 
subsequent functional suppressive capacity. 
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The conversion of CD4+CD25- cells in the 
periphery to CD25+ iTregs require weaker, 
suboptimal TCR stimulation and thus 
environmental antigens may sufficiently trigger 
iTreg development. However, the lack of CD28 
co-stimulatory molecules does not affect the 
differentiation of iTregs (unpublished data), 
but inhibitory CTLA-4 co-stimulation and CTLA-
4/B7.1 signaling are absolute requirements 
for the generation of iTregs. These iTregs can 
not be induced from naïve CD4+CD25- 
precursor cells in CTLA-4 deficient mice 
although these mice contain normal 
CD4+CD25+Foxp3+ nTregs [75]. This 
conclusion is further documented by an 
observation that the blocking of CTLA-4/B7.1 
signal abolished the capacity of TGF-β to 
induce iTregs in wild type mice [76]. 
Ox40/Ox40L, an alternate CD28/B7-
independent costimulatory pathway, also 
negatively regulates the development and 
function of both nTregs and iTregs. While 
stimulation of mature nTregs by Ox40 results 
in the loss of suppression of T cell proliferation 
and cytokine production [77], the generation 
of iTreg is completely abolished by Ox40 
although Ox40 does not affect the generation 
of nTregs [78]. 
 
Although interleukin-2 (IL-2) was originally 
described as a potent T cell growth factor in 
vitro, recent studies have suggested that this 
cytokine is also critically involved in the 
maintenance of peripheral T cell tolerance. 
Mice deficient in IL-2 production or the IL-2 
receptor α or β chains develop a lethal 
autoimmune disease [79, 80]. It is apparent 
that the decreased frequency of nTregs is 
responsible for this lethal autoimmune 
disease in these mice since adoptive transfer 
of wild type nTregs that do not produce IL-2 
prevent the disease [81]. To directly assess 
the effect of IL-2 signaling on Treg cell 
development and function, Fontenot et al 
analyzed mice containing the Foxp3(gfp) 
knock-in allele that were genetically deficient 
in either IL-2-/- or CD25 (Il2Ra-/-). They found 
that IL-2 signaling was dispensable for the 
induction of Foxp3 expression in thymocytes 
and nTregs from IL-2 or IL-2 receptor deficient 
mice were fully able to suppress T cell 
proliferation in vitro. However they also found 
IL-2 signaling was required for maintenance of 
pool sizes of nTregs in the periphery [73]. 
 
We initially considered that IL-2 possibly 
overcame the inhibitory effect of TGF-β on T 

cells. Unexpectedly, we also identified a 
specific dose of anti-IL-2 antibody that did not 
block the CD25 expression but completely 
abolished the Foxp3 expression and 
suppressive activity by CD4+ cells. We then 
found TGF-β failed to induce Foxp3+ iTregs 
from naïve CD4+CD25- precursor cells in IL-2 
deficient mice. Addition of exogenous IL-2 but 
not other common gamma chain cytokines 
was able to rescue the ability of TGF-β to 
induce Foxp3+ iTreg cells by naïve CD4+CD25- 
cells in these mice [58]. Davidson et al also 
simultaneously reported a similar observation 
[55]. Differing IL-2 and co-stimulatory molecule 
requirements for the development of both 
nTregs and iTregs suggests that nTregs and 
iTregs are possibly heterogeneous populations 
and that integration of both Treg subsets is 
required for the maintenance of normal 
immune homeostasis. It is also likely that both 
nTreg and iTreg subsets can either work in 
concert or can work separately on different 
targets. 
 
Disparity between the developmental and 
functional fates of Treg subsets when 
stimulated with the proinflammatory cytokine 
IL-6 
 
A positive role for TGF-β in T cells is 
exemplified by the recent finding that the 
combination of IL-6 and TGF-β can induce 
mouse T cells to become proinflammatory 
effector cells that produce IL-17 (Th17 cells) 
[56, 82, 83]. As nTreg cells express a 
membrane-bound form of TGF-β and this TGF-
β has functional activities, it is reasonable that 
IL-6 can convert nTregs to become Th17 cells 
[84]. To demonstrate this, Xu et al used 
purified nTregs from Foxp3 GFP knock in mice 
to exclude the possibility that 
CD4+CD25+Foxp3- non-Tregs made this 
conversion. We have also used both wild type 
and Foxp3 GFP knock in mice to confirm this 
observation. We believe that endogenous TGF-
β produced by nTregs is critically required for 
this conversion since we observed the blocking 
TGF-β receptor I signal or using nTregs from 
TGF-β receptor II dominant mice resulted in 
the failure of Th17 conversion [85]. Moreover, 
we found that activation of nTregs with IL-6 
resulted in decreased Foxp3 expression and 
suppressive activity both in vitro and in vivo. 
Furthermore, when used in adoptive transfer 
experiments nTregs treated with IL-6 ex vivo 
lost their ability to protect mice from a lupus-
like disease [85]. Thus, in an IL-6 rich 
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inflammatory milieu, there appears to be a 
major difference in the functional stability of 
Foxp3+ nTregs and iTregs. Moreover, recently 
it has been demonstrated that nTregs can be 
converted into Th17 cells in an in vivo model 
[86]. 
 
In sharp contrast, TGF-β induced iTregs were 
completely resistant to the Th17 conversion 
when similarly stimulated with IL-6. This 
difference can not be explained by the 
insufficient production of TGF-β in iTregs since 
both nTregs and iTregs expressed similar 
levels of membrane-bound TGF-β (20-25%) 
and secreted similar levels of active TGF-β 
(about 40 ng/ml). The resistance of iTregs to 
Th17 conversion also cannot be explained by 
alterations in TCR stimulation since anti-
CD3/CD28 activated nTregs can still become 
Th17 cells when stimulated with IL-6 [85]. To 
account for this difference between nTregs 
and iTregs, we found that the combination of 
IL-2 and TGF-β down-regulated IL-6 receptor 
expression and function by activated T cells. 
We have observed that both cytokines 
markedly decreased IL-6 receptor alpha-chain 
(CD126) and beta-chain (CD132) expression 
on CD4+ cells and these cells expressed 

significantly lower level of phosphorylated 
STAT3 expression when stimulated with IL-6 
(85). The difference between both nTregs and 
iTregs in the differentiation and function when 
stimulated with IL-6 has been summarized as 
Figure 1. We are currently investigating 
whether this distinct conversion of both Treg 
subsets to Th17 cells will occur in 
autoimmunity mice model in which high levels 
of IL-6 have been identified. If it is case, this 
will indicate iTregs have a greater advantage 
to treat autoimmune and inflammatory 
diseases compared with nTregs. 

Figure 1. The difference between nTregs and iTregs in the Th17 conversion when stimulated with IL-6. 
CD4+CD25+Foxp3+ nTregs derived from thymus convert into IL-17-producing cells and decrease Foxp3 
expression when stimulated with IL-6. Conversely, similarly stimulated CD4+CD25+Foxp3+ iTregs induced 
with IL-2 and TGF-β from CD4+CD25- in the periphery are resistant to converting of Th17 cells and they also 
sustain Foxp3 phenotype and suppressive function although IL-6 and TGF-β can induce the development of 
Th17 cells. 

 
These studies raise the possibility that nTregs 
and iTregs may have distinct roles in the 
adaptive immune response. In response to 
microbial infections some nTregs could 
possibly serve as a first line of host defense. If 
some are converted to IL-17 producing cells, 
these cells could contribute to neutrophil 
mobilization and have other pro-inflammatory 
effects. After subsequent eradication of the 
invaders, the later appearing TGF-β-induced 
iTregs would not only terminate the antigen-
specific response, but also prevent the 
emergence of non-specifically stimulated or 
cross-reactive self-reactive T cells. Accordingly, 
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failure of this terminal mechanism could result 
in an immune-mediated disease. 
 
Differences between TGF-β induced iTregs in 
mice and humans 
 
Unlike mouse T cells, conventional anti-CD3 
stimulation of human CD4+ in the absence of 
TGF-β results in a small transient expression of 
Foxp3 [10, 11] although not all groups support 
this observation [87]. However, Treg 
generation from anti-CD3-stimulated human 
CD4+ cells is controversial. Both Shevach and 
our groups consistently observed TGF-β 
markedly increased Foxp3 expression in 
human CD4+ cells [26, 87]. It is notable these 
TGF-β induced CD4+Foxp3+ cells in human 
are not anergic cells. They produce ample IL-2 
and other cytokines when restimulated with 
anti-CD3/CD28 beads. Addition of these cells 
to other T cells fails to suppress the T 
responder cell proliferation in vitro. Therefore, 
one concludes that TGF-β is unable to induce 
human T cells to develop the suppressive 
activity despite their high level of FOXP3 
expression [87]. 
 
Nevertheless, we have previously observed 
TGF-β can indeed induce human CD4+ cells to 
become suppressor cells. When naïve human 
CD4+ cells were stimulated with alloantigen 
plus TGF-β for one week, the TGF-β-treated but 
not control cells (without TGF-β) prevented 
CD8+ T cells from proliferating in response to 
alloantigens and from becoming cytotoxic 
effector cells. Moreover, these regulatory cells 
exerted their suppressive activities in 
remarkably low numbers and maintained 
these effects even after they were expanded 
[53]. We subsequently also reported that with 
a low-dose Staphylococcal Enterotoxin B (SEB) 
stimulation, TGF-β did convert human 
CD4+CD25- cells to become Th3-like 
suppressor cells. Similarly, these cells also had 
potent suppressive activity since adding as few 
as 1% of these TGF-β-primed CD4+ T cells to 
fresh CD4+ cells and B cells markedly 
suppressed IgG production. The inhibitory 
effect was mediated by TGF-β and was also 
partially contact dependent [54]. 
 
Despite the above data on the different role of 
TGF-β in the induction of suppressor cells in 
mice and humans, several issues remain to be 
further investigated. First, the standard to 
judge whether FOXP3+ cells are Treg cells in 
humans needs to be further defined. 

Polyclonally activated, TGF-β primed CD4+ 
cells are unable to suppress T cell proliferation 
in vitro due to their non-anergic phenotype, but 
suppressive activity in vitro does not always 
accurately reflect the suppressive capacity of 
Treg cells in vivo. It is therefore necessary to 
directly determine the suppressive ability of 
TGF-β-induced human CD4+ cells in vivo. Our 
group is currently developing a xeno-GVHD 
model in which we will adoptively transfer 
human PBMC into SCID common-γ chain 
knock-out mice. Previous work has described 
that xeno-GVHD can be induced in RAG2-/-
gamma c-/- mice by i.v. administration of 
human peripheral blood mononuclear cells 
(88). We will learn whether co-transfer of TGF-
β-induced human CD4+ cells can suppress the 
expansion and cytokine production by human 
T cells in these mice. This experiment will likely 
provide a better approach to determine the 
suppressive characteristics of TGF-β-induced 
human CD4+ cells. Second, TGF-β-induced 
human CD4+ cells express high level of 
FOXP3, however, this FOXP3 is methylated and 
inactive. Janson et al have recently described 
that human nTregs display a demethylated 
FOXP3 promoter, in contrast, CD4+CD25low T 
cells and stimulated CD4+CD25- T cells 
remained partially methylated although the 
latter transiently expressed FOXP3. In addition, 
they also observed TGF-β and/or IL-10 does 
not induce any additional change in 
methylation level [89]. We are currently 
investigating whether demethylation in TGF-β-
induced human CD4+ cells can restore or 
enhance the suppressive activity of these 
cells. Lastly, it is possible that different 
stimulatory patterns or strengths may 
influence the development of TGF-β-induced 
regulatory T cells in humans. Polyclonal 
mitogens may result in too strong of 
stimulation and this overexuberant stimulation 
might fail to drive the differentiation of Treg 
cells in the presence of TGF-β. However, low-
dose SEB and alloantigen stimulation may 
lead to an optimal stimulatory strength that 
sufficiently enables TGF-β to drive Treg cells 
induction in humans. Our recent unpublished 
observation that only low dose but not high 
dose of SEB favors the induction of TGF-β-iTreg 
cells in human further supports this 
hypothesis. 
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