Review Article Association of genetic polymorphisms of CYP2E1 and MPO genes with acute leukemia risk: a meta-analysis

Liqun Wu¹, Xiangxiang Liu¹, Zhijiang Zhang³, Yangfeng Wang¹, Zhen Li², Chunhong Wang², Yongyi Bi¹, Hong Wang¹

Departments of ¹Occupational and Environmental Health, ²Toxicology, ³Epidemiology, School of Health Sciences, Wuhan University, Wuhan 430071, P. R. China

Received August 25, 2016; Accepted November 9, 2016; Epub January 15, 2017; Published January 30, 2017

Abstract: There is a possible association between acute leukemia (AL) and polymorphisms in genes coding for cytochrome P4502E1 (CYP2E1) and myeloperoxidase (MPO), the enzymes both involved in the metabolism and bioactivation of xenobiotic compounds, including benzene especially. Previous studies reported conflicting results. Therefore, a meta-analysis of available molecular epidemiologic studies was performed to comprehensively investigate the association between CYP2E1 Rsal/Pstl polymorphism as well as MPO 463G>A genetic variants and AL risk. We systematically searched Pubmed, Web of Science, and Wanfang databases to identify eligible molecular epidemiologic studies up to March 1st, 2016. The effects of each polymorphism were pooled using either fixed or random effect models according to the heterogeneity of the studies. A total of 14 individual case-control studies from 13 articles, concerning polymorphism variants in these two genes (8 studies for CYP2E1 and 6 studies for MPO) with risk to AL were included for analysis, with 2593 cases and 3442 controls involved. Overall, the c2 variant allele of CYP2E1 Rsal/Pstl polymorphism may slightly increase AL risk (dominant model: OR=1.46, 95% CI=1.05-2.02, P=0.02; heterozygous model: OR=1.44, 95% CI=1.03-2.00, P=0.03; allelic model: OR=1.42, 95% CI=1.05-1.92, P=0.02) despite a potential publication bias, while MPO 463G>A polymorphism was significantly associated with attenuated risk to AL (dominant model: OR=0.62, 95% CI=0.46-0.84, P=0.002; heterozygous model: OR=0.62, 95% CI=0.51-0.75, P<0.001; allelic model: OR=0.75, 95% CI=0.61-0.93, P=0.007). Subgroup analysis by AL type further showed that there was a significant association between MPO 463G>A polymorphism and decreased risk of acute myeloid leukemia (AML) (OR=0.25, 95% CI=0.15-0.43, P<0.001 for dominant model), rather than acute lymphoblastic leukemia (ALL), which was found associated with CYP2E1 Pstl polymorphism (OR=1.45, 95% CI=1.03-2.06, P=0.04 for dominant model). Conclusions: The meta-analysis suggests that CYP2E1 Rsal/Pstl polymorphism is associated with elevated AL risk, while MPO 463G>A allele may have a protective function against leukemogenesis.

Keywords: Myeloperoxidase, cytochrome P4502E1, acute leukemia, polymorphism, meta-analysis

Introduction

Acute leukemia (AL), a group of clonal hemopoietic disorders, has been reported to show increasing incidence and mortality rate worldwide in recent years [1]. Annually, AL accounts for about 4% of cancer cases in the United States [2]. Although treatment of the diseases has been improved with the advancement of modern chemotherapy, the causes of most leukemia, however, are not clarified and likely to involve an interaction between environmental and genetic factors [3, 4]. Among many human environmental carcinogens, benzene is a wellknown carcinogenic agent that causes leukemia [5-9], a fact that was identified by the International Agency for Research on Cancer (IARC) early in 1982 [10]. Benzene is initially metabolized in the liver by the hepatic enzyme cytochrome P4502E1 (CYP2E1) to benzene oxides, which is spontaneously converted into phenol [11, 12]. Phenol is catalyzed by CYP2E1 to potentially toxic di- or trihydroxybenzenes such as hydroquinone, catechol, and 1,2,4-benzentriol [13, 14], which can be further converted in the bone marrow by myeloperoxidase (MPO) to benzoquinones [15], a potent hematotoxic and genotoxic compound that finally give a rise to leukemia development. As studied, CYP2E1 and MPO are both phase I xenobiotic metabolizing enzymes and involved in the bioactivation of benzene by forming intermediate reactive metabolites, such as hydroquinone and benzoquinones, which finally contribute to subsequent development of leukemia [16, 17]. However, further studies are needed to systematically access the role of these enzymes in leukemogenesis and the underlying mechanisms.

Increasing molecular epidemiologic researches, in recent years, reported a potential association between AL and gene polymorphisms. Polymorphisms in genes encoding for xenobiotic-metabolizing enzymes are largely responsible for the inter-individual differences in their ability to activate mutagenic or carcinogenic agents [18-20], and may thus influence individual susceptibility to leukemia. CYP2E1 is a cytochrome P450 isoform and shows genetic polymorphisms that can alert the gene expression and may be important in human carcinogenesis [21, 22]. Among CYP2E1 polymorphisms, the most frequently studied are the CYP2E1 Rsal/Pstl polymorphism, which is also known as CYP2E1* 5B polymorphism for locating in the 5'-flanking region of the gene [23]. Previous studies accessing the effect of CYP2E1 Rsal/Pstl polymorphisms on susceptibility to leukemia finally got contradictory results. Krajinovic et al. suggested an association of CYP2E1* 5B variant alleles with ALL risk in Canadian children population [24]. On the contrary, Canalle et al. found no evidence supporting for such an association in Brazilian population [25]. MPO is also an important metabolizing enzyme involved in the catabolism of benzene [26]. A 463G/A polymorphism in the promoter region of the MPO gene can abolish the binding site for the SP1 transcriptionfactorandthusresultsinreducedgeneexpression [18]. A case-control study carried by J. Zhang et al. found MPO 463G/A polymorphism was associated with a decrease risk of leukemia in mutant carriers due to diminished activation of carcinogens in the Chinese Han population [27], which is conflicting with previous results that no evidence of the involvement of MPO 463G/A polymorphism in AL susceptibility was found [24, 28].

With regard to the role of *CYP2E1* Pstl genetic variant and MPO 463G>A polymorphism in the susceptibility to AL, inconclusive results were reported in term of the low sample size of single study and different characteristics among studies like ethnicity and leukemia types [24, 27-31]. The aim of our study was to conduct a

meta-analysis of related molecular epidemiologic studies in a comprehensive over viewing of all available knowledge to provide an more thorough assessment summarizing the possible relationship between polymorphisms in genes encoding CYP2E1 and MPO and AL risk.

Materials and methods

Literature searching strategy

A systematical review of literatures concerning the associations between the MPO or CYP2E1 polymorphism and risk of leukemia was conducted by searching PubMed, Web of Science and Wanfang databases up to March 1st 2016. Language was limited in English and Chinese, with no restriction on country. The search terms were: ("polymorphism" or "variant" or "genotype" or "mutation" or "SNPs") AND ("Myeloperoxidase" or "MPO" or "rs233-3227" or "CYP2E1" or "rs2031920" or "rs381-3867") AND ("leukemia" or "ALL" or "AML" OR "Hematological Malignancies"). Furthermore, a manual search was carried out according to reference lists of retrieved original articles and recent reviews to avoid from omission of any usable data. However, we did not check the grey literature.

Inclusion and exclusion criteria

Studies conforming to the following criteria were selected for inclusion in our meta-analysis: (1) case-control or cohort studies that evaluated the association between polymorphism in genes coding for MPO or CYP2E1 and risk of AL; (2) study in human only; (3) presenting original and sufficient data for calculating and estimating odds ratios (ORs) and the corresponding 95% confidence intervals (CIs). When multiple publications reported the same or overlapping data, only the most reliable report with the largest sample size was chosen for the final analysis. Case-only studies, editorials, systematic reviews (including meta-analysis) and studies with subjects who had Down's Syndrome or any hematological malignancies other than AL were excluded. For reliability, all the identified citations were reviewed independently by two authors (Wu and Liu), and studies met the above criteria were finally included in the present meta-analysis. Divergence of views was settled by reaching a consensus between the two authors.

Figure 1. The flow diagram of selecting eligible studies.

Data extraction and quality assessment

Information was also extracted independently by two researchers (Wu and Liu) from studies included, and any disagreements were resolved by discussion. The following terms of data were collected: first author, year of publication, study design, AL subtypes (AML or ALL), genotyping methods, country and ethnicity investigated, number of cases and controls, genotypes data, and the confirmation of Hardy-Weinberg equilibrium (HWE) in control. We assessed paper quality based on the requirements and items of the Newcastle-Ottawa-Scale (NOS) for case-control studies [32], considering studies with scores of 0-3, 4-6, 7-9 as low, moderate and high quality, respectively. Two authors contributed in carrying out the quality assessment independently, resolving any arguments by discussion.

Statistical analysis

Firstly, we tested the conformation of genotype distribution in controls to Hardy-Weinberg equilibrium (HWE) by the chi-square test [33]. The strength of the associations between gene polymorphisms and risk of AL was estimated by ORs and 95% Cls. *Z*-test was used to determine the statistical significance of the summary OR. Heterogeneity between studies was estimated by Cochran's Q test and I² statistic, and a *P* value less than 0.10 or *I*²>50% was

considered indicating the existence of significant heterogeneity [34]. If no significant heterogeneity across studies was observed, the fixed-effects model (Mantel-Haenszel methods) [35] was used prior to evaluate the pooled ORs. Otherwise, the random-effects model (Der-Simonian and Laird's method) [36] was chosen. Additionally, the Begg's and Egger's funnel plot asymmetry tests were conducted to check the publication bias [37, 38].

In the present meta-analysis, the pooled ORs were calculated under 5 genetic models of each polymorphism, *CYP2E1* Rsal/Pstl polymor-

phism (dominant model: c2c2+c1c2 vs. c1c1; recessive model: c2c2 vs. c1c1+c1c2; heterozygous model: c1c2 vs. c1c1; homozygous model: c2c2 vs. c1c1; allelic model: c2 vs. c1) and MPO 463G>A polymorphism (dominant model: aa+ga vs. gg; recessive model: aa vs. ga+gg; heterozygous model: ga vs. gg; homozygous model: aa vs. gg; allelic model: a vs. g). Besides, we conducted stratify analyses to assess the covariate effects, in which ethnicities were categorized into two groups (Asian and Caucasian for MPO 463G>A. Asian and no-Asian for CYP2E1 c2 alleles), AL types were categorized into AML and ALL and ages were grouped into adult and childhood. Studies that didn't specify leukemia types and those without clear age bracket were not included for the stratification analyses. The meta-analysis was performed mainly using Review Manager version 5.2 (Cochrane Collaboration, Oxford, England) except that Begg's and Egger's tests were conducted by Stata version 11.2 (Stata Corporation, College Station, TX, USA). All P values were two-sided and P<0.05 was considered statistically significant, unless stated otherwise.

Results

Identification and characteristics of included studies

In total, 154 potentially individual abstracts were screened from the Pubmed, Web of

First author	Year	Leukemia subtype	Country (Ethnicity)	Genotyping method	Number (case/control)		Case			Contro		OR (95% CI)	NOS	HWE
CYP2E1 Rsal/Pstl polymorph	nism	•				c1c1	c1c2	c2c2	c1c1	c1c2	c2c2			
Wang Shumei	2014	ALL	China (Asian)	PCR-RFLP	91/283	51	35	5	192	84	7	1.66 (1.02-2.68)	4	0.20
Audrey Bonaventure	2012	AML, ALL	France (Caucasian)	Genome-wide genotyping ^a	493/549	462	26	0	500	36	0	0.80 (0.50-1.40) ^b	8	0.42
Xi Yaming	2011	AML, ALL	China (Asian)	PCR-LDR	150/150	105	40	5	111	36	3	1.22 (0.74-2.02)	6	0.97
Gulen Ulusoy	2007	ALL	Turkey (Caucasian)	PCR-RFLP	168/207	156	12	0	199	8	0	1.91 (0.76-4.80)	6	0.78
Pascual Bolufer	2007	AML, ALL	Spain (Caucasian)	Real-Time PCR	343/390	321	21	1	367	23	0	1.09 (0.60-2.00)	7	0.55
Muge Aydin-Sayitoglu	2006	AML, ALL	Turkey (Caucasian)	PCR-RFLP	249/140	213	36	0	136	6	0	3.34 (1.55-9.20)	7	0.80
Renata Canalle	2004	ALL	Brazil (Caucasian)	PCR-RFLP	113/221	99	14	0	197	23	1	1.16 (0.58-2.34)	8	0.71
Maji Krajinovic	2002	ALL	Canada (Caucasian)	PCR-ASO	174/302	160	14	0	293	9	0	2.85 (1.21-6.73)	8	0.79
MPO 463G>A polymorphism						gg	ga	aa	gg	ga	aa			
Jia Mingfeng	2012	AML, ALL	China (Asian)	PCR-LDR	150/150	100	45	5	72	76	2	0.46 (0.29-0.74)	5	<0.01
Shi Xiu-E	2010	AML, ALL	China (Asian)	PCR-LDR	100/100	69	24	7	46	52	2	0.38 (0.22-0.68)	5	<0.01
Vanessa da Silva Silveira	2010	ALL	Brazil (mixed)	PCR-RFLP	124/300	71	46	7	159	124	17	0.84 (0.55-1.28)°	6	0.26
Zhang Juan	2007	AL	China (Asian)	PCR-RFLP	135/187	94	39	2	108	74	5	0.58 (0.36-0.92)	7	0.06
Zhu Fangyan	2006	AML, ALL	China (Asian)	PCR-RFLP	139/139	87	47	5	65	69	5	0.53 (0.33-0.85)	5	<0.01
Maji Krajinovic	2002	ALL	Canada (Caucasian)	PCR-ASO	169/337	105	55	9	212	114	11	1.03 (0.71-1.51)	8	0.36

Table 1. Main characteristics of studies included in the meta-analysis

OR: Odd ratio; CI: Confidence interval; NOS: Newcastle-Ottawa-Scale; HWE: Hardy-Weinberg equilibrium; AML: Acute myeloid leukemia; ALL: Acute lymphoblastic leukemia; AL: Acute leukemia; PCR: Polymerase chain reaction; RFLP: Restriction fragment length polymorphism; LDR: Ligase detection reaction; ASO: Allele specific oligonucleotide hybridization assays. a: Genome-wide genotyping was based on a high-throughput platform and imputation. b: Adjusted by the gender, age quota variable, parental professional category, maternal educational level, birth order, and breastfeeding. c: Adjusted by age, sex, and ethnic group.

Overall and subgroup	N	Case/ control	Dominant model OR (95% CI)	Ρ	l² (%)	Recessive model OR (95% CI)	Р	l² (%)	Heterozygous model OR (95% CI)	Ρ	l² (%)	Homozygous model OR (95% Cl)	Р	² (%)	Allelic model OR (95% Cl)	Ρ	l² (%)
CYP2E1 Rsal/P	stl																
Total	8	1776/2229	1.46 (1.05-2.02)	0.02	51%	1.91 (0.83-4.43)	0.13	0%	1.44 (1.03-2.00)	0.03	51%	2.08 (0.89-4.87)	0.09	0%	1.42 (1.05-1.92)	0.02	49%
Ethnicity																	
Asian	2	241/433	1.43 (1.01-2.03)	0.04	0%	2.01 (0.80-5.04)	0.14	0%	1.37 (0.95-1.96)	0.09	0%	2.22 (0.87-5.66)	0.09	0%	1.41 (1.04-1.89)	0.03	0%
No-Asian	6	1535/1796	1.53 (0.94-2.48)	0.09	63%	1.52 (0.20-11.63)	0.69	0%	1.53 (0.94-2.49)	0.09	63%	1.54 (0.20-11.82)	0.68	0%	1.50 (0.94-2.39)	0.09	61%
Leukemia typ	е																
AML	4	472/1216	1.41 (0.71-2.79)	0.32	59%	2.43 (0.63-9.42)	0.20	0%	1.35 (0.66-2.76)	0.41	60%	2.61 (0.67-10.17)	0.17	0%	1.43 (0.77-2.65)	0.25	55%
ALL	8	1295/2229	1.45 (1.03-2.06)	0.04	46%	1.68 (0.63-4.46)	0.30	0%	1.44 (1.02-2.04)	0.04	45%	2.18 (0.88-5.42)	0.09	0%	1.41 (1.02-1.95)	0.04	45%
Age group																	
Adult	2	236/290	1.91 (0.67-5.47)	0.23	72%	1.69 (0.40-7.20)	0.48	-	1.89 (0.63-5.61)	0.25	73%	1.69 (0.40-7.20)	0.48	-	1.85 (0.69-4.96)	0.22	70%
Children	6	1197/1689	1.64 (1.04-2.60)	0.03	62%	1.98 (0.66-5.94)	0.23	0%	1.71 (1.03-2.84)	0.04	67%	1.98 (0.66-5.94)	0.23	0%	1.58 (1.02-2.43)	0.04	61%
MPO 463G>A																	
Total	6	817/1,213	0.62 (0.46-0.84)	0.002	62%	1.37 (0.86-2.19)	0.19	0%	0.62 (0.51-0.75)	<0.001	66%	1.15 (0.70-1.89)	0.57	0%	0.75 (0.61-0.93)	0.007	44%
Ethnicity																	
Asian	4	524/576	0.50 (0.39-0.63)	<0.001	0%	1.48 (0.73-3.00)	0.28	13%	0.47 (0.36-0.60)	<0.001	6%	1.05 (0.49-2.25)	0.91	0%	0.63 (0.52-0.78)	<0.001	0%
Caucasian	2	293/637	0.94 (0.71-1.25)	0.68	0%	1.28 (0.68-2.41)	0.44	0%	0.91 (0.68-1.22)	0.51	0%	1.24 (0.65-2.37)	0.52	0%	0.99 (0.79-1.25)	0.95	0%
Leukemia typ	е																
AML	2	180/250	0.25 (0.15-0.43)	<0.001	29%	3.18 (0.96-10.52)	0.06	0%	0.21 (0.13-0.34)	<0.001	0%	1.88 (0.56-6.28)	0.31	0%	0.40 (0.28-0.58)	<0.001	7%
ALL	4	363/887	0.99 (0.72-1.36)	0.24	28%	1.42 (0.79-2.55)	0.24	0%	0.95 (0.70-1.31)	0.77	25%	1.38 (0.76-2.49)	0.29	0%	1.04 (0.84-1.28)	0.72	6%

Table 2. Meta-analysis of CYP2E1 Rsal/Pstl and MPO 463G>A polymorphisms on acute leukemia risk

N: number of studies; OR: odd ratio; CI: confidence interval; AML: acute myeloid leukemia; ALL: acute lymphoblastic leukemia. I^2 is the statistic that measure the degree of heterogeneity between studies. The pooled odd ratio and 95% CI in the article were either from fixed effects model or random effects model according to heterogeneity measured by I^2 statistics, with I^2 >50% indicating a significant heterogeneity existed between in studies.

Science, and Wanfang databases. After checking the abstracts and reviewing the full texts of possible studies, 14 individual case-control studies from 13 publications [24, 25, 27, 28, 31, 39-46] were finally included into the metaanalysis. However, no cohort study met our inclusion criteria. The details of study selection process are presented in the flow diagram (**Figure 1**). The 14 studies identified with 6,035 subjects (2,593 cases and 3,442 controls) were then read thoroughly to record the basic information, including AL subtypes, country of origin, ethnicity, the number of cases and controls of each study, with the detailed characteristics summarized in **Table 1**.

Overall, 7 studies [25, 31, 40-43, 45] focused on the association between AL risk and CYP2E1 Rsal/Pstl polymorphism, and 5 studies [27, 28, 39, 44, 46] targeted on that of MPO 463G>A polymorphism, while only one study [24] tried to explore the impact of both two gene variants on AL risk. In the total 14 studies, 6 studies focused on ALL patients [24, 25, 28, 40, 43], and 7 studies targeted at ALL and AML patients together [31, 39, 41, 42, 44-46], but only one article didn't specify the type of AL [27]. The controls were free of leukemia or any leukemia related diseases in all studies. As to ethnicity, 8 studies were conducted in Caucasian population [24, 25, 28, 31, 41-43] and 6 studies in Asian population [27, 39, 40, 44-46]. In term of the quality assessment of NOS. 7 studies were in high quality [24, 25, 31, 39, 41, 42] and 7 were in moderate quality [28, 39, 40, 43-46]. Genotype distributions among the controls were in agreement with HWE in all studies, except for three studies [39, 44, 46] (Table 1).

Meta-analysis

Pooling data in 8 studies which have examined the c2 carriers of the *CYP2E1* gene suggested a significant association between *CYP2E1* PstI polymorphism and elevated risk to AL under dominant model (OR=1.46, 95% CI=1.05-2.02, *P*=0.02), heterozygous model (OR=1.44, 95% CI=1.03-2.00, *P*=0.03), and allelic model (OR= 1.42, 95% CI=1.05-1.92, *P*=0.02) (**Table 2**; **Figure 2**). There was, however, no evidence for a relationship under homozygous and recessive model (**Table 2**). Additionally, subgroup analyses were performed to access the effects of different ethnics, leukemia subtypes and age groups. The result further indicated that there was a significant association between CYP2E1 c2 gene variants and increased risk of ALL (for dominant model, OR=1.45, 95% CI=1.03-2.06, P=0.04; for allelic model, OR=1.41, 95% CI=1.02-1.95, P=0.04), but no such relationship observed in AML population (Table 2). In ethnicity subgroup analysis, the Rsal/Pstl polymorphism of CYP2E1 significantly increased AL risk in Asian population when using dominant (OR=1.43, 95% CI=1.01-2.03, P=0.04) and allelic model analysis (OR=1.41, 95% CI=1.04-1.89, P=0.03), rather than in non-Asian population. Pooled data from 6 studies evaluating children leukemia [24, 25, 31, 40, 41, 43] provided evidence for an association between the variant and children AL risk under three main models (dominant model: OR=1.64, 95% CI=1.04-2.60, P=0.03; heterozygous model: OR=1.71, 95% CI=1.03-2.84, P=0.04; allelic model: OR=1.58, 95% CI=1.02-2.43, P=0.04) (Table 2).

6 studies have evaluated MPO 463G>A polymorphism as a risk factor for AL. Pooling data from the six studies showed that there was a significant association between MPO 463G>A polymorphism and attenuated AL risk under three genetic models (dominant model: OR= 0.62, 95% CI=0.46-0.84, P=0.002; heterozygous model: OR=0. 62, 95% CI=0.51-0.75, P< 0.001; allelic model: OR=0.75, 95% CI=0.61-0.93, P=0.007) (Table 2; Figure 2). There was evidence of population stratification in the study authored by Shi Xiu-E et al. with controls found deviating from HWE (P=0.003). Nevertheless, almost similar result was yielded excluding the study from the meta-analysis (Additional File 1). Subsequent stratified analysis by AL types suggested a relationship between this variant and AML, but not ALL (Table 2), though two studies excluding for analysis due to not specifying the types of AL [27, 39]. In another subgroup analysis, pooling data from four studies evaluating the effect of different ethnics provided a support for a significant association between MPO 463G>A polymorphism and elevated AL risk in Asian population, while no evidence of similar relationship in Caucasian population was observed in a pooled analysis of other two studies (Table 2).

Heterogeneity test

As showed in **Table 2**, We observed no significant heterogeneity across the studies either on

Genetic polymorphisms and acute leukemia risk

-
- ^
_

A	cas	e.	Contr	ol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
4.1.1 MPO							
Jia 2012	50	150	78	150	8.0%	0.46 [0.29, 0.74]	- -
Krajinovic(MPO) 2002	64	169	125	337	8.5%	1.03 [0.71, 1.51]	+-
Shi 2010	31	100	54	100	7.2%	0.38 [0.21, 0.68]	_
Silva 2010	53	124	141	300	8.3%	0.84 [0.55, 1.28]	
Zhang 2007	41	135	79	187	8.0%	0.60 [0.37, 0.95]	
Zhu 2006	52	139	74	139	7.9%	0.53 [0.33, 0.85]	
Subtotal (95% CI)		817		1213	47.8%	0.62 [0.46, 0.84]	•
Total events	291		551				
Heterogeneity: Tau ² = 0.09; 0 Test for overall effect: Z = 3.0	Chi ² = 13. 4 (P = 0.0	31, df = 002)	5 (P = 0.	02); I² =	= 62%		
4.1.2 CYP2E1							
Aydin-Sayitoglu 2006	36	249	6	140	5.2%	3.77 [1.55, 9.20]	· · · · · · · · · · · · · · · · · · ·
Bolufer 2007	22	343	23	390	7.0%	1.09 [0.60, 2.00]	_ - _
Bonaventure 2012	26	488	36	536	7.6%	0.78 [0.46, 1.31]	
Canalle 2004	14	113	24	221	6.4%	1.16 [0.58, 2.34]	
Krajinovic (CYP2E1) 2002	14	174	9	302	5.4%	2.85 [1.21, 6.73]	
Ulusoy 2007	12	168	8	207	5.1%	1.91 [0.76, 4.80]	+
Wang 2014	40	91	91	283	7.8%	1.65 [1.02, 2.68]	
XI 2011	45	150	39	150	7.7%	1.22 [0.74, 2.02]	
Subtotal (95% CI)		1776		2229	52.2%	1.46 [1.05, 2.02]	•
Total events	209		236				
Heterogeneity: Tau ² = 0.11; 0 Test for overall effect: Z = 2.2	Chi ² = 14. 5 (P = 0.0	31, df= 02)	7 (P = 0.	05); l² =	= 51%		
Total (95% CI)		2593		3442	100.0%	0.98 [0.73, 1.31]	•
Total events	500		787				
Heterogeneity: Tau ² = 0.23; 0	Chi² = 52.	84, df=	13 (P < 0	0.0000	1); l² = 75 ⁴	% -	
Test for overall effect: Z = 0.1	5 (P = 0.8	38)					
Test for subaroup difference	s: Chi ² =	13.81. (df = 1 (P =	= 0.000	2). I ² = 92	.8%	Favours (case) Favours (control)
B		_	Cant			Odda Datia	Odda Datia
B Stucks or Subgroup	cas Evente	e Total	Contr	rol Total	Moight	Odds Ratio	Odds Ratio
B Study or Subgroup	cas Events	e Total	Contr Events	rol Total	Weight	Odds Ratio M-H, Random, 95% Cl	Odds Ratio M-H, Random, 95% Cl
B Study or Subgroup 4.2.1 MPO	cas Events	e Total	Contr Events	rol <u>Total</u> 200	Weight	Odds Ratio M-H, Random, 95% Cl	Odds Ratio M-H, Random, 95% Cl
B <u>Study or Subgroup</u> 4.2.1 MPO Jia 2012 Kraijowic (MPO), 2002	cas Events 55 73	e <u>Total</u> 300	Contr Events 80	rol <u>Total</u> 300 674	Weight 8.5% 9.2%	Odds Ratio M-H, Random, 95% Cl 0.62 [0.42, 0.91]	Odds Ratio M-H, Random, 95% Cl
B <u>Study or Subgroup</u> 4.2.1 MPO Jia 2012 Krajinovic(MPO) 2002 Sbi 2010	cas Events 55 73	e Total 300 338 200	Contr Events 80 136 56	rol <u>Total</u> 300 674 200	Weight 8.5% 9.2% 7.7%	Odds Ratio <u>M-H, Random, 95% Cl</u> 0.62 [0.42, 0.91] 1.09 [0.79, 1.50] 0.60 [0.38, 0.96]	Odds Ratio M-H, Random, 95% Cl
B <u>Study or Subgroup</u> 4.2.1 MPO Jia 2012 Krajinovic(MPO) 2002 Shi 2010 Silva 2010	cas Events 55 73 38 60	e Total 300 338 200 248	Contr Events 80 136 56	Total 300 674 200 600	Weight 8.5% 9.2% 7.7% 9.0%	Odds Ratio M-H, Random, 95% Cl 0.62 [0.42, 0.91] 1.09 [0.79, 1.50] 0.60 [0.38, 0.96] 0.89 [0.63 1 2.6]	Odds Ratio M-H, Random, 95% Cl
B <u>Study or Subgroup</u> 4.2.1 MPO Jia 2012 Krajinovic(MPO) 2002 Shi 2010 Silva 2010 Zhang 2007	cas Events 55 73 38 60 43	e Total 300 338 200 248 270	Contr Events 80 136 56 158 84	rol Total 300 674 200 600 374	Weight 8.5% 9.2% 7.7% 9.0% 8.3%	Odds Ratio M-H, Random, 95% Cl 0.62 (0.42, 0.91) 1.09 (0.79, 1.50) 0.60 (0.38, 0.96) 0.89 (0.63, 1.26) 0.65 (0.44, 0.98)	Odds Ratio M-H, Random, 95% Cl
B <u>study or Subgroup</u> 4.2.1 MPO Jia 2012 Krajinovic(MPO) 2002 Shi 2010 Silva 2010 Zhang 2007 Zhu 2006	cas Events 55 73 38 60 43 57	e <u>Total</u> 300 338 200 248 270 278	Contr Events 80 136 56 158 84 79	Total 300 674 200 600 374 278	Weight 8.5% 9.2% 7.7% 9.0% 8.3% 8.5%	Odds Ratio M-H, Random, 95% Cl 0.62 (0.42, 0.91) 1.09 (0.79, 1.50) 0.60 (0.38, 0.96) 0.89 (0.63, 1.26) 0.65 (0.44, 0.98) 0.65 (0.44, 0.96)	Odds Ratio M-H, Random, 95% Cl
B <u>study or Subgroup</u> 4.2.1 MPO Jia 2012 Krajinovic(MPO) 2002 Shi 2010 Silva 2010 Zhang 2007 Zhu 2006 Subtotal (95% CI)	cas Events 55 73 38 60 43 57	e Total 300 338 200 248 270 278 1634	Contr Events 80 136 56 158 84 79	Total 300 674 200 600 374 278 2426	Weight 8.5% 9.2% 7.7% 9.0% 8.3% 8.5% 51.3%	Odds Ratio M-H, Random, 95% Cl 0.62 (0.42, 0.91) 1.09 (0.79, 1.50) 0.60 (0.38, 0.96) 0.89 (0.63, 1.26) 0.65 (0.44, 0.98) 0.65 (0.44, 0.96) 0.75 (0.61, 0.93)	Odds Ratio M-H, Random, 95% Cl
B <u>study or Subgroup</u> 4.2.1 MPO Jia 2012 Krajinovic(MPO) 2002 Shi 2010 Silva 2010 Zhang 2007 Zhu 2006 Subtotal (95% CI) Total events	cas Events 55 73 38 60 43 57 326	e 300 338 200 248 270 278 1634	Contr Events 80 136 56 158 84 79 593	Total 300 674 200 600 374 278 2426	Weight 8.5% 9.2% 7.7% 9.0% 8.3% 8.5% 51.3%	Odds Ratio M-H, Random, 95% Cl 0.62 (0.42, 0.91) 1.09 (0.79, 1.50) 0.60 (0.38, 0.96] 0.89 (0.63, 1.26) 0.65 (0.44, 0.98] 0.65 (0.44, 0.96] 0.75 (0.61, 0.93]	Odds Ratio M-H, Random, 95% Cl
B <u>Study or Subgroup</u> 4.2.1 MPO Jia 2012 Krajinovic(MPO) 2002 Shi 2010 Silva 2010 Zhang 2007 Zhu 2006 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = 0.03; (Test for overall effect: Z = 2.6	cas <u>Events</u> 55 73 38 60 43 57 326 Chi [≥] = 8.8 39 (P = 0.	e <u>Total</u> 300 338 200 248 270 278 1634 37, df = 1 007)	Contr Events 80 136 56 158 84 79 593 5 (P = 0.1	Total 300 674 200 600 374 278 2426 1); I ² =	Weight 8.5% 9.2% 7.7% 9.0% 8.3% 8.5% 51.3%	Odds Ratio M-H, Random, 95% Cl 0.62 [0.42, 0.91] 1.09 [0.79, 1.50] 0.60 [0.38, 0.96] 0.89 [0.63, 1.26] 0.65 [0.44, 0.98] 0.65 [0.44, 0.96] 0.75 [0.61, 0.93]	Odds Ratio M-H, Random, 95% Cl
B <u>Study or Subgroup</u> 4.2.1 MPO Jia 2012 Krajinovic(MPO) 2002 Shi 2010 Silva 2010 Zhang 2007 Zhu 2006 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = 0.03; 0 Test for overall effect: Z = 2.6 4.2.2 CYP2E1	cas <u>Events</u> 55 73 38 60 43 57 326 Chi ² = 8.8 39 (P = 0.	e <u>Total</u> 300 338 200 248 270 278 1634 37, df = 100 007)	Contr Events 80 136 56 158 84 79 593 5 (P = 0.1	Total 300 674 200 600 374 278 2426 1); I ² =	Weight 8.5% 9.2% 7.7% 9.0% 8.3% 8.5% 51.3%	Odds Ratio <u>M-H, Random, 95% Cl</u> 0.62 [0.42, 0.91] 1.09 [0.79, 1.50] 0.60 [0.38, 0.96] 0.89 [0.63, 1.26] 0.65 [0.44, 0.98] 0.65 [0.44, 0.96] 0.75 [0.61, 0.93]	Odds Ratio M-H, Random, 95% Cl
B <u>Study or Subgroup</u> 4.2.1 MPO Jia 2012 Krajinovic(MPO) 2002 Shi 2010 Silva 2010 Zhang 2007 Zhu 2006 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = 0.03; (Test for overall effect: Z = 2.6 4.2.2 CYP2E1 Avdin-Savitodu 2006	cas <u>Events</u> 55 73 38 60 43 57 326 Chi ² = 8.6 39 (P = 0. 36	e <u>Total</u> 300 338 200 248 270 278 1634 37, df = 007) 498	Contr Events 80 136 56 158 84 79 593 5 (P = 0.1	rol <u>Total</u> 300 674 200 600 374 278 2426 1); I ² =	Weight 8.5% 9.2% 7.7% 9.0% 8.3% 8.5% 51.3% 44%	Odds Ratio <u>M-H, Random, 95% Cl</u> 0.62 [0.42, 0.91] 1.09 [0.79, 1.50] 0.60 [0.38, 0.96] 0.89 [0.63, 1.26] 0.65 [0.44, 0.98] 0.65 [0.44, 0.96] 0.75 [0.61, 0.93] 3 56 [1 48, 8 55]	Odds Ratio M-H, Random, 95% Cl
Study or Subgroup 4.2.1 MPO Jia 2012 Krajinovic(MPO) 2002 Shi 2010 Silva 2010 Zhang 2007 Zhu 2006 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = 0.03; (Test for overall effect: Z = 2.6 4.2.2 CYP2E1 Aydin-Sayitoglu 2006 Bolufer 2007	cas <u>Events</u> 55 73 38 60 43 57 326 Chi ² = 8.6 39 (P = 0. 36 23	e <u>Total</u> 300 338 200 248 270 278 1634 37, df = 1 007) 498 686	Contu Events 80 136 56 158 84 79 593 5 (P = 0.1 6 23	Total 300 674 200 600 374 278 2426 1); I ² = 280 780	Weight 8.5% 9.2% 7.7% 9.0% 8.3% 8.5% 51.3% 44%	Odds Ratio <u>M-H, Random, 95% Cl</u> 0.62 [0.42, 0.91] 1.09 [0.79, 1.50] 0.60 [0.38, 0.96] 0.89 [0.63, 1.26] 0.65 [0.44, 0.98] 0.65 [0.44, 0.96] 0.75 [0.61, 0.93] 3.56 [1.48, 8.55] 1.14 [0.63, 2.05]	Odds Ratio M-H, Random, 95% Cl
B Study or Subgroup 4.2.1 MPO Jia 2012 Krajinovic(MPO) 2002 Shi 2010 Silva 2010 Zhang 2007 Zhu 2006 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = 0.03; (Test for overall effect: Z = 2.6 4.2.2 CYP2E1 Aydin-Sayitoglu 2006 Bolufer 2007 Bonaventure 2012	cas <u>Events</u> 55 73 38 60 43 57 326 Chi ² = 8.8 39 (P = 0. 36 23 26 23 26 23 26 23 26 23 26 26 23 26 23 26 26 26 26 26 26 26 26 26 26	e <u>Total</u> 300 338 200 248 270 278 1634 37, df = 007) 498 686 976	Contu Events 80 136 56 158 84 79 593 5 (P = 0.1 6 23 36	Total 300 674 200 600 374 278 2426 1); I ² = 280 780 1072	Weight 8.5% 9.2% 7.7% 9.0% 8.3% 8.5% 51.3% 44% 4.3% 6.5% 7.2%	Odds Ratio <u>M-H, Random, 95% Cl</u> 0.62 [0.42, 0.91] 1.09 [0.79, 1.50] 0.60 [0.38, 0.96] 0.89 [0.63, 1.26] 0.65 [0.44, 0.98] 0.65 [0.44, 0.98] 0.65 [0.44, 0.96] 0.75 [0.61, 0.93] 3.56 [1.48, 8.55] 1.14 [0.63, 2.05] 0.79 [0.47, 1.31]	Odds Ratio M-H, Random, 95% Cl
B Study or Subgroup 4.2.1 MPO Jia 2012 Krajinovic(MPO) 2002 Shi 2010 Silva 2010 Zhang 2007 Zhu 2006 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = 0.03; (Test for overall effect: Z = 2.6 4.2.2 CYP2E1 Aydin-Sayitoglu 2006 Bolufer 2007 Bonaventure 2012 Canalle 2004	cas <u>Events</u> 55 73 860 43 57 326 Chi ² = 8.8 9 (P = 0. 366 23 26 14	e <u>Total</u> 300 338 200 248 270 278 1634 37, df = : 007) 498 686 976 226	Contr Events 80 136 56 158 84 79 593 5 (P = 0.1 6 23 36 23 25	Total 300 674 200 600 374 278 2426 1); I ² = 280 780 1072 442	Weight 8.5% 9.2% 7.7% 9.0% 8.3% 8.5% 51.3% 44% 4.3% 6.5% 7.2% 5.7%	Odds Ratio <u>M-H, Random, 95% Cl</u> 1.09 [0.79, 1.50] 0.60 [0.38, 0.96] 0.89 [0.63, 1.26] 0.65 [0.44, 0.98] 0.65 [0.44, 0.98] 0.75 [0.61, 0.93] 3.56 [1.48, 8.55] 1.14 [0.63, 2.05] 0.79 [0.47, 1.31] 1.10 [0.56, 2.16]	Odds Ratio M-H, Random, 95% Cl
Study or Subgroup 4.2.1 MPO Jia 2012 Krajinovic(MPO) 2002 Shi 2010 Silva 2010 Zhang 2007 Zhu 2006 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = 0.03; (Test for overall effect: Z = 2.6 4.2.2 CYP2E1 Aydin-Sayitoglu 2006 Bolufer 2007 Bonaventure 2012 Canalle 2004 Krajinovic (CYP2E1) 2002	cas <u>Events</u> 55 73 38 60 43 57 326 Chi ² = 8.8 39 (P = 0. 366 23 26 14 14	e <u>Total</u> 300 338 200 248 270 278 1634 37, df = 1 007) 498 686 976 226 348	Contr Events 80 136 56 158 84 79 593 5 (P = 0.1 6 23 36 25 9	Total 300 674 200 600 374 278 2426 1); I ² = 280 780 1072 442 604	Weight 8.5% 9.2% 7.7% 9.0% 8.3% 8.5% 51.3% 44% 4.3% 6.5% 7.2% 5.7% 4.5%	Odds Ratio <u>M-H, Random, 95% Cl</u> 0.62 [0.42, 0.91] 1.09 [0.79, 1.50] 0.60 [0.38, 0.96] 0.89 [0.63, 1.26] 0.65 [0.44, 0.98] 0.65 [0.44, 0.98] 0.75 [0.61, 0.93] 3.56 [1.48, 8.55] 1.14 [0.63, 2.05] 0.79 [0.47, 1.31] 1.10 [0.56, 2.16] 2.77 [1.19, 6.47]	Odds Ratio M-H, Random, 95% Cl
BStudy or Subgroup4.2.1 MPOJia 2012Krajinovic(MPO) 2002Shi 2010Silva 2010Zhang 2007Zhu 2006Subtotal (95% Cl)Total eventsHeterogeneity: Tau ² = 0.03; (Test for overall effect: Z = 2.64.2.2 CYP2E1Aydin-Sayitoglu 2006Bolufer 2007Bonaventure 2012Canalle 2004Krajinovic (CYP2E1) 2002Ulusoy 2007	cas <u>Events</u> 55 73 38 60 43 57 326 Chi ² = 8.8 39 (P = 0. 366 23 26 14 14 14	e <u>Total</u> 300 338 200 248 270 278 1634 37, df = : 007) 498 686 976 226 348 336	Contr Events 80 136 56 158 84 79 593 5 (P = 0.1 6 23 36 25 9 8	rol <u>Total</u> 300 674 200 600 374 278 2426 1); ² = 280 780 1072 442 604 414	Weight 8.5% 9.2% 7.7% 9.0% 8.3% 8.5% 51.3% 44% 4.3% 6.5% 7.2% 5.7% 4.5% 4.1%	Odds Ratio M-H, Random, 95% Cl 0.62 [0.42, 0.91] 1.09 [0.79, 1.50] 0.60 [0.38, 0.96] 0.89 [0.63, 1.26] 0.65 [0.44, 0.98] 0.65 [0.44, 0.96] 0.75 [0.61, 0.93] 3.56 [1.48, 8.55] 1.14 [0.63, 2.05] 0.79 [0.47, 1.31] 1.10 [0.56, 2.16] 2.77 [1.19, 6.47] 1.88 [0.76, 4.65]	Odds Ratio M-H, Random, 95% Cl
BStudy or SubgroupJ.a 2012Krajinovic(MPO) 2002Shi 2010Silva 2010Zhang 2007Zhu 2006Subtotal (95% Cl)Total eventsHeterogeneity: Tau² = 0.03; (Test for overall effect: Z = 2.64.2.2 CYP2E1Aydin-Sayitoglu 2006Bolufer 2007Bonaventure 2012Canalle 2004Krajinovic (CYP2E1) 2002Ulusoy 2007Wang 2014	cas <u>Events</u> 55 73 38 60 43 57 326 Chi ² = 8.8 99 (P = 0. 36 23 26 14 14 12 45 57 326 23 26 23 26 23 26 23 26 23 26 23 26 23 26 23 26 23 26 23 26 23 26 27 27 26 27 27 26 27 27 27 27 27 27 27 27 27 27	e Total 300 338 200 248 270 278 1634 37, df = 007) 498 686 976 226 348 336 182	Contri Events 80 136 56 158 84 79 593 5 (P = 0.1 6 23 36 25 9 8 8 98	rol <u>Total</u> 300 674 200 600 374 278 2426 1); I ² = 280 780 1072 442 604 414 566	Weight 8.5% 9.2% 7.7% 9.0% 8.3% 8.5% 51.3% 44% 4.3% 6.5% 7.2% 5.7% 4.5% 4.1% 8.4%	Odds Ratio <u>M-H, Random, 95% Cl</u> 0.62 [0.42, 0.91] 1.09 [0.79, 1.50] 0.60 [0.38, 0.96] 0.89 [0.63, 1.26] 0.65 [0.44, 0.98] 0.65 [0.44, 0.96] 0.75 [0.61, 0.93] 3.56 [1.48, 8.55] 1.14 [0.63, 2.05] 0.79 [0.47, 1.31] 1.10 [0.56, 2.16] 2.77 [1.9, 6.47] 1.88 [0.76, 4.65] 1.57 [1.05, 2.34]	Odds Ratio M-H, Random, 95% CI
Study or Subgroup 4.2.1 MPO Jia 2012 Krajinovic(MPO) 2002 Shi 2010 Silva 2010 Zhang 2007 Zhu 2006 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = 0.03; 0 Test for overall effect: $Z = 2.6$ 4.2.2 CYP2E1 Aydin-Sayitoglu 2006 Bolufer 2007 Bonaventure 2012 Canalle 2004 Krajinovic (CYP2E1) 2002 Ulusoy 2007 Wang 2014 X1 2011	cas <u>Events</u> 55 73 38 60 43 57 326 Chi ² = 8.8 39 (P = 0. 36 23 26 14 14 12 45 50	e Total 300 338 200 248 270 278 1634 37, df = 007) 498 686 976 226 348 336 182 300	Contri Events 80 136 56 158 84 79 593 5 (P = 0.1 6 23 36 25 9 8 98 98 98 98 42	rol Total 300 674 200 600 374 278 2426 1); I ² = 280 780 1072 442 604 414 566 300	Weight 8.5% 9.2% 7.7% 9.0% 8.3% 8.5% 51.3% 44% 4.3% 6.5% 7.2% 5.7% 4.5% 4.5% 4.1% 8.4% 7.9%	Odds Ratio M-H, Random, 95% Cl 0.62 [0.42, 0.91] 1.09 [0.79, 1.50] 0.60 [0.38, 0.96] 0.89 [0.63, 1.26] 0.65 [0.44, 0.98] 0.65 [0.44, 0.96] 0.75 [0.61, 0.93] 3.56 [1.48, 8.55] 1.14 [0.63, 2.05] 0.79 [0.47, 1.31] 1.10 [0.56, 2.16] 2.77 [1.19, 6.47] 1.88 [0.76, 4.65] 1.57 [1.05, 2.34] 1.23 [0.79, 1.921]	Odds Ratio M-H, Random, 95% CI
B <u>Study or Subgroup</u> 4.2.1 MPO Jia 2012 Krajinovic(MPO) 2002 Shi 2010 Silva 2010 Zhang 2007 Zhu 2006 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.03; 0 Test for overall effect: Z = 2.6 4.2.2 CYP2E1 Aydin-Sayitoglu 2006 Bolufer 2007 Bonaventure 2012 Canalle 2004 Krajinovic (CYP2E1) 2002 Ulusoy 2007 Wang 2014 XI 2011 Subtotal (95% CI)	cas <u>Events</u> 55 73 38 60 43 57 326 Chi [≈] = 8.8 39 (P = 0. 36 23 26 14 14 12 45 50	e <u>Total</u> 300 338 200 248 270 278 1634 07, df = 007) 498 686 976 226 348 336 182 300 3552	Contre Events 80 136 56 158 84 79 593 5 (P = 0.1 6 23 36 25 9 8 98 98 42	rol Total 300 674 200 600 374 278 2426 1); I ² = 280 780 1072 442 604 414 566 300 4458	Weight 8.5% 9.2% 7.7% 9.0% 8.3% 8.5% 51.3% 44% 4.3% 6.5% 7.2% 5.7% 4.5% 4.5% 4.1% 8.4% 7.9% 8.4% 7.9% 48.7%	Odds Ratio M-H, Random, 95% Cl 0.62 [0.42, 0.91] 1.09 [0.79, 1.50] 0.60 [0.38, 0.96] 0.89 [0.63, 1.26] 0.65 [0.44, 0.98] 0.65 [0.44, 0.96] 0.75 [0.61, 0.93] 3.56 [1.48, 8.55] 1.14 [0.63, 2.05] 0.79 [0.47, 1.31] 1.10 [0.56, 2.16] 2.77 [1.19, 6.47] 1.88 [0.76, 4.65] 1.57 [1.05, 2.34] 1.23 [0.79, 1.92] 1.42 [1.05, 1.92]	Odds Ratio M-H, Random, 95% CI
B <u>Study or Subgroup</u> 4.2.1 MPO Jia 2012 Krajinovic(MPO) 2002 Shi 2010 Silva 2010 Zhang 2007 Zhu 2006 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.03; 0 Test for overall effect: Z = 2.6 4.2.2 CYP2E1 Aydin-Sayitoglu 2006 Bolufer 2007 Bonaventure 2012 Canalle 2004 Krajinovic (CYP2E1) 2002 Ulusoy 2007 Wang 2014 XI 2011 Subtotal (95% CI) Total events	cas <u>Events</u> 55 73 38 60 43 57 326 Chi ² = 8.8 39 (P = 0. 366 23 26 14 14 12 45 50 220	e Total 300 338 200 248 270 278 1634 37, df = 007) 498 686 976 226 348 336 182 300 3552	Contri Events 80 136 56 158 84 79 593 5 (P = 0.1 6 23 36 25 9 8 98 42 247	Total 300 674 200 600 374 278 2426 1); I² = 280 780 1072 442 604 414 566 300 4458	Weight 8.5% 9.2% 7.7% 9.0% 8.3% 8.5% 51.3% 44% 4.3% 6.5% 7.2% 5.7% 4.5% 4.1% 8.4% 7.9% 48.7%	Odds Ratio M-H, Random, 95% Cl 0.62 [0.42, 0.91] 1.09 [0.79, 1.50] 0.60 [0.38, 0.96] 0.89 [0.63, 1.26] 0.65 [0.44, 0.98] 0.65 [0.44, 0.96] 0.75 [0.61, 0.93] 3.56 [1.48, 8.55] 1.14 [0.63, 2.05] 0.79 [0.47, 1.31] 1.10 [0.56, 2.16] 2.77 [1.19, 6.47] 1.88 [0.76, 4.65] 1.57 [1.05, 2.34] 1.23 [0.79, 1.92] 1.42 [1.05, 1.92]	Odds Ratio M-H, Random, 95% CI
BStudy or Subgroup4.2.1 MPOJia 2012Krajinovic(MPO) 2002Shi 2010Silva 2010Zhang 2007Zhu 2006Subtotal (95% Cl)Total eventsHeterogeneity: Tau ² = 0.03; (Test for overall effect: $Z = 2.6$ 4.2.2 CYP2E1Aydin-Sayitoglu 2006Bolufer 2007Bonaventure 2012Canalle 2004Krajinovic (CYP2E1) 2002Ulusoy 2007Wang 2014Xl 2011Subtotal (95% Cl)Total eventsHeterogeneity: Tau ² = 0.09; (Test for overall effect: $Z = 2.2$	cas <u>Events</u> 55 73 38 60 43 57 326 Chi ² = 8.8 99 (P = 0. 36 23 26 14 14 12 455 50 220 Chi ² = 13 39 (P = 0.	e Total 300 248 270 278 1634 37, df = 007) 498 686 976 226 348 336 182 300 3552 .61, df = 02)	Contri Events 80 136 56 158 84 79 593 5 (P = 0.1 6 23 36 25 9 8 98 42 247 7 (P = 0	rol Total 300 674 200 600 374 278 2426 1); ² = 280 780 1072 442 604 414 566 300 4458 .06); ²	Weight 8.5% 9.2% 7.7% 9.0% 8.3% 8.5% 51.3% 44% 4.3% 6.5% 7.2% 5.7% 4.5% 4.1% 8.4% 8.4% 8.4% 8.4% 8.4% 8.4% 8.4% 8.4% 8.4% 8.4% 8.4% 8.4% 8.4% 8.4% 8.4% 8.5% 8.4% 8.4% 8.5% 8.4%	Odds Ratio M-H, Random, 95% Cl 0.62 [0.42, 0.91] 1.09 [0.79, 1.50] 0.60 [0.38, 0.96] 0.89 [0.63, 1.26] 0.65 [0.44, 0.98] 0.65 [0.44, 0.96] 0.75 [0.61, 0.93] 3.56 [1.48, 8.55] 1.14 [0.63, 2.05] 0.79 [0.47, 1.31] 1.10 [0.56, 2.16] 2.77 [1.19, 6.47] 1.88 [0.76, 4.66] 1.57 [1.05, 2.34] 1.23 [0.79, 1.92] 1.42 [1.05, 1.92]	Odds Ratio M-H, Random, 95% CI
B Study or Subgroup 4.2.1 MPO Jia 2012 Krajinovic(MPO) 2002 Shi 2010 Silva 2010 Zhang 2007 Zhu 2006 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.03; (Test for overall effect: $Z = 2.6$ 4.2.2 CYP2E1 Aydin-Sayitoglu 2006 Bolufer 2007 Bonaventure 2012 Canalle 2004 Krajinovic (CYP2E1) 2002 Ulusoy 2007 Wang 2014 X1 2011 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.09; (Test for overall effect: $Z = 2.2$	cas <u>Events</u> 55 73 38 60 43 57 326 Chi ² = 8.8 99 (P = 0. 36 23 26 14 14 12 45 50 220 Chi ² = 13 29 (P = 0.	e <u>Total</u> 300 338 200 248 270 278 1634 37, df = 007) 498 686 976 226 348 336 182 300 3552 .61, df = 02)	Contri Events 80 136 56 158 84 79 593 5 (P = 0.1 6 23 36 25 9 8 98 42 247 7 (P = 0	Total 300 674 200 674 200 600 374 278 2426 11); ² = 280 780 1072 442 604 414 566 300 4458 .06); ²	Weight 8.5% 9.2% 7.7% 9.0% 8.3% 8.5% 51.3% 44% 4.3% 6.5% 7.2% 5.7% 4.5% 4.5% 4.1% 8.4% 8.4% 8.4% 8.4% 8.4% 1.0% 8.4% 1.0% 8.4% 1.0%	Odds Ratio M-H, Random, 95% Cl 0.62 [0.42, 0.91] 1.09 [0.79, 1.50] 0.60 [0.38, 0.96] 0.89 [0.63, 1.26] 0.65 [0.44, 0.98] 0.65 [0.44, 0.96] 0.75 [0.61, 0.93] 3.56 [1.48, 8.55] 1.14 [0.63, 2.05] 0.79 [0.47, 1.31] 1.10 [0.56, 2.16] 2.77 [1.19, 6.47] 1.88 [0.76, 4.65] 1.57 [1.05, 2.34] 1.23 [0.79, 1.92] 1.42 [1.05, 1.92]	Odds Ratio M-H, Random, 95% CI
BStudy or Subgroup4.2.1 MPOJia 2012Krajinovic(MPO) 2002Shi 2010Silva 2010Zhang 2007Zhu 2006Subtotal (95% CI)Total eventsHeterogeneity: Tau ² = 0.03; (Test for overall effect: $Z = 2.6$ 4.2.2 CYP2E1Aydin-Sayitoglu 2006Bolufer 2007Bonaventure 2012Canalle 2004Krajinovic (CYP2E1) 2002Ulusoy 2007Wang 2014X1 2011Subtotal (95% CI)Total eventsHeterogeneity: Tau ² = 0.09; (Test for overall effect: $Z = 2.2$ Total (95% CI)Total events	cas <u>Events</u> 55 73 38 60 43 57 326 Chi ² = 8.8 39 (P = 0. 36 23 26 14 14 12 45 50 220 Chi ² = 13 29 (P = 0.	e <u>Total</u> 300 338 200 248 270 278 1634 07, df = 007) 498 686 976 226 348 336 182 300 3552 .61, df = 02) 5186	Contri Events 80 136 56 158 84 79 593 5 (P = 0.1 6 23 36 25 9 8 42 247 7 (P = 0	Total 300 674 200 674 200 600 374 278 2426 1); ² = 280 780 1072 442 604 456 3000 4458 .06); ² 6884	Weight 8.5% 9.2% 7.7% 9.0% 8.3% 8.5% 51.3% 44% 4.3% 6.5% 7.2% 5.7% 4.5% 4.5% 4.1% 8.4% 7.9% 8.4% 7.9% 48.7% = 49% 100.0%	Odds Ratio M-H, Random, 95% Cl 0.62 [0.42, 0.91] 1.09 [0.79, 1.50] 0.60 [0.38, 0.96] 0.89 [0.63, 1.26] 0.65 [0.44, 0.98] 0.65 [0.44, 0.96] 0.75 [0.61, 0.93] 3.56 [1.48, 8.55] 1.14 [0.63, 2.05] 0.79 [0.47, 1.31] 1.10 [0.56, 2.16] 2.77 [1.9, 6.47] 1.88 [0.76, 4.65] 1.57 [1.05, 2.34] 1.23 [0.79, 1.92] 1.42 [1.05, 1.92] 1.02 [0.81, 1.29]	Odds Ratio M-H, Random, 95% CI
BStudy or Subgroup4.2.1 MPOJia 2012Krajinovic(MPO) 2002Shi 2010Silva 2010Zhang 2007Zhu 2006Subtotal (95% CI)Total eventsHeterogeneity: Tau ² = 0.03; (Test for overall effect: $Z = 2.6$ 4.2.2 CYP2E1Aydin-Sayitoglu 2006Bolufer 2007Bonaventure 2012Canalle 2004Krajinovic (CYP2E1) 2002Ulusoy 2007Wang 2014X1 2011Subtotal (95% CI)Total eventsHeterogeneity: Tau ² = 0.09; (Test for overall effect: $Z = 2.2$ Total (95% CI)Total eventsHeterogeneity: Tau ² = 0.42; (cas <u>Events</u> 55 73 38 60 43 57 326 Chi ² = 8.6 39 (P = 0. 36 23 26 14 14 12 45 50 220 Chi ² = 13 29 (P = 0. 5466	e <u>Total</u> 300 338 200 248 270 278 1634 07, df = 007) 498 686 976 226 348 336 182 300 3552 .61, df = 02) 5186 41 effe	Contri Events 80 136 56 158 84 79 593 5 (P = 0.1 6 23 36 25 9 8 42 247 7 (P = 0 247 7 (P = 0	Total 300 674 200 600 374 278 2426 1); ² = 280 780 1072 442 604 414 566 3000 4458 .06); ² 6884 0.0024	Weight 8.5% 9.2% 7.7% 9.0% 8.3% 8.5% 51.3% 44% 4.3% 6.5% 7.2% 5.7% 4.5% 4.5% 4.5% 4.5% 4.5% 4.1% 8.4% 7.9% 100.0% 100.0%	Odds Ratio M-H, Random, 95% Cl 0.62 [0.42, 0.91] 1.09 [0.79, 1.50] 0.60 [0.38, 0.96] 0.89 [0.63, 1.26] 0.65 [0.44, 0.98] 0.65 [0.44, 0.96] 0.75 [0.61, 0.93] 3.56 [1.48, 8.55] 1.14 [0.63, 2.05] 0.79 [0.47, 1.31] 1.10 [0.56, 2.16] 2.77 [1.19, 6.47] 1.88 [0.76, 4.66] 1.57 [1.05, 2.34] 1.23 [0.79, 1.92] 1.42 [1.05, 1.92] 1.02 [0.81, 1.29]	Odds Ratio M-H, Random, 95% CI
B Study or Subgroup 4.2.1 MPO Jia 2012 Krajinovic(MPO) 2002 Shi 2010 Silva 2010 Zhang 2007 Zhu 2006 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.03; (Test for overall effect: $Z = 2.6$ 4.2.2 CYP2E1 Aydin-Sayitoglu 2006 Bolufer 2007 Bonaventure 2012 Canalle 2004 Krajinovic (CYP2E1) 2002 Ulusoy 2007 Wang 2014 XI 2011 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.09; (Test for overall effect: $Z = 2.2$ Total (95% CI) Total events Heterogeneity: Tau ² = 0.12; (Test for overall effect: $Z = 0.12$; (Test for overall effect: $Z = 0.12$; (cas <u>Events</u> 55 73 38 60 43 57 326 Chi [≠] = 8.6 39 (P = 0. 36 23 26 14 14 12 50 220 Chi [≠] = 13 29 (P = 0. 546 Chi [≠] = 4 9 (P = 0.	e <u>Total</u> 300 338 200 248 270 278 1634 97, df = 007) 498 686 976 226 348 336 182 300 3552 .61, df = 02) 5186 .41, df =	Contri Events 80 136 56 158 84 79 5 (P = 0.1 6 23 36 25 9 8 8 42 247 5 (P = 0 247 5 (P = 0 247 5 (P = 0 247 5 (P = 0) 247 5 (P =	rol Total 300 674 200 600 374 278 2426 1); I ² = 280 780 1072 442 604 414 566 300 4458 .06); I ² 6884 0.0001	Weight 8.5% 9.2% 7.7% 9.0% 8.3% 8.5% 51.3% 44% 4.3% 6.5% 7.2% 5.7% 4.5% 4.1% 8.7% = 49% 100.0%); I ² = 699	Odds Ratio M.H, Random, 95% Cl 0.62 [0.42, 0.91] 1.09 [0.79, 1.50] 0.60 [0.38, 0.96] 0.89 [0.63, 1.26] 0.65 [0.44, 0.98] 0.65 [0.44, 0.96] 0.75 [0.61, 0.93] 3.56 [1.48, 8.55] 1.14 [0.63, 2.05] 0.79 [0.47, 1.31] 1.10 [0.56, 2.16] 2.77 [1.19, 6.47] 1.88 [0.76, 4.65] 1.57 [1.05, 2.34] 1.23 [0.79, 1.92] 1.42 [1.05, 1.92] 1.02 [0.81, 1.29]	Odds Ratio M-H, Random, 95% CI

Figure 2. Forest plots of meta-analysis of CYP2E1 Rsal/Pstl and MPO 463G>A Polymorphisms on risk of acute leukemia. A: Dominant model; B: Allelic model.

CYP2E1 Rsal/Pstl polymorphism or MPO 463G>A polymorphism with AL risk under recessive and homozygous model (P>0.10 and l^2 <50%) and the fixed-effects model was applied to calculate the pooled ORs. However, in other three genetic models, heterogeneity was demonstrated (P<0.10 or l^2 >50%), so the random-effects model was subsequently adopted for the meta-analysis. Attempts were made to explore the sources of between-study heterogeneity by subgroup analysis, and the results showed ethnicity, age groups and types of AL were the key factors that affected the homogeneity (**Table 2**).

Publication bias

In this analysis, we tested funnel plot asymmetry using both Begg's and Egger's tests in a comparison model of the carrier status (carriers vs wild-type) for CYP2E1 c2 allele (P values of 0.048 and 0.048, respectively) and MPO 463G>A variant (P values of 0.851 and 0.951, respectively) individually. The results, however, revealed evidence of publication bias for CYP2E1 Pstl allelic variants, indicating our results concerning relationship between CYP2E1 Pstl polymorphism and elevated AL risk may not be robust due to a relatively high false positive result reported in the 8 studies included for the analysis. No evidence of publication bias was observed in the analysis of MPO 463G>A polymorphism on risk of AL (Additional File 2).

Discussion

Acute leukemia is still a huge threat to human health worldwide, despite advances in survival and quality of life have been achieved due to improved modern chemotherapy for the diseases [1, 47]. Though substantial efforts were involved in, the exact causes of AL remain unclear. However, most studies agree on a combined risk from the environmental and genetic factors altogether [3, 4]. Many environmental carcinogens contribute to the leukemogenesis, among which benzene is one ubiquitous occupational hematotoxin and leukemogen that clearly identified by IARC [10, 48]. Last decades, emerging epidemiologic investigations have revealed several genetic variants as risk factors for AL, highlighting a new sight for leukemia pathogenesis and etiology research. Considering potential role of allelic variants of genes for xenobiotic-metabolizing enzymes in the susceptibility to AL, we carried out a meta-analysis targeting two gene polymorphisms (CYP2E1 Rsal/Pstl and MPO 463G>A). in an attempt to better define the association between polymorphism in genes encoding for environmental carcinogens bioactivation enzymes and risk of AL. As previous studies [24, 25, 27, 28, 31, 39-46] focusing on the relationship between these two single nucleotide polymorphisms (SNPs) and AL risk reported conflicting results, our study aim to provide more reliable results by combining analysis of all these studies and in a larger sample size (1776 cases and 2,229 controls for CYP2E1 Rsal/ Pstl polymorphism, 817 cases and 1,213 controls for MPO 463G>A polymorphism).

In the present meta-analysis, we found evidence supporting for a significant association between Rsal/Pstl polymorphism of CYP2E1 and elevated AL risk under three main comparison models (allelic, heterozygous and dominant), which is consistent with evidence suggesting that CYP2E1 Rsal/Pstl polymorphism was associated with increased transcriptional activity, thus enhancing ability to activate carcinogens [23]. Additionally, similar conclusion has been concluded for children acute lymphoblastic leukemia in previous meta-analysis under heterozygous and dominant models [30]. The SNPs on the CYP2E1 promoter region were too complicated, here we only studied CYP2E1 Rsal/Pstl polymorphism, covering two SNPs (Rsal/C-1055T/rs2031920; Pstl/G-1295C/rs3813867), which are both located in the 5'-flanking region of the gene and most frequently investigated as a factor of human carcinogenesis [21, 22]. A case-control study revealed the c2 allele carriers of the CYP2E1 gene significantly increased the risk of benzene poisoning when combined with other SNPs in genes involved in benzene metabolism [49], providing us a hint for exploring a potential role of the SNPs in leukemogenesis. Moreover, subgroup analyses by ethnicity and AL types, mainly AML and ALL, suggested a relationship between CYP2E1 Pstl polymorphism and increased ALL risk, especially in Asian population. In addition, stratified studies by age groups further showed that children carrying CYP2E1 c2 genotypes were at higher risk of AL. However, these data should be interpreted with cautions as the association may not be robust with a potential publication bias.

As another important phase I metabolizing enzymes, MPO is involved in oxidative stress response to environmental carcinogens, such as benzene [26]. Differing from CYP2E1 Rsal/ Pstl polymorphism, a single G to A transition at position 463 in the promoter region of the MPO gene can abolish the binding site for the SP1 transcription factor, resulting in reduced gene expression [18]. Interestingly, statistically significant association was observed between MPO 463G>A and attenuated AL risk for dominant, heterozygous and allelic models in our analyses. Similar relationship of the MPO genetic variant with other cancers and disorders were demonstrated [50-53]. Additionally, we further demonstrated that people in Asian ethnic bearing MPO 463G>A variant are more susceptible to AL, especially AML, in the subsequent subgroup analysis. However, our analyses provide no evidence for relationship between MPO 463G>A variant and risk of AL in Caucasians.

Nevertheless, some limitations should be noted to better understand the current findings. Firstly, limited number of eligible studies made us unable to provide sufficient sample size in the analysis, especially for subgroup analyses, and may thus weaken the statistical power to draw conclusions upon the effect of these two polymorphisms on AL risk. And some studies included for our analysis failed to specify leukemia types [27, 39] and age groups [39, 42, 44, 46] simply aggravated the problems. In this respect, more well-designed molecular epidemiologic studies with large sample size and more precise estimation of impact of CYP2E1 Rsal/Pstl and MPO 463G> A polymorphisms on AL risk are required to confirm these findings. Secondly, we observed obvious publication bias in the analysis of CYP2E1 c2 variant under the dominant model. so conclusions drawn upon the relationship concerning CYP2E1 Rsal/Pstl with risk of AL may not be robust and should be interpreted with some cautions. Thirdly, heterogeneity that may arise from differences in leukemia types, age groups and ethnicity in the studies was detected in the present meta- analysis. Finally, we didn't, however, incorporate the effect of the two genetic alleles on AL risk for lacking sufficient data to permit the assessment of interaction effect. Nevertheless, it might be worthwhile to investigate the interaction relationship of the two polymorphisms with AL risk in further studies since both CYP2E1 and MPO are phase I metabolizing enzymes, involved in benzene metabolism and bioactivation. In brief, the systematic review of literatures focusing on association between AL and genetic polymorphisms suggested that CYP2E1 Rsal/Pstl polymorphism is associated with increased riskof AL, while MPO 463G>A may have a protective function against individual susceptibility to AL underdominant, heterozygous and allelic models, respectively. Additional studies covering a large number of samples with different age groups and ethnic origins are warranted to validate the results and to facilitate a further understanding of the pathogenesis underlying acute leukemia.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 81102104 and No. 81372961, www.nsfc.gov. cn). The authors extend a sincere thank-you to all members in Professor Yongyi Bi's laboratory in Wuhan University for their valuable assistances.

Disclosure of conflict of interest

None.

Address correspondence to: Dr. Hong Wang, Department of Occupational and Environmental Health, School of Health Sciences, Wuhan University, Donghu Road 115, Wuhan 430071, P. R. China. Tel: +86-027-68759817; E-mail: wanghong@whu.edu. cn

References

Lozano R, Naghavi M, Foreman K, Lim S, [1] Shibuya K, Aboyans V, Abraham J, Adair T, Aggarwal R, Ahn SY, Alvarado M, Anderson HR, Anderson LM, Andrews KG, Atkinson C, Baddour LM, Barker-Collo S, Bartels DH, Bell ML, Benjamin EJ, Bennett D, Bhalla K, Bikbov B, Bin Abdulhak A, Birbeck G, Blyth F, Bolliger I, Boufous S, Bucello C, Burch M, Burney P, Carapetis J, Chen H, Chou D, Chugh SS, Coffeng LE, Colan SD, Colquhoun S, Colson KE, Condon J, Connor MD, Cooper LT, Corriere M, Cortinovis M, de Vaccaro KC, Couser W, Cowie BC, Criqui MH, Cross M, Dabhadkar KC, Dahodwala N, De Leo D, Degenhardt L, Delossantos A, Denenberg J, Des Jarlais DC, Dharmaratne SD, Dorsey ER, Driscoll T, Duber H, Ebel B, Erwin PJ, Espindola P, Ezzati M, Feigin V, Flaxman AD, Forouzanfar MH, Fowkes FG, Franklin R, Fransen M, Freeman MK, Gabriel SE, Gakidou E, Gaspari F, Gillum RF, Gonzalez-Medina D, Halasa YA, Haring D, Harrison JE, Havmoeller R, Hay RJ, Hoen B, Hotez PJ, Hoy D, Jacobsen KH, James SL, Jasrasaria R, Jayaraman S, Johns N, Karthikeyan G, Kassebaum N, Keren A, Khoo JP, Knowlton LM, Kobusingye O, Koranteng A, Krishnamurthi R, Lipnick M, Lipshultz SE, Ohno SL, Mabweijano J, MacIntyre MF, Mallinger L, March L, Marks GB, Marks R, Matsumori A, Matzopoulos R, Mayosi BM, McAnulty JH, McDermott MM, McGrath J, Mensah GA, Merriman TR, Michaud C, Miller M, Miller TR, Mock C, Mocumbi AO, Mokdad AA, Moran A, Mulholland K, Nair MN, Naldi L, Narayan KM, Nasseri K, Norman P, O'Donnell M, Omer SB, Ortblad K, Osborne R, Ozgediz D, Pahari B, Pandian JD, Rivero AP, Padilla RP, Perez-Ruiz F, Perico N, Phillips D, Pierce K, Pope CA 3rd, Porrini E, Pourmalek F, Raju M, Ranganathan D, Rehm JT, Rein DB, Remuzzi G, Rivara FP, Roberts T, De Leon FR, Rosenfeld LC, Rushton L, Sacco RL, Salomon JA, Sampson U, Sanman E, Schwebel DC, Segui-Gomez M, Shepard DS, Singh D, Singleton J, Sliwa K, Smith E, Steer A, Taylor JA, Thomas B, Tleyjeh IM, Towbin JA, Truelsen T, Undurraga EA, Venketasubramanian N, Vijayakumar L, Vos T, Wagner GR, Wang M, Wang W, Watt K, Weinstock MA, Weintraub R, Wilkinson JD, Woolf AD, Wulf S, Yeh PH, Yip P, Zabetian A, Zheng ZJ, Lopez AD, Murray CJ, AlMazroa MA and Memish ZA. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; 380: 2095-2128.

- [2] http://www.cancer.org/research/cancerfactsstatistics/cancerfactsfigures2015/index.
- [3] Severson RK and Ross JA. The causes of acute leukemia. Curr Opin Oncol 1999; 11: 20-24.
- [4] Whyatt RM and Perera FP. Application of biologic markers to studies of environmental risks in children and the developing fetus. Environ Health Perspect 1995; 103 Suppl 6: 105-110.
- [5] Yin SN, Hayes RB, Linet MS, Li GL, Dosemeci M, Travis LB, Li CY, Zhang ZN, Li DG, Chow WH, Wacholder S, Wang YZ, Jiang ZL, Dai TR, Zhang WY, Chao XJ, Ye PZ, Kou QR, Zhang XC, Lin XF, Meng JF, Ding CY, Zho JS and Blot WJ. A cohort study of cancer among benzene-exposed workers in China: overall results. Am J Ind Med 1996; 29: 227-235.
- [6] Huff J. Benzene-induced cancers: abridged history and occupational health impact. Int J Occup Environ Health 2007; 13: 213-221.

- [7] Infante PF, Rinsky RA, Wagoner JK and Young RJ. Leukaemia in benzene workers. Lancet 1977; 2: 76-78.
- [8] Infante PF and White MC. Projections of leukemia risk associated with occupational exposure to benzene. Am J Ind Med 1985; 7: 403-413.
- [9] Snyder R. Recent developments in the understanding of benzene toxicity and leukemogenesis. Drug Chem Toxicol 2000; 23: 13-25.
- [10] Tomatis L. IARC benzene report. Science 1982; 218: 214.
- [11] Koop DR, Laethem CL and Schnier GG. Identification of ethanol-inducible P450 isozyme 3a (P450IIE1) as a benzene and phenol hydroxylase. Toxicol Appl Pharmacol 1989; 98: 278-288.
- [12] Valentine JL, Lee SS, Seaton MJ, Asgharian B, Farris G, Corton JC, Gonzalez FJ and Medinsky MA. Reduction of benzene metabolism and toxicity in mice that lack CYP2E1 expression. Toxicol Appl Pharmacol 1996; 141: 205-213.
- [13] Smith MT, Yager JW, Steinmetz KL and Eastmond DA. Peroxidase-dependent metabolism of benzene's phenolic metabolites and its potential role in benzene toxicity and carcinogenicity. Environ Health Perspect 1989; 82: 23-29.
- [14] Subrahmanyam VV, Kolachana P and Smith MT. Hydroxylation of phenol to hydroquinone catalyzed by a human myeloperoxidase-superoxide complex: possible implications in benzene-induced myelotoxicity. Free Radic Res Commun 1991; 15: 285-296.
- [15] Schattenberg DG, Stillman WS, Gruntmeir JJ, Helm KM, Irons RD and Ross D. Peroxidase activity in murine and human hematopoietic progenitor cells: potential relevance to benzeneinduced toxicity. Mol Pharmacol 1994; 46: 346-351.
- [16] Irons RD and Stillman WS. Impact of benzene metabolites on differentiation of bone marrow progenitor cells. Environ Health Perspect 1996; 104 Suppl 6: 1247-1250.
- [17] Kolachana P, Subrahmanyam VV, Meyer KB, Zhang L and Smith MT. Benzene and its phenolic metabolites produce oxidative DNA damage in HL60 cells in vitro and in the bone marrow in vivo. Cancer Res 1993; 53: 1023-1026.
- [18] Piedrafita FJ, Molander RB, Vansant G, Orlova EA, Pfahl M and Reynolds WF. An Alu element in the myeloperoxidase promoter contains a composite SP1-thyroid hormone-retinoic acid response element. J Biol Chem 1996; 271: 14412-14420.
- [19] Puga A, Nebert DW, McKinnon RA and Menon AG. Genetic polymorphisms in human drugmetabolizing enzymes: potential uses of reverse genetics to identify genes of toxicological relevance. Crit Rev Toxicol 1997; 27: 199-222.

- [20] Rothman N, Smith MT, Hayes RB, Traver RD, Hoener B, Campleman S, Li GL, Dosemeci M, Linet M, Zhang L, Xi L, Wacholder S, Lu W, Meyer KB, Titenko-Holland N, Stewart JT, Yin S and Ross D. Benzene poisoning, a risk factor for hematological malignancy, is associated with the NQ01 609C->T mutation and rapid fractional excretion of chlorzoxazone. Cancer Res 1997; 57: 2839-2842.
- [21] Daly AK, Fairbrother KS and Smart J. Recent advances in understanding the molecular basis of polymorphisms in genes encoding cytochrome P450 enzymes. Toxicol Lett 1998; 102-103: 143-147.
- [22] Guengerich FP and Shimada T. Oxidation of toxic and carcinogenic chemicals by human cytochrome P-450 enzymes. Chem Res Toxicol 1991; 4: 391-407.
- [23] Hayashi S, Watanabe J and Kawajiri K. Genetic polymorphisms in the 5'-flanking region change transcriptional regulation of the human cytochrome P450IIE1 gene. J Biochem 1991; 110: 559-565.
- [24] Krajinovic M, Sinnett H, Richer C, Labuda D and Sinnett D. Role of NQ01, MPO and CYP2E1 genetic polymorphisms in the susceptibility to childhood acute lymphoblastic leukemia. Int J Cancer 2002; 97: 230-236.
- [25] Canalle R, Burim RV, Tone LG and Takahashi CS. Genetic polymorphisms and susceptibility to childhood acute lymphoblastic leukemia. Environ Mol Mutagen 2004; 43: 100-109.
- [26] Kettle AJ and Winterbourn CC. Oxidation of hydroquinone by myeloperoxidase. Mechanism of stimulation by benzoquinone. J Biol Chem 1992; 267: 8319-8324.
- [27] Zhang J, Zhu FY, Pu YP, Yin LH, Luo J, Wang WP and Zhou GH. Analysis of multiple single nucleotide polymorphisms (SNPs) of myeloperoxidase (MPO) to screen for genetic markers associated with acute leukemia in Chinese Han population. J Toxicol Environ Health A 2007; 70: 901-907.
- [28] Silveira Vda S, Canalle R, Scrideli CA, Queiroz RG and Tone LG. Role of the CYP2D6, EPHX1, MPO, and NQ01 genes in the susceptibility to acute lymphoblastic leukemia in Brazilian children. Environ Mol Mutagen 2010; 51: 48-56.
- [29] Chu H, Wang M, Wang M, Gu D, Wu D, Zhang Z, Tang J and Zhang Z. The MPO -463G>A polymorphism and cancer risk: a meta-analysis based on 43 case-control studies. Mutagenesis 2010; 25: 389-395.
- [30] Vijayakrishnan J and Houlston RS. Candidate gene association studies and risk of childhood acute lymphoblastic leukemia: a systematic review and meta-analysis. Haematologica 2010; 95: 1405-1414.
- [31] Bonaventure A, Goujon-Bellec S, Rudant J, Orsi L, Leverger G, Baruchel A, Bertrand Y, Nelken

B, Pasquet M, Michel G, Sirvent N, Bordigoni P, Ducassou S, Rialland X, Zelenika D, Hemon D and Clavel J. Maternal smoking during pregnancy, genetic polymorphisms of metabolic enzymes, and childhood acute leukemia: the ESCALE study (SFCE). Cancer Causes Control 2012; 23: 329-345.

- [32] Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 2010; 25: 603-605.
- [33] Hardy GH. Mendelian Proportions in a Mixed Population. Science 1908; 28: 49-50.
- [34] Cochran WG. The comparison of percentages in matched samples. Biometrika 1950; 37: 256-266.
- [35] Mantel N and Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 1959; 22: 719-748.
- [36] DerSimonian R and Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986; 7: 177-188.
- [37] Egger M, Davey Smith G, Schneider M and Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997; 315: 629-634.
- [38] Begg CB and Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994; 50: 1088-1101.
- [39] Fangyan Z. Relationship between polymorphisms of MPO and NAT2and susceptibility of adult acute leukemia in Chinese aclult population. Chin J Public Health 2006; 22: 584-586.
- [40] Shu-mei W, Lu-lu S and ZW-x. Associations between cytochrome P4502E1 genetic polymorphisms with the risk to develop acute lymphoblastic leukemia and serum concentrations of methotrexate. The Chinese Journal of Clinical Pharmacology 2014; 30: 773-775,779.
- [41] Aydin-Sayitoglu M, Hatirnaz O, Erensoy N and Ozbek U. Role of CYP2D6, CYP1A1, CYP2E1, GSTT1, and GSTM1 genes in the susceptibility to acute leukemias. Am J Hematol 2006; 81: 162-170.
- [42] Bolufer P, Collado M, Barragan E, Cervera J, Calasanz MJ, Colomer D, Roman-Gomez J and Sanz MA. The potential effect of gender in combination with common genetic polymorphisms of drug-metabolizing enzymes on the risk of developing acute leukemia. Haematologica 2007; 92: 308-314.
- [43] Ulusoy G, Adali O, Tumer TB, Sahin G, Gozdasoglu S and Arinc E. Significance of genetic polymorphisms at multiple loci of CYP2E1 in the risk of development of childhood acute lymphoblastic leukemia. Oncology 2007; 72: 125-131.
- [44] Xi YM, Shi XE, Li P, Zhang H, Li M, Liu B, Yao XJ and Xu JW. Relationship between polymor-

phisms of myeloperoxidase gene and susceptibility of acute leukemia in Chinese Gansu population. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2010; 18: 1431-1434.

- [45] Xi YM, Shi XE, Zhang H, Jia MF, Li M, Li P, Xu JW, Ma HZ and Yao XJ. Relation of GSTP1 and CYP2E1 polymorphisms with susceptibility to acute leukemia. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2011; 19: 589-593.
- [46] Jia MF, Xi YM, Shi XE, Zhang H, Deng W, Li M, Li P, Xu JW, Ma HZ and Yao XJ. [Relationship of MPO and NQO1 gene polymorphisms with susceptibility to acute leukemia]. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2012; 20: 1336-1340.
- [47] Conter V, Arico M, Basso G, Biondi A, Barisone E, Messina C, Parasole R, De Rossi G, Locatelli F, Pession A, Santoro N, Micalizzi C, Citterio M, Rizzari C, Silvestri D, Rondelli R, Lo Nigro L, Ziino O, Testi AM, Masera G, Valsecchi MG; Associazione Italiana di Ematologia ed Oncologia Pediatrica. Long-term results of the Italian Association of Pediatric Hematology and Oncology (AIEOP) Studies 82, 87, 88, 91 and 95 for childhood acute lymphoblastic leukemia. Leukemia 2010; 24: 255-264.
- [48] Baan R, Grosse Y, Straif K, Secretan B, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, Guha N, Freeman C, Galichet L, Cogliano V; WHO International Agency for Research on Cancer Monograph Working Group. A review of human carcinogens-Part F: chemical agents and related occupations. Lancet Oncol 2009; 10: 1143-1144.

- [49] Wan J, Shi J, Hui L, Wu D, Jin X, Zhao N, Huang W, Xia Z and Hu G. Association of genetic polymorphisms in CYP2E1, MPO, NQ01, GSTM1, and GSTT1 genes with benzene poisoning. Environ Health Perspect 2002; 110: 1213-1218.
- [50] Leininger-Muller B, Hoy A, Herbeth B, Pfister M, Serot JM, Stavljenic-Rukavina M, Massana L, Passmore P, Siest G and Visvikis S. Myeloperoxidase G-463A polymorphism and Alzheimer's disease in the ApoEurope study. Neurosci Lett 2003; 349: 95-98.
- [51] Kiyohara C, Yoshimasu K, Takayama K and Nakanishi Y. NQO1, MPO, and the risk of lung cancer: a HuGE review. Genet Med 2005; 7: 463-478.
- [52] Zhou YY, Zhang SM, Cai ZG, Zhang H, Wang L, Xu XP and Wu HB. Myeloperoxidase G463A polymorphism and lung cancer risk in Asians: a pooled analysis. Tumour Biol 2013; 34: 3035-3039.
- [53] Chen L, Zhao S, Cheng G, Shi R and Zhang G. Meta-analysis of myeloperoxidase gene polymorphism and coronary artery disease susceptibility. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2014; 39: 217-231.

Genetic polymorphisms and acute leukemia risk

Additional File 1. The meta-analysis of studies concerning the as-
sociation between MPO polymorphism and AL risk after excluded
the study that deviation from HWE

Overall and subgroup	Overall	Study of Shi Xiu-E et al. excluded
Ν	6	5
Subjects (case/control)	817/1,213	717/1,113
Alleles model OR (95% CI)	0.77 (0.66-0.90)	0.79 (0.67-0.93)
Р	0.0008	0.005
l ² (%)	44%	48%
Heterozygous model OR (95% CI)	0.62 (0.51-0.75)	0.67 (0.55-0.82)
Р	0.0008	<0.001
l ² (%)	66%	56%
Homozygous model OR (95% Cl)	1.15 (0.70-1.89)	1.07 (0.64-1.80)
Р	0.57	0.79
l ² (%)	0%	0%
Dominant model OR (95% CI)	0.62 (0.46-0.84)	0.67 (0.50-0.92)
Р	0.002	0.01
l ² (%)	62%	59%
Recessive model OR (95% CI)	1.37 (0.86-2.19)	1.21 (0.73-2.00)
Р	0.19	0.46
l ² (%)	0%	0%

OR, Odd ratio; CI, Confidence interval; HWE, Hardy-Weinberg equilibrium.

Genetic polymorphisms and acute leukemia risk

Additional File 2. Funnel plots. A: Funnel plot for CYP2E1 polymorphism. B: Funnel plot for MPO polymorphism.