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Abstract: There is a possible association between acute leukemia (AL) and polymorphisms in genes coding for 
cytochrome P4502E1 (CYP2E1) and myeloperoxidase (MPO), the enzymes both involved in the metabolism and 
bioactivation of xenobiotic compounds, including benzene especially. Previous studies reported conflicting results. 
Therefore, a meta-analysis of available molecular epidemiologic studies was performed to comprehensively investi-
gate the association between CYP2E1 RsaI/PstI polymorphism as well as MPO 463G>A genetic variants and AL risk. 
We systematically searched Pubmed, Web of Science, and Wanfang databases to identify eligible molecular epide-
miologic studies up to March 1st, 2016. The effects of each polymorphism were pooled using either fixed or random 
effect models according to the heterogeneity of the studies. A total of 14 individual case-control studies from 13 
articles, concerning polymorphism variants in these two genes (8 studies for CYP2E1 and 6 studies for MPO) with 
risk to AL were included for analysis, with 2593 cases and 3442 controls involved. Overall, the c2 variant allele 
of CYP2E1 RsaI/PstI polymorphism may slightly increase AL risk (dominant model: OR=1.46, 95% CI=1.05-2.02, 
P=0.02; heterozygous model: OR=1.44, 95% CI=1.03-2.00, P=0.03; allelic model: OR=1.42, 95% CI=1.05-1.92, 
P=0.02) despite a potential publication bias, while MPO 463G>A polymorphism was significantly associated with at-
tenuated risk to AL (dominant model: OR=0.62, 95% CI=0.46-0.84, P=0.002; heterozygous model: OR=0.62, 95% 
CI=0.51-0.75, P<0.001; allelic model: OR=0.75, 95% CI=0.61-0.93, P=0.007). Subgroup analysis by AL type further 
showed that there was a significant association between MPO 463G>A polymorphism and decreased risk of acute 
myeloid leukemia (AML) (OR=0.25, 95% CI=0.15-0.43, P<0.001 for dominant model), rather than acute lympho-
blastic leukemia (ALL), which was found associated with CYP2E1 PstI polymorphism (OR=1.45, 95% CI=1.03-2.06, 
P=0.04 for dominant model). Conclusions: The meta-analysis suggests that CYP2E1 RsaI/PstI polymorphism is 
associated with elevated AL risk, while MPO 463G>A allele may have a protective function against leukemogenesis.
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Introduction

Acute leukemia (AL), a group of clonal hemopoi-
etic disorders, has been reported to show 
increasing incidence and mortality rate world-
wide in recent years [1]. Annually, AL accounts 
for about 4% of cancer cases in the United 
States [2]. Although treatment of the diseases 
has been improved with the advancement of 
modern chemotherapy, the causes of most leu-
kemia, however, are not clarified and likely to 
involve an interaction between environmental 
and genetic factors [3, 4]. Among many human 
environmental carcinogens, benzene is a well-
known carcinogenic agent that causes leuke-
mia [5-9], a fact that was identified by the 

International Agency for Research on Cancer 
(IARC) early in 1982 [10]. Benzene is initially 
metabolized in the liver by the hepatic enzyme 
cytochrome P4502E1 (CYP2E1) to benzene 
oxides, which is spontaneously converted into 
phenol [11, 12]. Phenol is catalyzed by CYP2E1 
to potentially toxic di- or trihydroxybenzenes 
such as hydroquinone, catechol, and 1,2,4-ben-
zentriol [13, 14], which can be further con- 
verted in the bone marrow by myeloperoxida- 
se (MPO) to benzoquinones [15], a potent he- 
matotoxic and genotoxic compound that finally 
give a rise to leukemia development. As stud-
ied, CYP2E1 and MPO are both phase I xenobi-
otic metabolizing enzymes and involved in the 
bioactivation of benzene by forming intermedi-
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ate reactive metabolites, such as hydroquinone 
and benzoquinones, which finally contribute to 
subsequent development of leukemia [16, 17]. 
However, further studies are needed to system-
atically access the role of these enzymes in leu-
kemogenesis and the underlying mechanisms.

Increasing molecular epidemiologic research-
es, in recent years, reported a potential asso-
ciation between AL and gene polymorphisms. 
Polymorphisms in genes encoding for xenobiot-
ic-metabolizing enzymes are largely responsi-
ble for the inter-individual differences in their 
ability to activate mutagenic or carcinogenic 
agents [18-20], and may thus influence indi- 
vidual susceptibility to leukemia. CYP2E1 is a 
cytochrome P450 isoform and shows genetic 
polymorphisms that can alert the gene expre- 
ssion and may be important in human carci- 
nogenesis [21, 22]. Among CYP2E1 polymor-
phisms, the most frequently studied are the 
CYP2E1 RsaI/PstI polymorphism, which is also 
known as CYP2E1* 5B polymorphism for lo- 
cating in the 5’-flanking region of the gene  
[23]. Previous studies accessing the effect of 
CYP2E1 RsaI/PstI polymorphisms on suscep- 
tibility to leukemia finally got contradictory re- 
sults. Krajinovic et al. suggested an associ- 
ation of CYP2E1* 5B variant alleles with ALL 
risk in Canadian children population [24]. On 
the contrary, Canalle et al. found no evidence 
supporting for such an association in Brazilian 
population [25]. MPO is also an important 
metabolizing enzyme involved in the catabo-
lism of benzene [26]. A 463G/A polymorphism 
in the promoter region of the MPO gene can 
abolish the binding site for the SP1 transcrip-
tion factor and thus results in reduced gene expre- 
ssion [18]. A case-control study carried by J. 
Zhang et al. found MPO 463G/A polymorphism 
was associated with a decrease risk of leuke-
mia in mutant carriers due to diminished acti-
vation of carcinogens in the Chinese Han popu-
lation [27], which is conflicting with previous 
results that no evidence of the involvement of 
MPO 463G/A polymorphism in AL susceptibility 
was found [24, 28].

With regard to the role of CYP2E1 PstI genetic 
variant and MPO 463G>A polymorphism in the 
susceptibility to AL, inconclusive results were 
reported in term of the low sample size of sin- 
gle study and different characteristics among 
studies like ethnicity and leukemia types [24, 
27-31]. The aim of our study was to conduct a 

meta-analysis of related molecular epidemio-
logic studies in a comprehensive over viewing 
of all available knowledge to provide an more 
thorough assessment summarizing the pos- 
sible relationship between polymorphisms in 
genes encoding CYP2E1 and MPO and AL risk.

Materials and methods

Literature searching strategy

A systematical review of literatures concerning 
the associations between the MPO or CYP2E1 
polymorphism and risk of leukemia was con-
ducted by searching PubMed, Web of Science 
and Wanfang databases up to March 1st  
2016. Language was limited in English and 
Chinese, with no restriction on country. The 
search terms were: (“polymorphism” or “vari-
ant” or “genotype” or “mutation” or “SNPs”) 
AND (“Myeloperoxidase” or “MPO” or “rs233- 
3227” or “CYP2E1” or “rs2031920” or “rs381- 
3867”) AND (“leukemia” or “ALL” or “AML” OR 
“Hematological Malignancies”). Furthermore,  
a manual search was carried out according  
to reference lists of retrieved original articles 
and recent reviews to avoid from omission  
of any usable data. However, we did not check 
the grey literature.

Inclusion and exclusion criteria

Studies conforming to the following criteria 
were selected for inclusion in our meta-analy-
sis: (1) case-control or cohort studies that eval-
uated the association between polymorphism 
in genes coding for MPO or CYP2E1 and risk  
of AL; (2) study in human only; (3) presenting 
original and sufficient data for calculating and 
estimating odds ratios (ORs) and the corre-
sponding 95% confidence intervals (CIs). When 
multiple publications reported the same or 
overlapping data, only the most reliable report 
with the largest sample size was chosen for  
the final analysis. Case-only studies, editorials, 
systematic reviews (including meta-analysis) 
and studies with subjects who had Down’s 
Syndrome or any hematological malignancies 
other than AL were excluded. For reliability, all 
the identified citations were reviewed indepen-
dently by two authors (Wu and Liu), and studies 
met the above criteria were finally included in 
the present meta-analysis. Divergence of views 
was settled by reaching a consensus between 
the two authors.
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Data extraction and quality assessment

Information was also extracted independently 
by two researchers (Wu and Liu) from studies 
included, and any disagreements were resol- 
ved by discussion. The following terms of data 
were collected: first author, year of publica- 
tion, study design, AL subtypes (AML or ALL), 
genotyping methods, country and ethnicity 
investigated, number of cases and controls, 
genotypes data, and the confirmation of Har- 
dy-Weinberg equilibrium (HWE) in control. We 
assessed paper quality based on the require-
ments and items of the Newcastle-Ottawa-
Scale (NOS) for case-control studies [32], con-
sidering studies with scores of 0-3, 4-6, 7-9 as 
low, moderate and high quality, respectively. 
Two authors contributed in carrying out the 
quality assessment independently, resolving 
any arguments by discussion.

Statistical analysis

Firstly, we tested the conformation of genotype 
distribution in controls to Hardy-Weinberg equi-
librium (HWE) by the chi-square test [33]. The 
strength of the associations between gene 
polymorphisms and risk of AL was estimated  
by ORs and 95% CIs. Z-test was used to de- 
termine the statistical significance of the sum-
mary OR. Heterogeneity between studies was 
estimated by Cochran’s Q test and I2 statistic, 
and a P value less than 0.10 or I2>50% was 

phism (dominant model: c2c2+c1c2 vs. c1c1; 
recessive model: c2c2 vs. c1c1+c1c2; hete- 
rozygous model: c1c2 vs. c1c1; homozygous 
model: c2c2 vs. c1c1; allelic model: c2 vs. c1) 
and MPO 463G>A polymorphism (dominant 
model: aa+ga vs. gg; recessive model: aa vs. 
ga+gg; heterozygous model: ga vs. gg; homozy-
gous model: aa vs. gg; allelic model: a vs.  
g). Besides, we conducted stratify analyses  
to assess the covariate effects, in which eth-
nicities were categorized into two groups (Asian 
and Caucasian for MPO 463G>A, Asian and  
no-Asian for CYP2E1 c2 alleles), AL types were 
categorized into AML and ALL and ages were 
grouped into adult and childhood. Studies that 
didn’t specify leukemia types and those with-
out clear age bracket were not included for  
the stratification analyses. The meta-analysis 
was performed mainly using Review Manager 
version 5.2 (Cochrane Collaboration, Oxford, 
England) except that Begg’s and Egger’s tests 
were conducted by Stata version 11.2 (Stata 
Corporation, College Station, TX, USA). All P  
values were two-sided and P<0.05 was con- 
sidered statistically significant, unless stated 
otherwise.

Results

Identification and characteristics of included 
studies

In total, 154 potentially individual abstracts 
were screened from the Pubmed, Web of 

Figure 1. The flow diagram of selecting eligible studies.

considered indicating the 
existence of significant het-
erogeneity [34]. If no signifi-
cant heterogeneity across 
studies was observed, the 
fixed-effects model (Mantel-
Haenszel methods) [35] was 
used prior to evaluate the 
pooled ORs. Otherwise, the 
random-effects model (Der- 
Simonian and Laird’s me- 
thod) [36] was chosen. Addi- 
tionally, the Begg’s and 
Egger’s funnel plot asymme-
try tests were conducted to 
check the publication bias 
[37, 38]. 

In the present meta-analy- 
sis, the pooled ORs were cal-
culated under 5 genetic mod-
els of each polymorphism, 
CYP2E1 RsaI/PstI polymor-
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Table 1. Main characteristics of studies included in the meta-analysis

First author Year Leukemia 
subtype

Country  
(Ethnicity)

Genotyping  
method

Number  
(case/control) Case Control OR  

(95% CI) NOS HWE

CYP2E1 RsaI/PstI polymorphism c1c1 c1c2 c2c2 c1c1 c1c2 c2c2

    Wang Shumei 2014 ALL China (Asian) PCR-RFLP 91/283 51 35 5 192 84 7 1.66 (1.02-2.68) 4 0.20

    Audrey Bonaventure 2012 AML, ALL France (Caucasian) Genome-wide genotypinga 493/549 462 26 0 500 36 0 0.80 (0.50-1.40)b 8 0.42

    Xi Yaming 2011 AML, ALL China (Asian) PCR-LDR 150/150 105 40 5 111 36 3 1.22 (0.74-2.02) 6 0.97

    Gulen Ulusoy 2007 ALL Turkey (Caucasian) PCR-RFLP 168/207 156 12 0 199 8 0 1.91 (0.76-4.80) 6 0.78

    Pascual Bolufer 2007 AML, ALL Spain (Caucasian) Real-Time PCR 343/390 321 21 1 367 23 0 1.09 (0.60-2.00) 7 0.55

    Muge Aydin-Sayitoglu 2006 AML, ALL Turkey (Caucasian) PCR-RFLP 249/140 213 36 0 136 6 0 3.34 (1.55-9.20) 7 0.80

    Renata Canalle 2004 ALL Brazil (Caucasian) PCR-RFLP 113/221 99 14 0 197 23 1 1.16 (0.58-2.34) 8 0.71

    Maji Krajinovic 2002 ALL Canada (Caucasian) PCR-ASO 174/302 160 14 0 293 9 0 2.85 (1.21-6.73) 8 0.79

MPO 463G>A polymorphism gg ga aa gg ga aa

    Jia Mingfeng 2012 AML, ALL China (Asian) PCR-LDR 150/150 100 45 5 72 76 2 0.46 (0.29-0.74) 5 <0.01

    Shi Xiu-E 2010 AML, ALL China (Asian) PCR-LDR 100/100 69 24 7 46 52 2 0.38 (0.22-0.68) 5 <0.01

    Vanessa da Silva Silveira 2010 ALL Brazil (mixed) PCR-RFLP 124/300 71 46 7 159 124 17 0.84 (0.55-1.28)c 6 0.26

    Zhang Juan 2007 AL China (Asian) PCR-RFLP 135/187 94 39 2 108 74 5 0.58 (0.36-0.92) 7 0.06

    Zhu Fangyan 2006 AML, ALL China (Asian) PCR-RFLP 139/139 87 47 5 65 69 5 0.53 (0.33-0.85) 5 <0.01

    Maji Krajinovic 2002 ALL Canada (Caucasian) PCR-ASO 169/337 105 55 9 212 114 11 1.03 (0.71-1.51) 8 0.36
OR: Odd ratio; CI: Confidence interval; NOS: Newcastle-Ottawa-Scale; HWE: Hardy-Weinberg equilibrium; AML: Acute myeloid leukemia; ALL: Acute lymphoblastic leukemia; AL: Acute leukemia; PCR: Polymerase chain reaction; RFLP: Restriction 
fragment length polymorphism; LDR: Ligase detection reaction; ASO: Allele specific oligonucleotide hybridization assays. a: Genome-wide genotyping was based on a high-throughput platform and imputation. b: Adjusted by the gender, age 
quota variable, parental professional category, maternal educational level, birth order, and breastfeeding. c: Adjusted by age, sex, and ethnic group.
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Table 2. Meta-analysis of CYP2E1 RsaI/PstI and MPO 463G>A polymorphisms on acute leukemia risk

Overall and 
subgroup N Case/ 

control

Dominant 
model OR 
(95% CI)

P I2 
(%)

Recessive 
model OR  
(95% CI)

P I2 
(%)

Heterozygous  
model OR 
(95% CI)

P I2 
(%)

Homozygous  
model OR  
(95% CI)

P I2 
(%)

Allelic  
model OR 
(95% CI)

P I2 
(%)

CYP2E1 RsaI/PstI

    Total 8 1776/2229 1.46 (1.05-2.02) 0.02 51% 1.91 (0.83-4.43) 0.13 0% 1.44 (1.03-2.00) 0.03 51% 2.08 (0.89-4.87) 0.09 0% 1.42 (1.05-1.92) 0.02 49%

    Ethnicity

        Asian 2 241/433 1.43 (1.01-2.03) 0.04 0% 2.01 (0.80-5.04) 0.14 0% 1.37 (0.95-1.96) 0.09 0% 2.22 (0.87-5.66) 0.09 0% 1.41 (1.04-1.89) 0.03 0%

        No-Asian 6 1535/1796 1.53 (0.94-2.48) 0.09 63% 1.52 (0.20-11.63) 0.69 0% 1.53 (0.94-2.49) 0.09 63% 1.54 (0.20-11.82) 0.68 0% 1.50 (0.94-2.39) 0.09 61%

    Leukemia type

        AML 4 472/1216 1.41 (0.71-2.79) 0.32 59% 2.43 (0.63-9.42) 0.20 0% 1.35 (0.66-2.76) 0.41 60% 2.61 (0.67-10.17) 0.17 0% 1.43 (0.77-2.65) 0.25 55%

        ALL 8 1295/2229 1.45 (1.03-2.06) 0.04 46% 1.68 (0.63-4.46) 0.30 0% 1.44 (1.02-2.04) 0.04 45% 2.18 (0.88-5.42) 0.09 0% 1.41 (1.02-1.95) 0.04 45%

    Age group

        Adult 2 236/290 1.91 (0.67-5.47) 0.23 72% 1.69 (0.40-7.20) 0.48 - 1.89 (0.63-5.61) 0.25 73% 1.69 (0.40-7.20) 0.48 - 1.85 (0.69-4.96) 0.22 70%

        Children 6 1197/1689 1.64 (1.04-2.60) 0.03 62% 1.98 (0.66-5.94) 0.23 0% 1.71 (1.03-2.84) 0.04 67% 1.98 (0.66-5.94) 0.23 0% 1.58 (1.02-2.43) 0.04 61%

MPO 463G>A

    Total 6 817/1,213 0.62 (0.46-0.84) 0.002 62% 1.37 (0.86-2.19) 0.19 0% 0.62 (0.51-0.75) <0.001 66% 1.15 (0.70-1.89) 0.57 0% 0.75 (0.61-0.93) 0.007 44%

    Ethnicity

        Asian 4 524/576 0.50 (0.39-0.63) <0.001 0% 1.48 (0.73-3.00) 0.28 13% 0.47 (0.36-0.60) <0.001 6% 1.05 (0.49-2.25) 0.91 0% 0.63 (0.52-0.78) <0.001 0%

        Caucasian 2 293/637 0.94 (0.71-1.25) 0.68 0% 1.28 (0.68-2.41) 0.44 0% 0.91 (0.68-1.22) 0.51 0% 1.24 (0.65-2.37) 0.52 0% 0.99 (0.79-1.25) 0.95 0%

    Leukemia type

        AML 2 180/250 0.25 (0.15-0.43) <0.001 29% 3.18 (0.96-10.52) 0.06 0% 0.21 (0.13-0.34) <0.001 0% 1.88 (0.56-6.28) 0.31 0% 0.40 (0.28-0.58) <0.001 7%

        ALL 4 363/887 0.99 (0.72-1.36) 0.24 28% 1.42 (0.79-2.55) 0.24 0% 0.95 (0.70-1.31) 0.77 25% 1.38 (0.76-2.49) 0.29 0% 1.04 (0.84-1.28) 0.72 6%
N: number of studies; OR: odd ratio; CI: confidence interval; AML: acute myeloid leukemia; ALL: acute lymphoblastic leukemia. I2 is the statistic that measure the degree of heterogeneity between studies. The pooled odd ratio and 95% CI in 
the article were either from fixed effects model or random effects model according to heterogeneity measured by I2 statistics, with I2>50% indicating a significant heterogeneity existed between in studies.
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Science, and Wanfang databases. After check-
ing the abstracts and reviewing the full texts of 
possible studies, 14 individual case-control 
studies from 13 publications [24, 25, 27, 28, 
31, 39-46] were finally included into the meta-
analysis. However, no cohort study met our 
inclusion criteria. The details of study selection 
process are presented in the flow diagram 
(Figure 1). The 14 studies identified with 6,035 
subjects (2,593 cases and 3,442 controls) 
were then read thoroughly to record the basic 
information, including AL subtypes, country of 
origin, ethnicity, the number of cases and con-
trols of each study, with the detailed character-
istics summarized in Table 1.

Overall, 7 studies [25, 31, 40-43, 45] focused 
on the association between AL risk and CYP2E1 
RsaI/PstI polymorphism, and 5 studies [27, 28, 
39, 44, 46] targeted on that of MPO 463G>A 
polymorphism, while only one study [24] tried to 
explore the impact of both two gene variants on 
AL risk. In the total 14 studies, 6 studies 
focused on ALL patients [24, 25, 28, 40, 43], 
and 7 studies targeted at ALL and AML patients 
together [31, 39, 41, 42, 44-46], but only one 
article didn’t specify the type of AL [27]. The 
controls were free of leukemia or any leukemia 
related diseases in all studies. As to ethnicity, 8 
studies were conducted in Caucasian popula-
tion [24, 25, 28, 31, 41-43] and 6 studies in 
Asian population [27, 39, 40, 44-46]. In term of 
the quality assessment of NOS, 7 studies were 
in high quality [24, 25, 31, 39, 41, 42] and 7 
were in moderate quality [28, 39, 40, 43-46]. 
Genotype distributions among the controls 
were in agreement with HWE in all studies, 
except for three studies [39, 44, 46] (Table 1).

Meta-analysis

Pooling data in 8 studies which have examined 
the c2 carriers of the CYP2E1 gene suggested 
a significant association between CYP2E1 PstI 
polymorphism and elevated risk to AL under 
dominant model (OR=1.46, 95% CI=1.05-2.02, 
P=0.02), heterozygous model (OR=1.44, 95% 
CI=1.03-2.00, P=0.03), and allelic model (OR= 
1.42, 95% CI=1.05-1.92, P=0.02) (Table 2; 
Figure 2). There was, however, no evidence for 
a relationship under homozygous and reces-
sive model (Table 2). Additionally, subgroup 
analyses were performed to access the ef- 
fects of different ethnics, leukemia subtypes 
and age groups. The result further indicated 

that there was a significant association be- 
tween CYP2E1 c2 gene variants and increas- 
ed risk of ALL (for dominant model, OR=1.45, 
95% CI=1.03-2.06, P=0.04; for allelic model, 
OR=1.41, 95% CI=1.02-1.95, P=0.04), but no 
such relationship observed in AML population 
(Table 2). In ethnicity subgroup analysis, the 
RsaI/PstI polymorphism of CYP2E1 significant-
ly increased AL risk in Asian population when 
using dominant (OR=1.43, 95% CI=1.01-2.03, 
P=0.04) and allelic model analysis (OR=1.41, 
95% CI=1.04-1.89, P=0.03), rather than in 
non-Asian population. Pooled data from 6  
studies evaluating children leukemia [24, 25, 
31, 40, 41, 43] provided evidence for an as- 
sociation between the variant and children AL 
risk under three main models (dominant mo- 
del: OR=1.64, 95% CI=1.04-2.60, P=0.03; het-
erozygous model: OR=1.71, 95% CI=1.03-2.84, 
P=0.04; allelic model: OR=1.58, 95% CI=1.02-
2.43, P=0.04) (Table 2).

6 studies have evaluated MPO 463G>A poly-
morphism as a risk factor for AL. Pooling data 
from the six studies showed that there was a 
significant association between MPO 463G>A 
polymorphism and attenuated AL risk under 
three genetic models (dominant model: OR= 
0.62, 95% CI=0.46-0.84, P=0.002; heterozy-
gous model: OR=0. 62, 95% CI=0.51-0.75, P< 
0.001; allelic model: OR=0.75, 95% CI=0.61-
0.93, P=0.007) (Table 2; Figure 2). There was 
evidence of population stratification in the 
study authored by Shi Xiu-E et al. with con- 
trols found deviating from HWE (P=0.003). 
Nevertheless, almost similar result was yield- 
ed excluding the study from the meta-analy- 
sis (Additional File 1). Subsequent stratified 
analysis by AL types suggested a relationship 
between this variant and AML, but not ALL 
(Table 2), though two studies excluding for  
analysis due to not specifying the types of AL 
[27, 39]. In another subgroup analysis, pooling 
data from four studies evaluating the effect  
of different ethnics provided a support for a  
significant association between MPO 463G>A 
polymorphism and elevated AL risk in Asian 
population, while no evidence of similar rela-
tionship in Caucasian population was obser- 
ved in a pooled analysis of other two studies 
(Table 2).

Heterogeneity test

As showed in Table 2, We observed no signifi-
cant heterogeneity across the studies either on 
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Figure 2. Forest plots of meta-analysis of CYP2E1 RsaI/PstI and MPO 463G>A Polymorphisms on risk of acute leu-
kemia. A: Dominant model; B: Allelic model.
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CYP2E1 RsaI/PstI polymorphism or MPO 
463G>A polymorphism with AL risk under 
recessive and homozygous model (P>0.10  
and I2<50%) and the fixed-effects model was 
applied to calculate the pooled ORs. However, 
in other three genetic models, heterogeneity 
was demonstrated (P<0.10 or I2>50%), so  
the random-effects model was subsequently 
adopted for the meta-analysis. Attempts were 
made to explore the sources of between-study 
heterogeneity by subgroup analysis, and the 
results showed ethnicity, age groups and types 
of AL were the key factors that affected the 
homogeneity (Table 2).

Publication bias

In this analysis, we tested funnel plot asym- 
metry using both Begg’s and Egger’s tests  
in a comparison model of the carrier status 
(carriers vs wild-type) for CYP2E1 c2 allele  
(P values of 0.048 and 0.048, respectively)  
and MPO 463G>A variant (P values of 0.851 
and 0.951, respectively) individually. The re- 
sults, however, revealed evidence of publica-
tion bias for CYP2E1 PstI allelic variants, in- 
dicating our results concerning relationship 
between CYP2E1 PstI polymorphism and ele-
vated AL risk may not be robust due to a re- 
latively high false positive result reported in  
the 8 studies included for the analysis. No  
evidence of publication bias was observed in 
the analysis of MPO 463G>A polymorphism on 
risk of AL (Additional File 2).

Discussion

Acute leukemia is still a huge threat to human 
health worldwide, despite advances in survival 
and quality of life have been achieved due to im- 
proved modern chemotherapy for the disea- 
ses [1, 47]. Though substantial efforts were 
involved in, the exact causes of AL remain 
unclear. However, most studies agree on a 
combined risk from the environmental and 
genetic factors altogether [3, 4]. Many environ-
mental carcinogens contribute to the leuke- 
mogenesis, among which benzene is one ubiq-
uitous occupational hematotoxin and leuke- 
mogen that clearly identified by IARC [10, 48]. 
Last decades, emerging epidemiologic investi-
gations have revealed several genetic variants 
as risk factors for AL, highlighting a new sight 
for leukemia pathogenesis and etiology re- 
search. Considering potential role of allelic vari-

ants of genes for xenobiotic-metabolizing en- 
zymes in the susceptibility to AL, we carried out 
a meta-analysis targeting two gene polymor-
phisms (CYP2E1 RsaI/PstI and MPO 463G>A), 
in an attempt to better define the association 
between polymorphism in genes encoding for 
environmental carcinogens bioactivation en- 
zymes and risk of AL. As previous studies [24, 
25, 27, 28, 31, 39-46] focusing on the relation-
ship between these two single nucleotide poly-
morphisms (SNPs) and AL risk reported con-
flicting results, our study aim to provide more 
reliable results by combining analysis of all 
these studies and in a larger sample size (1776 
cases and 2,229 controls for CYP2E1 RsaI/ 
PstI polymorphism, 817 cases and 1,213 con-
trols for MPO 463G>A polymorphism).

In the present meta-analysis, we found evi-
dence supporting for a significant association 
between RsaI/PstI polymorphism of CYP2E1 
and elevated AL risk under three main compari-
son models (allelic, heterozygous and domi-
nant), which is consistent with evidence sug-
gesting that CYP2E1 RsaI/PstI polymorphism 
was associated with increased transcriptional 
activity, thus enhancing ability to activate car-
cinogens [23]. Additionally, similar conclusion 
has been concluded for children acute lym- 
phoblastic leukemia in previous meta-analy- 
sis under heterozygous and dominant models 
[30]. The SNPs on the CYP2E1 promoter re- 
gion were too complicated, here we only stud-
ied CYP2E1 RsaI/PstI polymorphism, covering 
two SNPs (RsaI/C-1055T/rs2031920; PstI/G-
1295C/rs3813867), which are both located  
in the 5’-flanking region of the gene and most 
frequently investigated as a factor of human 
carcinogenesis [21, 22]. A case-control study 
revealed the c2 allele carriers of the CYP2E1 
gene significantly increased the risk of benzene 
poisoning when combined with other SNPs  
in genes involved in benzene metabolism [49], 
providing us a hint for exploring a potential  
role of the SNPs in leukemogenesis. Moreover, 
subgroup analyses by ethnicity and AL types, 
mainly AML and ALL, suggested a relation- 
ship between CYP2E1 PstI polymorphism and 
increased ALL risk, especially in Asian popu- 
lation. In addition, stratified studies by age 
groups further showed that children carrying 
CYP2E1 c2 genotypes were at higher risk of  
AL. However, these data should be interpreted 
with cautions as the association may not be 
robust with a potential publication bias.



Genetic polymorphisms and acute leukemia risk

170 Int J Clin Exp Med 2017;10(1):162-173

As another important phase I metabolizing 
enzymes, MPO is involved in oxidative stress 
response to environmental carcinogens, such 
as benzene [26]. Differing from CYP2E1 RsaI/
PstI polymorphism, a single G to A transition at 
position 463 in the promoter region of the MPO 
gene can abolish the binding site for the SP1 
transcription factor, resulting in reduced gene 
expression [18]. Interestingly, statistically sig-
nificant association was observed between 
MPO 463G>A and attenuated AL risk for do- 
minant, heterozygous and allelic models in  
our analyses. Similar relationship of the MPO 
genetic variant with other cancers and disor-
ders were demonstrated [50-53]. Additionally, 
we further demonstrated that people in Asian 
ethnic bearing MPO 463G>A variant are more 
susceptible to AL, especially AML, in the subse-
quent subgroup analysis. However, our analy-
ses provide no evidence for relationship be- 
tween MPO 463G>A variant and risk of AL in 
Caucasians.

Nevertheless, some limitations should be 
noted to better understand the current find-
ings. Firstly, limited number of eligible studies 
made us unable to provide sufficient sample 
size in the analysis, especially for subgroup 
analyses, and may thus weaken the statistical 
power to draw conclusions upon the effect  
of these two polymorphisms on AL risk. And 
some studies included for our analysis failed  
to specify leukemia types [27, 39] and age 
groups [39, 42, 44, 46] simply aggravated the 
problems. In this respect, more well-design- 
ed molecular epidemiologic studies with large 
sample size and more precise estimation of 
impact of CYP2E1 RsaI/PstI and MPO 463G> 
A polymorphisms on AL risk are required to  
confirm these findings. Secondly, we observed 
obvious publication bias in the analysis of 
CYP2E1 c2 variant under the dominant model, 
so conclusions drawn upon the relationship 
concerning CYP2E1 RsaI/PstI with risk of AL 
may not be robust and should be interpreted 
with some cautions. Thirdly, heterogeneity that 
may arise from differences in leukemia types, 
age groups and ethnicity in the studies was 
detected in the present meta- analysis. Finally, 
we didn’t, however, incorporate the effect of 
the two genetic alleles on AL risk for lacking 
sufficient data to permit the assessment of 
interaction effect. Nevertheless, it might be 
worthwhile to investigate the interaction rela-

tionship of the two polymorphisms with AL risk 
in further studies since both CYP2E1 and MPO 
are phase I metabolizing enzymes, involved in 
benzene metabolism and bioactivation. In brief, 
the systematic review of literatures focusing on 
association between AL and genetic polymor-
phisms suggested that CYP2E1 RsaI/PstI poly-
morphism is associated with increased riskof 
AL, while MPO 463G>A may have a protective 
function against individual susceptibility to AL 
underdominant, heterozygous and allelic mod-
els, respectively. Additional studies covering a 
large number of samples with different age 
groups and ethnic origins are warranted to vali-
date the results and to facilitate a further 
understanding of the pathogenesis underlying 
acute leukemia.
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Additional File 1. The meta-analysis of studies concerning the as-
sociation between MPO polymorphism and AL risk after excluded 
the study that deviation from HWE

Overall and subgroup Overall Study of Shi Xiu-E 
et al. excluded

N 6 5
Subjects (case/control) 817/1,213 717/1,113
Alleles model OR (95% CI) 0.77 (0.66-0.90) 0.79 (0.67-0.93)
    P 0.0008 0.005
    I2 (%) 44% 48%
Heterozygous model OR (95% CI) 0.62 (0.51-0.75) 0.67 (0.55-0.82)
    P 0.0008 <0.001
    I2 (%) 66% 56%
Homozygous model OR (95% CI) 1.15 (0.70-1.89) 1.07 (0.64-1.80)
    P 0.57 0.79
    I2 (%) 0% 0%
Dominant model OR (95% CI) 0.62 (0.46-0.84) 0.67 (0.50-0.92)
    P 0.002 0.01
    I2 (%) 62% 59%
Recessive model OR (95% CI) 1.37 (0.86-2.19) 1.21 (0.73-2.00)
    P 0.19 0.46
    I2 (%) 0% 0%
OR, Odd ratio; CI, Confidence interval; HWE, Hardy-Weinberg equilibrium.



Genetic polymorphisms and acute leukemia risk

2 

Additional File 2. Funnel plots. A: Funnel plot for CYP2E1 polymorphism. B: Funnel plot for MPO polymorphism.


