Review Article

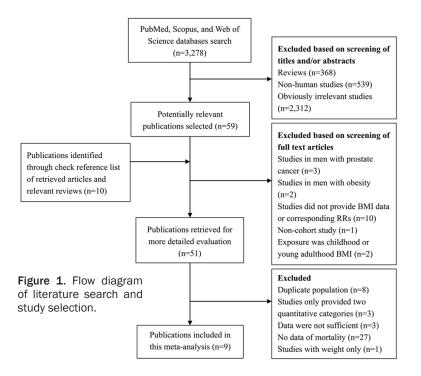
Does body mass index correlate with the mortality of prostate cancer? A dose-response meta-analysis of cohort studies

Wubin Jiang, Baikang Chen

Department of Urology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang Province, China

Received September 1, 2016; Accepted October 19, 2016; Epub January 15, 2017; Published January 30, 2017

Abstract: The relationship between body mass index (BMI) and mortality of prostate cancer (PCa) is still controversial. We performed a meta-analysis of cohort studies to evaluate potential linear and non-linear dose-response relationships between BMI and mortality of PCa. Studies were identified by comprehensively searching PubMed, Scopus, and Web of Science databases through June 22, 2016 without language restriction. Linear and non-linear dose-response meta-analyses were conducted to identify the effects of BMI on mortality of PCa. Nine cohort studies were finally included in this meta-analysis. Dose-response analysis indicated that the pooled relative risks (RRs) per 5 kg/m² increment of BMI were 1.16 (1.10-1.23) for fatal PCa. There was no evidence of a nonlinear relationship between BMI and fatal PCa (P = 0.908 for nonlinearity). Moderate heterogeneity was observed among included studies (P = 0.027, P = 52.2%). Overall, the findings of this meta-analysis indicate that, based on available information, obesity is associated with a higher risk of fatal PCa.


Keywords: Body mass index, prostate cancer, dose-response, meta-analysis, mortality

Introduction

Prostate cancer (PCa) is the most common cancer in males in the developed countries and the second most common one worldwide after lung cancer [1]. The etiology of PCa is still largely unknown and the greatest known risk factors are those that are inherited and non-modifiable such as age, race, and family history of PCa [2]. However, a high incidence of PCa in the USA and Europe suggests that PCa may be related to a "Western" lifestyle and environmental risk factors [3], in particular the influence of obesity is gaining recognition. In view of recent increase in the worldwide prevalence of obesity [4], understanding the roles of body adiposity in prostate carcinogenesis and tumor progression holds special relevance for clinical medicine and public health.

Body mass index (BMI) is the most widely used measure to diagnose obesity [5]. A number of well-designed longitudinal studies have been conducted on the relationship between BMI and PCa risk with positive, negative, or null associations reported. A large meta-analysis included a total of 27 prospective studies and recorded a non-statistically significant association between BMI and total PCa risk [6]. Furthermore, given the possible PCa subtype-specific differences in this association, the meta-analysis conducted in 2012 examined this relationship separately by PCa tumor characteristics and observed that obesity appeared to increase the risk of advanced PCa but reduce the risk of localized disease [7]. As for fatal prostate cancer, heterogonous results also have been reported in literature but no meta-analysis has addressed this issue up to now.

Dose-response meta-analysis is an ideal solution to the above controversies. Pooling multiple independent but homogeneous studies provides greater statistical power and increases precision of the findings. We therefore performed a random-effects dose-response meta-analysis of all available cohort studies to ex-

plore the potential association between BMI and the mortality of PCa.

Materials and methods

Search strategy

Two authors (WJ and BC) independently searched PubMed, Scopus, and Web of Science databases from its inception to June 22, 2016 with the following search strategy that included both truncated free text and exploded MeSH terms relevant to "overweight", "obesity", "body mass index", "BMI", "body size", "adiposity", "PCa", "prostate cancer", "prostate neoplasm", and their variants. There were no language or date restrictions. We also manually searched the reference lists of included studies and recent reviews for additional articles.

Selection criteria

To identify eligible studies, we used a two-step selection procedure. Two independent reviewers (WJ and BC) undertaken an initial screening of article titles and abstracts and excluded those clearly not relevant articles in the form of reviews, meta-analyses, ecological studies, animal studies, case reports, editorials, and comments. All potentially relevant articles were evaluated based on full text reviews. Reviewers

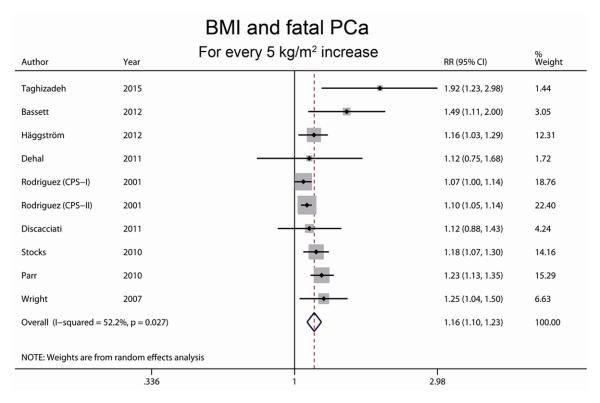
used pre-specified criteria to ensure a consistent and comprehensive approach. Any disagreements between the two reviewers were settled by discussion. Studies were included if they were cohort studies, studied the effects of BMI, and reported mortality rate of PCa as the outcome of interest.

Data extraction and assessment for study quality

Data extraction was conducted with a standardized data collection form. Two reviewers (WJ and BC) independently reviewed full-text versions of eligible studies and recorded the following information: first author's surname, publication year, country, study name or

source, the number of cases, sample size, duration of follow-up, adjusted covariates, BMI exposure levels, and corresponding estimates with 95% Cls. The same reviewers completed quality assessment of each included study independently with the Newcastle-Ottawa scale (http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp). Discrepancies were resolved by consensus and discussion.

Statistical methods


The outcome we analyzed was the relative risk (RR) with its corresponding 95% confidence interval (CI) of the mortality of PCa. A randomeffects model was used for all meta-analyses to account for both within- and between-study heterogeneity. For each of the included studies. we assigned the reported median or mean BMI level of each category to the corresponding RR for each study. When medians and means were not presented, we used the midpoint of the lower and upper bounds of that category. When the highest category was open-ended, we assumed the width of the category to be the same as the closest adjacent category [7]. In the Asia-Pacific Cohort Studies Collaboration [8], we estimated the conventional 95% CIs from a set of 95% CIs calculated by the floating absolute risk method.

Body mass index and the mortality of prostate cancer

Table 1. Main characteristics of studies included in this meta-analysis

Author, year	Country	No. of cases	No. of cohort	Age	Study name or source	Duration of follow-up	Quality score	Adjustment factors
Taghizadeh et al., 2015	Netherland	83	3,718	20-65	Vlagtwedde-Vlaardingen cohort study	40 y	6	Age, smoking, and place of residence
Bassett et al., 2012	Australia	1,374	16,514	68 (47-86)	Melbourne Collaborative Cohort Study	15.0 y	8	Age, country of birth, and education
Häggström et al., 2012	Norway, Sweden, Austria	6,673	289,866	44±11	Metabolic Syndrome and Cancer Project	12 y	7	Age, smoking, and birth year
Discacciati et al., 2011	Sweden	2,084	36,959	45-79	Central Sweden	1998-2008	7	Age, energy intake, physical activity, education, smoking, family history of PCa, diabetes, and BMI at age 30 years
Dehal et al., 2011	USA	44	7,016	47 (25-74)	National Health and Nutrition Examination Survey Epidemi- ology Follow-Up Study	17 y	7	Age, race/ethnicity, education, family income, marital status, residence area, alcohol, smoking, frequency of eating fruit and vegetables
Stocks et al., 2010	Sweden	10,002	336,159	34.7±13.1	Swedish Construction Workers cohort	22.2 y	6	Age, birth year, smoking, and blood pressure
Parr et al., 2010	Asia-Pacific	278	249,155	48	Asia-Pacific Cohort Studies Collaboration	4 y	6	Age and smoking
Wright et al., 2007	USA	9,986	287,760	50-71	NIH-AARP Diet and Health Study	5 y	6	Age, race, smoking, education, diabetes, and family history of PCa
Rodriguez et al., 2001 (CPS-I)	USA	1,590	381,638	52	Cancer Prevention Study I	1959-1972	8	Age, race, height, education, exercise, smoking, and family history of PCa
Rodriguez et al., 2001 (CPS-II)	USA	3,622	434,630	57	Cancer Prevention Study II	1982-1996	8	Age, race, height, education, exercise, smoking, and family history of PCa

BMI, body mass index; No., number; y, years; PCa, prostate cancer.

Figure 2. Risk of fatal PCa associated with each 5 kg/m² increase in BMI. Weights are from random-effects analysis. RR: relative risk, CI: confidence interval, BMI: body mass index, PCa: prostate cancer.

For dose-response meta-analysis, we first estimated the dose-response trend for each study using the method proposed by Greenland and Longnecker [9], which takes into account the correlation of the RRs within each study. These dose-response trends were then pooled with random-effects meta-analysis. Next, we explored potential non-linear dose-response relationship in each study by using restricted cubic regression splines with three knots at the 25th, 50th, and 75th percentiles of the distribution, and results from each study were then combined using random-effects multivariate meta-analysis [10].

Potential small study bias was evaluated by Begg's test [11] and Egger's test [12]. If publication bias was indicated, we performed a trim and fill analysis to evaluate whether this had affected the results. Heterogeneity was evaluated by I^2 and Cochran's Q (significance level at P < 0.10) [13]. Galbraith plot was used to detect the studies that led to heterogeneity.

For sensitivity analysis, we first removed one study at a time and recalculated the pooled estimates for the remainder of the studies to determine whether the results could have been influenced greatly by a single study. Secondly, we repeated the analysis after excluding studies that contributed to heterogeneity. Lastly, we conducted meta-analysis based on studies that adjusted for physical activity or personal history of diabetes to examine whether these variables would confound the relationship between BMI and PCa. Except where otherwise specified, a 5% significance level and a two sided test were adopted throughout this study. All statistical analyses were performed with Stata version 11 (StataCorp, College Station, TX).

Results

Literature search and study characteristics

We identified 3,278 articles for review of title and abstract (**Figure 1**). After the initial screening, full articles of potentially eligible studies were retrieved for detailed assessment. Nine eligible studies [8, 14-21] were eventually included in this meta-analysis. The cohort size

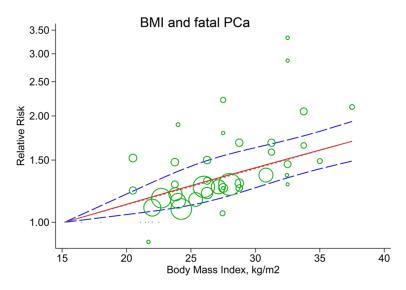
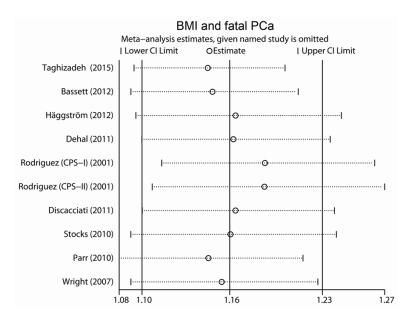



Figure 3. Non-linear dose-response meta-analysis for fatal PCa. Weights are from random-effects analysis. Red solid line and blue dash lines represent point estimates and 95% confidence intervals for non-linear analysis; Grey dash line represents point estimates for linear analysis. Green circles present the dose-specific relative risk estimates reported in each study; size of bubble is proportional to precision (inverse of variance) of relative risk. RR: relative risk, CI: confidence interval, BMI: body mass index, PCa: prostate cancer.

Figure 4. Sensitivity analysis for the effect of body mass index on fatal prostate cancer. The analysis was conducted by omitting each study in turn. Meta-analysis random-effects estimates were used. The two ends of the dotted lines represent the 95% CI. BMI, body mass index; PCa, prostate cancer.

ranged from 3,718 to 434,630. Three studies were conducted in United States, four in Europe, one in Australia, and one in multiple Asia-Pacific countries. Studies were published

between 2001 and 2015. All of the nine studies provided RR estimates adjusted for age. Assessment of study quality yielded an average score of 6.8. Detailed characteristics of the included studies are presented in **Table 1**.

Dose-response meta-analysis

Figure 2 displays the studyspecific linear trend estimates of the relationship between BMI and mortality of PCa and the combined estimate from a random-effects meta-analysis model. The pooled RR per 5 kg/m² increase in BMI is 1.16 (95% CI 1.10-1.23) for fatal PCa, with some evidence of heterogeneity among included studies ($P = 0.027, I^2 =$ 52.2%). Figure 3 shows the results of non-linear doseresponse meta-analysis. There was no evidence of a nonlinear relationship for fatal PCa (P = 0.908 for nonlinearity).

Sensitivity analysis

To evaluate the robustness of the significant associations between BMI and fatal PCa, several sensitivity analyses were performed. We first removed one study at a time and repeated the meta-analysis. All the results were not influenced greatly by a single study (Figure 4). Secondly, we used Galbraith plot to detect the studies that contributed to heterogeneity. The study performed by Taghizadeh et al. (Figure 5) was the major source of heterogeneity for fatal PCa. After excluding this outlying study, no significant

heterogeneities were observed across the remaining studies (P = 0.104, $I^2 = 39.6\%$) and the corresponding pooled RRs was not materially altered (RR = 1.15, 95% CI 1.10-1.20).

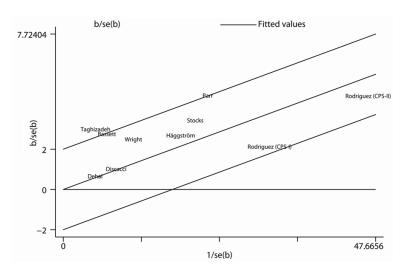


Figure 5. Galbraith plot analysis was used to assess heterogeneity. It indicated that Taghizadeh et al., study was the potential source of heterogeneity.

Lastly, physical activity and personal history of diabetes may confound the relationship between BMI and PCa. We thus performed meta-analysis of studies that adjusted for diabetes or physical activity and obtained statistically significant risk estimates for fatal PCa (RR = 1.25, 95% CI 1.04-1.50; RR = 1.09, 95% CI 1.05-1.13).

Publication bias

There was no significant publication bias detected by Egger's test (P = 0.053) or Begg's Test (P = 0.210).

Discussion

The present study indicated that BMI was significantly associated with the mortality of PCa by summarizing the results of all available cohort studies. Overall, the dose-response analysis showed that each 5 kg/m² increment of BMI corresponded to a 16% increase in the risk of fatal PCa. There was no evidence of a nonlinear relationship for fatal PCa (P = 0.908 for nonlinearity).

Several potential mechanisms could explain the positive association between BMI and risk of fatal PCa. Obese men have lower serum testosterone concentrations [22]. Testosterone may contribute to the growth and development of PCa [23]. Furthermore, a genome-wide association study and Metabochip meta-analysis of BMI identified 97 BMI-associated loci, of which

many have significant effects on metabolic phenotypes [24]. Accordingly, obese men were characterized with high circulating concentrations of insulin, leptin and insulin-like growth factor-I (IGF-I) and low levels of adiponectin, all of which have been proposed to stimulate PCa growth and spread and underlie the higher risk of advanced and fatal PCa [25]. Tumor microenvironment may also play a role in this link. A recent study detected an altered expression of genes encoding molecules involved in adipogenesis, cell proliferation, and immunological responses in the peripros-

tatic adipose tissue of obesity/overweight participants [26].

Several limitations of this meta-analysis should be acknowledged. Firstly, errors in measurement of BMI are inevitable. A large portion of the studies included in this meta-analysis estimated the BMI based on self-reported weight and height, which were less accurate than anthropometric data obtained directly by trained investigators. However, many studies have shown that self-reported anthropometric data correlate highly with measured data [27, 28]. Secondly, during the long follow-up, participants may have changed their BMI. All exposures were defined according to information collected at the time of their entry into the cohort. Weight may have changed over the follow-up period, which may have resulted in some underestimation of the true associations since it has been reported that the prevalence of obesity increases with increasing age, which is gender-equivalent and independently of socioeconomic status [29]. Thirdly, although we extracted data from the fully adjusted models, a meta-analysis is not able to solve the problems of confounding variables that could be inherent in the original studies. Residual or unmeasured confounding may bias the results in either an exaggeration or an underestimation of a risk estimate. Fourthly, moderate heterogeneity across studies was observed among included studies, which would throw some doubt on the reliability of the combined estimates for these relationships. However, the significant associations persisted after we removed the studies that contributed to heterogeneity in the sensitivity analyses. Lastly, this meta-analysis was performed relied on aggregate data instead of individual data. Access to individual participant data (IPD) would allow a more precise delineation of the exposure-response relationship and adjustment for potential confounding factors.

This meta-analysis also has some strengths. The present study collected all eligible cohort studies from various countries and populations. The large sample size of included studies increased the statistical power. The estimates from models adjusting for most established risk factors in each study were used in our analyses to minimize potential confounding. Linear and non-linear dose-response analyses were performed to quantify the potential associations and examine the shape of the dose-response curve. Various sensitivity analyses were performed to evaluate the robustness and stability of the results.

In summary, results from our meta-analysis indicate higher BMI level is associated with a higher risk of fatal PCa. Future research is warranted to investigate the potential mechanisms underlying these associations.

Disclosure of conflict of interest

None.

Address correspondence to: Dr. Wubin Jiang, Department of Urology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical College, 150 Ximen Street, Linhai 317000, Zhejiang Province, China. Tel: +86057685120120; Fax: +86057685120120; E-mail: jiangwubin201@163.com

References

- [1] Jemal A, Bray F, Center MM, Ferlay J, Ward E and Forman D. Global cancer statistics. CA Cancer J Clin 2011; 61: 69-90.
- [2] Discacciati A and Wolk A. Lifestyle and dietary factors in prostate cancer prevention. Recent Results Cancer Res 2014; 202: 27-37.
- [3] Mistry T, Digby JE, Desai KM and Randeva HS. Obesity and prostate cancer: a role for adipokines. Eur Urol 2007; 52: 46-53.
- [4] Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, Mullany EC, Biryukov S, Abbafati C, Abera SF, Abraham JP, Abu-Rmeileh

NM, Achoki T, AlBuhairan FS, Alemu ZA, Alfonso R, Ali MK, Ali R, Guzman NA, Ammar W, Anwari P, Banerjee A, Barquera S, Basu S, Bennett DA, Bhutta Z, Blore J, Cabral N, Nonato IC, Chang JC, Chowdhury R, Courville KJ, Criqui MH, Cundiff DK, Dabhadkar KC, Dandona L, Davis A, Dayama A, Dharmaratne SD, Ding EL, Durrani AM, Esteghamati A, Farzadfar F, Fay DF, Feigin VL, Flaxman A, Forouzanfar MH, Goto A, Green MA, Gupta R, Hafezi-Nejad N, Hankey GJ, Harewood HC, Havmoeller R, Hay S, Hernandez L, Husseini A, Idrisov BT, Ikeda N, Islami F, Jahangir E, Jassal SK, Jee SH, Jeffreys M, Jonas JB, Kabagambe EK, Khalifa SE, Kengne AP, Khader YS, Khang YH, Kim D, Kimokoti RW, Kinge JM, Kokubo Y, Kosen S, Kwan G, Lai T, Leinsalu M, Li Y, Liang X, Liu S, Logroscino G, Lotufo PA, Lu Y, Ma J, Mainoo NK, Mensah GA, Merriman TR, Mokdad AH, Moschandreas J, Naghavi M, Naheed A, Nand D, Narayan KM, Nelson EL, Neuhouser ML, Nisar MI, Ohkubo T, Oti SO, Pedroza A, Prabhakaran D, Roy N, Sampson U, Seo H, Sepanlou SG, Shibuya K, Shiri R, Shiue I, Singh GM, Singh JA, Skirbekk V, Stapelberg NJ, Sturua L, Sykes BL, Tobias M, Tran BX, Trasande L, Toyoshima H, van de Vijver S, Vasankari TJ, Veerman JL, Velasquez-Melendez G, Vlassov VV, Vollset SE, Vos T, Wang C, Wang X, Weiderpass E, Werdecker A, Wright JL, Yang YC, Yatsuya H, Yoon J, Yoon SJ, Zhao Y, Zhou M, Zhu S, Lopez AD, Murray CJ, Gakidou E. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the global burden of disease study 2013. Lancet 2014; 384: 766-781.

- [5] Romero-Corral A, Somers VK, Sierra-Johnson J, Thomas RJ, Collazo-Clavell ML, Korinek J, Allison TG, Batsis JA, Sert-Kuniyoshi FH and Lopez-Jimenez F. Accuracy of body mass index in diagnosing obesity in the adult general population. Int J Obes (Lond) 2008; 32: 959-966.
- [6] Renehan AG, Tyson M, Egger M, Heller RF and Zwahlen M. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet 2008; 371: 569-578.
- [7] Discacciati A, Orsini N and Wolk A. Body mass index and incidence of localized and advanced prostate cancer-a dose-response meta-analysis of prospective studies. Ann Oncol 2012; 23: 1665-1671.
- [8] Parr CL, Batty GD, Lam TH, Barzi F, Fang X, Ho SC, Jee SH, Ansary-Moghaddam A, Jamrozik K, Ueshima H, Woodward M and Huxley RR. Bodymass index and cancer mortality in the Asia-Pacific Cohort Studies Collaboration: pooled

- analyses of 424,519 participants. Lancet Oncol 2010; 11: 741-752.
- [9] Greenland S and Longnecker MP. Methods for trend estimation from summarized dose-response data, with applications to meta-analysis. Am J Epidemiol 1992; 135: 1301-1309.
- [10] Orsini N, Li R, Wolk A, Khudyakov P and Spiegelman D. Meta-analysis for linear and nonlinear dose-response relations: examples, an evaluation of approximations, and software. Am J Epidemiol 2012; 175: 66-73.
- [11] Begg CB and Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994; 50: 1088-1101.
- [12] Egger M, Davey Smith G, Schneider M and Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997; 315: 629-634.
- [13] Higgins JP and Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med 2002; 21: 1539-1558.
- [14] Bassett JK, Severi G, Baglietto L, MacInnis RJ, Hoang HN, Hopper JL, English DR and Giles GG. Weight change and prostate cancer incidence and mortality. Int J Cancer 2012; 131: 1711-1719.
- [15] Dehal A, Garrett T, Tedders SH, Arroyo C, Afriyie-Gyawu E and Zhang J. Body mass index and death rate of colorectal cancer among a national cohort of U.S. adults. Nutr Cancer 2011; 63: 1218-1225.
- [16] Discacciati A, Orsini N, Andersson SO, Andren O, Johansson JE and Wolk A. Body mass index in early and middle-late adulthood and risk of localised, advanced and fatal prostate cancer: a population-based prospective study. Br J Cancer 2011; 105: 1061-1068.
- [17] Haggstrom C, Stocks T, Ulmert D, Bjorge T, Ulmer H, Hallmans G, Manjer J, Engeland A, Nagel G, Almqvist M, Selmer R, Concin H, Tretli S, Jonsson H and Stattin P. Prospective study on metabolic factors and risk of prostate cancer. Cancer 2012; 118: 6199-6206.
- [18] Rodriguez C, Patel AV, Calle EE, Jacobs EJ, Chao A and Thun MJ. Body mass index, height, and prostate cancer mortality in two large cohorts of adult men in the United States. Cancer Epidemiol Biomarkers Prev 2001; 10: 345-353.
- [19] Stocks T, Hergens MP, Englund A, Ye W and Stattin P. Blood pressure, body size and prostate cancer risk in the Swedish construction workers cohort. Int J Cancer 2010; 127: 1660-1668.
- [20] Taghizadeh N, Boezen HM, Schouten JP, Schroder CP, Elisabeth de Vries EG and Vonk JM. BMI and lifetime changes in BMI and cancer mortality risk. PLoS One 2015; 10: e0125261.

- [21] Wright ME, Chang SC, Schatzkin A, Albanes D, Kipnis V, Mouw T, Hurwitz P, Hollenbeck A and Leitzmann MF. Prospective study of adiposity and weight change in relation to prostate cancer incidence and mortality. Cancer 2007; 109: 675-684.
- [22] Hammoud AO, Meikle AW, Reis LO, Gibson M, Peterson CM and Carrell DT. Obesity and male infertility: a practical approach. Semin Reprod Med 2012; 30: 486-495.
- [23] Cunha GR, Hayward SW, Wang YZ and Ricke WA. Role of the stromal microenvironment in carcinogenesis of the prostate. Int J Cancer 2003; 107: 1-10.
- [24] Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, Powell C, Vedantam S, Buchkovich ML, Yang J, Croteau-Chonka DC, Esko T, Fall T, Ferreira T, Gustafsson S, Kutalik Z, Luan J, Mägi R, Randall JC, Winkler TW, Wood AR, Workalemahu T, Faul JD, Smith JA, Hua Zhao J, Zhao W, Chen J, Fehrmann R, Hedman ÅK, Karjalainen J, Schmidt EM, Absher D, Amin N, Anderson D, Beekman M, Bolton JL, Bragg-Gresham JL, Buyske S, Demirkan A, Deng G, Ehret GB, Feenstra B, Feitosa MF, Fischer K, Goel A, Gong J, Jackson AU, Kanoni S, Kleber ME, Kristiansson K, Lim U, Lotay V, Mangino M, Mateo Leach I, Medina-Gomez C, Medland SE, Nalls MA, Palmer CD, Pasko D, Pechlivanis S, Peters MJ, Prokopenko I, Shungin D, Stančáková A, Strawbridge RJ, Ju Sung Y, Tanaka T, Teumer A, Trompet S, van der Laan SW, van Setten J, Van Vliet-Ostaptchouk JV, Wang Z, Yengo L, Zhang W. Isaacs A. Albrecht E. Ärnlöv J. Arscott GM. Attwood AP, Bandinelli S, Barrett A, Bas IN, Bellis C, Bennett AJ, Berne C, Blagieva R, Blüher M, Böhringer S, Bonnycastle LL, Böttcher Y, Boyd HA, Bruinenberg M, Caspersen IH, Ida Chen YD, Clarke R, Daw EW, de Craen AJ, Delgado G. Dimitriou M. Doney AS, Eklund N. Estrada K, Eury E, Folkersen L, Fraser RM, Garcia ME, Geller F, Giedraitis V, Gigante B, Go AS, Golay A, Goodall AH, Gordon SD, Gorski M, Grabe HJ, Grallert H, Grammer TB, Gräßler J, Grönberg H, Groves CJ, Gusto G, Haessler J, Hall P. Haller T. Hallmans G. Hartman CA, Hassinen M, Hayward C, Heard-Costa NL, Helmer Q, Hengstenberg C, Holmen O, Hottenga JJ, James AL, Jeff JM, Johansson Å, Jolley J, Juliusdottir T, Kinnunen L, Koenig W, Koskenvuo M, Kratzer W, Laitinen J, Lamina C, Leander K, Lee NR, Lichtner P, Lind L, Lindström J, Sin Lo K, Lobbens S, Lorbeer R, Lu Y, Mach F, Magnusson PK, Mahajan A, McArdle WL, McLachlan S, Menni C, Merger S, Mihailov E, Milani L, Moayyeri A, Monda KL, Morken MA, Mulas A, Müller G, Müller-Nurasyid M, Musk AW, Nagaraja R, Nöthen MM, Nolte IM, Pilz S, Rayner NW, Renstrom F, Rettig R, Ried JS, Ripke S,

Robertson NR, Rose LM, Sanna S, Scharnagl H, Scholtens S, Schumacher FR, Scott WR, Seufferlein T, Shi J, Vernon Smith A, Smolonska J. Stanton AV. Steinthorsdottir V. Stirrups K. Stringham HM, Sundström J, Swertz MA, Swift AJ, Syvänen AC, Tan ST, Tayo BO, Thorand B, Thorleifsson G, Tyrer JP, Uh HW, Vandenput L, Verhulst FC, Vermeulen SH, Verweij N, Vonk JM, Waite LL, Warren HR, Waterworth D, Weedon MN, Wilkens LR, Willenborg C, Wilsgaard T, Wojczynski MK, Wong A, Wright AF, Zhang Q; LifeLines Cohort Study, Brennan EP, Choi M, Dastani Z, Drong AW, Eriksson P, Franco-Cereceda A, Gådin JR, Gharavi AG, Goddard ME, Handsaker RE, Huang J, Karpe F, Kathiresan S, Keildson S, Kiryluk K, Kubo M, Lee JY, Liang L, Lifton RP, Ma B, McCarroll SA, McKnight AJ, Min JL, Moffatt MF, Montgomery GW, Murabito JM, Nicholson G, Nyholt DR, Okada Y, Perry JR, Dorajoo R, Reinmaa E, Salem RM, Sandholm N, Scott RA, Stolk L, Takahashi A, Tanaka T, Van't Hooft FM, Vinkhuyzen AA, Westra HJ, Zheng W, Zondervan KT; ADIPOGen Consortium; AGEN-BMI Working Group; CAR-DIOGRAMplusC4D Consortium; CKDGen Consortium; GLGC; ICBP; MAGIC Investigators; MuTHER Consortium; MIGen Consortium; PAGE Consortium; ReproGen Consortium; GE-NIE Consortium; International Endogene Consortium, Heath AC, Arveiler D, Bakker SJ, Beilby J, Bergman RN, Blangero J, Bovet P, Campbell H, Caulfield MJ, Cesana G, Chakravarti A, Chasman DI, Chines PS, Collins FS, Crawford DC, Cupples LA, Cusi D, Danesh J, de Faire U, den Ruijter HM, Dominiczak AF, Erbel R, Erdmann J, Eriksson JG, Farrall M, Felix SB, Ferrannini E, Ferrières J, Ford I, Forouhi NG, Forrester T, Franco OH, Gansevoort RT, Gejman PV, Gieger C, Gottesman O, Gudnason V, Gyllensten U, Hall AS, Harris TB, Hattersley AT, Hicks AA, Hindorff LA, Hingorani AD, Hofman A, Homuth G, Hovingh GK, Humphries SE, Hunt SC, Hyppönen E, Illig T, Jacobs KB, Jarvelin MR, Jöckel KH, Johansen B, Jousilahti P, Jukema JW, Jula AM, Kaprio J, Kastelein JJ, Keinanen-Kiukaanniemi SM, Kiemeney LA, Knekt P, Kooner JS, Kooperberg C, Kovacs P, Kraja AT, Kumari M, Kuusisto J, Lakka TA, Langenberg C, Le Marchand L, Lehtimäki T, Lyssenko V, Männistö S, Marette A, Matise TC, McKenzie CA, McKnight B, Moll FL, Morris AD, Morris AP, Murray JC, Nelis M, Ohlsson C, Oldehinkel AJ, Ong KK, Madden PA, Pasterkamp G, Peden JF, Peters A, Postma DS, Pramstaller PP, Price JF, Qi L, Raitakari OT, Rankinen T, Rao DC, Rice TK, Ridker PM, Rioux JD, Ritchie MD, Rudan I, Salomaa V, Samani NJ, Saramies J, Sarzynski MA, Schunkert H, Schwarz PE, Sever P, Shuldiner AR, Sinisalo J, Stolk RP, Strauch K,

Tönjes A, Trégouët DA, Tremblay A, Tremoli E, Virtamo J, Vohl MC, Völker U, Waeber G, Willemsen G, Witteman JC, Zillikens MC, Adair LS, Amouvel P. Asselbergs FW. Assimes TL, Bochud M, Boehm BO, Boerwinkle E, Bornstein SR, Bottinger EP, Bouchard C, Cauchi S, Chambers JC, Chanock SJ, Cooper RS, de Bakker PI, Dedoussis G, Ferrucci L, Franks PW, Froguel P, Groop LC, Haiman CA, Hamsten A, Hui J, Hunter DJ, Hveem K, Kaplan RC, Kivimaki M, Kuh D, Laakso M, Liu Y, Martin NG, März W, Melbye M, Metspalu A, Moebus S, Munroe PB, Njølstad I, Oostra BA, Palmer CN, Pedersen NL, Perola M, Pérusse L, Peters U, Power C, Quertermous T, Rauramaa R, Rivadeneira F, Saaristo TE, Saleheen D. Sattar N. Schadt EE, Schlessinger D. Slagboom PE, Snieder H, Spector TD, Thorsteinsdottir U, Stumvoll M, Tuomilehto J, Uitterlinden AG, Uusitupa M, van der Harst P, Walker M, Wallaschofski H, Wareham NJ, Watkins H, Weir DR, Wichmann HE, Wilson JF, Zanen P, Borecki IB, Deloukas P, Fox CS, Heid IM, O'Connell JR, Strachan DP, Stefansson K, van Duijn CM, Abecasis GR, Franke L, Frayling TM, McCarthy MI, Visscher PM, Scherag A, Willer CJ, Boehnke M, Mohlke KL, Lindgren CM, Beckmann JS, Barroso I, North KE, Ingelsson E, Hirschhorn JN, Loos RJ, Speliotes EK. Genetic studies of body mass index yield new insights for obesity biology. Nature 2015; 518: 197-206.

- [25] Presti JC Jr. Obesity and prostate cancer. Curr Opin Urol 2005; 15: 13-16.
- [26] Ribeiro R, Monteiro C, Catalan V, Hu P, Cunha V, Rodriguez A, Gomez-Ambrosi J, Fraga A, Principe P, Lobato C, Lobo F, Morais A, Silva V, Sanches-Magalhaes J, Oliveira J, Pina F, Lopes C, Medeiros R and Fruhbeck G. Obesity and prostate cancer: gene expression signature of human periprostatic adipose tissue. BMC Med 2012: 10: 108.
- [27] Spencer EA, Appleby PN, Davey GK and Key TJ. Validity of self-reported height and weight in 4808 EPIC-Oxford participants. Public Health Nutr 2002; 5: 561-565.
- [28] Wada K, Tamakoshi K, Tsunekawa T, Otsuka R, Zhang H, Murata C, Nagasawa N, Matsushita K, Sugiura K, Yatsuya H and Toyoshima H. Validity of self-reported height and weight in a Japanese workplace population. Int J Obes (Lond) 2005; 29: 1093-1099.
- [29] Reas DL, Nygard JF, Svensson E, Sorensen T and Sandanger I. Changes in body mass index by age, gender, and socio-economic status among a cohort of Norwegian men and women (1990-2001). BMC Public Health 2007; 7: 269.