Case Report

The unusual anatomy of the maxillary and mandibular molars diagnosed by cone-beam computed tomography

Fengqin Tang1*, Xu Zhang1*, Xiaoshan Tang1*, Raorao Wang1, Yuanzhi Xu1, Derong Zou2, Guangwei Shang1

¹Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China; ²Department of Stomatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China. *Equal contributors.

Received September 2, 2016; Accepted November 2, 2016; Epub January 15, 2017; Published January 30, 2017

Abstract: Background: Knowledge of variations in dental anatomy and canal morphology plays a key role in the success of endodontic therapy. Case presentation: This report presents a patient who had unusual tooth morphology, including the bilateral existence of 11 maxillary and mandibular first, second and third molars with a single root and a single canal. The patient was diagnosed using cone-beam computed tomography (CBCT). To our knowledge, this is the first report of such case in the literature. Endodontic treatment of the left maxillary second molar was performed. CBCT images confirmed our diagnosis and the unusual morphology of the 11 molars. Conclusions: This report highlights that CBCT has a significant role in confirming the anatomy of teeth, which provided an opportunity to precisely describe the anatomy of 11 maxillary and mandibular molars with single roots and single canals.

Keywords: Cone-beam computed tomography, maxillary molar, mandibular molar, permanent teeth, single canal and single root

Introduction

The variation of root canal morphology has been considered to be associated with the endodontic diagnosis and therapy [1]. Variations in canal morphology are commonly encountered in maxillary and mandibular molars [2-4]. Although the identification of less frequently occurring morphologic variations has been described, the existence of all of the maxillary and mandibular molars is not reported in one person. In this case report, a patient who presented for endodontic treatment with 11 single-rooted molars and single root canals is described. Cone-Beam Computed Tomography (CBCT) examinations confirmed the bilateral existence of first, second and third maxillary and mandibular molars with single roots and single canals.

Materials and methods

A 50-year-old female patient was admitted because of intermittent pain in region of the

left upper back tooth. Clinical examination revealed a grossly decayed left maxillary second molar. Neither fistulae nor edema was observed in the soft tissues. There was no pain or tenderness to palpation. Vitality testing with cold ice of the left maxillary second molar led to an intense pain, whereas electric pulp testing showed an exaggerated response. The preoperative radiograph revealed the anatomy of the left maxillary second molar, as well as the unanatomy of both the left maxillary first molar and third molar with a single root and canal. The radiograph images of the right maxillary and mandibular molars also showed single root and canal. Acute pulpitis in left maxillary second molar was diagnosed and endodontic treatment was recommended.

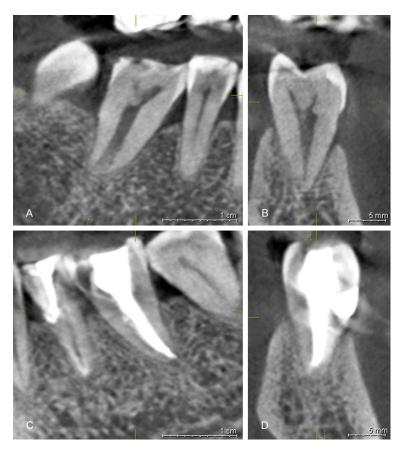
To ascertain this rare morphology, a multi-slice CBCT (V1010, Galileos, Sinona, Germany) in the maxilla and mandible was carried out (tube voltage, 90 kV and tube current, 12 mA). The morphology of the involved teeth was obtained in transverse, sagittal and axial sections of 5-mm thickness each.

Figure 1. The cone-beam computed tomography image of the right maxillary molars in the transverse (A) and sagittal section (B), as well as the left maxillary molars in the transverse (C) and sagittal section (D).

Results

The CBCT images showed the single root and canal in transverse, sagittal and axial sections of all maxillary and mandibular first molars. In the transverse section, the canal of right (Figure 1A) and left (Figure 1C) maxillary molars was a small mesiodistal diameter. However, in the sagittal section, the image displayed a single, wide but gradually decreasing, oval-shaped root canal systems with a large buccolingual diameter (Figure 1B, 1D). The morphology in the transverse section of the right mandibular first molar was uniform with a single, wide large canal from the pulp chamber to the root tip (Figure 2A). However, the image showed a single, conical shaped root canal in sagittal section (Figure 2B). The morphology of the left mandibular first molar showed an obturated image with a wide, large shape both in the transverse and sagittal sections (Figure 2C, 2D). The images of the right (Figure 3A, 3B) and left (Figure 3C, 3D) mandibular second molar displayed a single, wide canal both in the trans-

verse and sagittal section. In the axial section, the maxillary molars displayed single, wide but gradually decreasing, ovalshaped root canal systems with a large buccolingual diameter and a small mesiodistal diameter (Figure 4A, 4B). In comparison with the maxillary molars, the single root canal systems of all mandibular molars were more circular to trapezoidal (Figure 4C, 4D). The right mandibular third molar had been extracted, therefore, the morphology could not be determined.


Caries excavation in the distal surface of the tooth was restored with IRM (IRM; Dentsply De Trey GmbH, Konstanz, Germany). A rubber dam was placed, and a conventional endodontic access opening was established with an Endo Access bur (Dentsply Tulsa, Tulsa, OK). Local anesthesia was induced using 1.7 mL articaine with 1:100,000

epinephrine (Rolland, Meriganc, France). On access opening, a single large buccolingual canal was discovered in the center of the pulp chamber. The pulp chamber was confirmed using dental operating microscope (M525 F40, LeicaMicrosystyms, Germany).

Discussion

This clinical case report focused on three aspects. The first was the unusual anatomy of the maxillary and mandibular molars with a single root and canal in one patient. The second was that the same anatomical aberration presented in the contralateral pairs with the exception of the right mandibular third molar. The third was the confirmation of our diagnosis with the aid of CBCT.

Our case report highlighted the presence of an unusual anatomy both in maxillary and mandibular molars in one person. The comprehensive review of Cleghorn et al. [5] described that three roots presented in the first maxillary molars, which occurred in an overall percent-

Figure 2. The cone-beam computed tomography image of the right mandibular first molar in the transverse (A) and sagittal section (B), as well as the left mandibular first molar in the transverse (C) and sagittal section (D).

age of 96.2%, whereas the percentage of first maxillary molars with two roots was 3.8%. The existence of maxillary second molars with a single root and canal had been reported in rare occasions. Previous study reported an incidence of 0.5% after an in vivo evaluation of 200 radiographs of maxillary second molars [6]. Recent studies showed an incidence of 4.63% of the second maxillary molar with single root in a Korean population [7] and an incidence of 5% in a South Asian Indians population [8]. Typically, the majority of permanent mandibular first molars presented two well-defined roots. including a mesial root with two canals and a distal root with one or two canals. Systematic reviews of the literature [9, 10] on canal morphology of the mandibular first molar had not documented this rare morphology. This morphological variation had been documented only once in an in vitro study conducted by Reuben et al. [11]. He found that only one sample had a single root in 125 samples of mandibular

first molars from an Indian population. In 2011, loannidis et al. [12] reported a case of the left first mandibular molar with a single root and canal and described the incidence and the endodontic management. In 2014, Sooriaprakas et al. [13] reported that a case had a first mandibular molar with a single root. They also identified the existence of this anatomical variation in bilateral pairs in both mandibular first and second molars. Papers of the first molar with a single root and canal are shown in Table 1.

The occurrence of second mandibular molars with a single root and canal also had been reported. In a clinical case, Fava et al. [14] identified the existence of such anatomical variations in the second maxillary and mandibular molars. Ioannidis et al. [12] found the same case and described this bilateral existence by using CBCT. Sooriaprakas et al. [13] found all of the first and

second mandibular molars with a single root and canal. Papers of the second molar with a single root and canal are shown in **Table 2**.

Relatively few studies had been conducted on the root and canal morphology of the mandibular third molars. Park et al. [15] investigated the morphology and number of roots of Korean mandibular third molars using CBCT and the results showed that 81 third molars (37.9%) were one-rooted and 121 third molars (56.5%) had two roots. In addition, Furry [16] suggested that 80.5% of patients had similar root morphology on both sides. However, Gunst et al. [17] found that left-right symmetry in the root development of the mandibular third molar had a correlation coefficient of 0.93 for males and 0.95 for females. Although some studies had investigated the root morphology of the third molar, few studies provided a comprehensive morphological description of the third molar with a single root and canal.

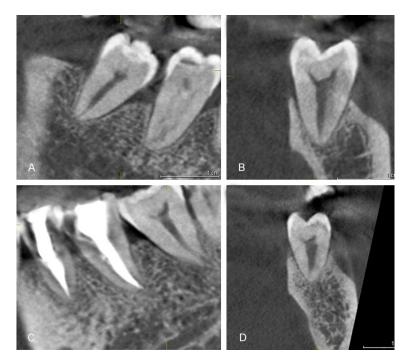
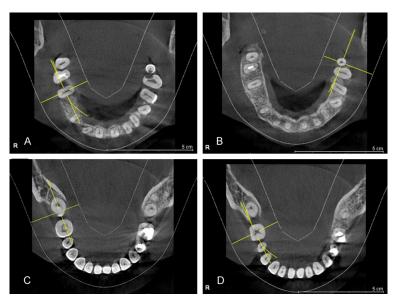



Figure 3. The cone-beam computed tomography image of the right mandibular second molar in the transverse (A) and sagittal section (B), as well as the left mandibular second molar in the transverse (C) and sagittal section (D).

Figure 4. The cone-beam computed tomography image of the maxillary (A, B) and mandibular (C, D) molars in the axial section.

The presence of identical root and canal variations in contralateral pairs was important, because there were occasions in which a clinician had to perform endodontic treatment in the contralateral teeth and the ones that were originally affected. Few studies compared the bilat-

eral existence of previously diagnosed unusual anatomical variations in the contralateral pairs. Fava et al. [14] reported the bilateral existence of four second molars in a patient. Alani [18] reported the endodontic management of bilaterally occurring four-rooted maxillary molars in a patient. Ioannidis et al. [12] and Sooriaprakas et al. [13] also reported the bilateral existence of involved molars with unusual morphology. A radiograph of the contralateral tooth was highly recommended as soon as an unusual anatomical variation was detected [14].

CBCT technology was widely used in diagnosing endodontic pathology, assessing root and alveolar fractures, analyzing resorptive lesions, identifying the pathology from non-endodontic origin, and evaluating the technical quality [19-21]. Furthermore, CBCT measurements were geometrically accurate, owing to the fact that the CBCT voxels (3D pixels containing data) were isotropic [22]. In the present case, CBCT imaging confirmed the unusual root morphology of 11 molars with a single root and canal in one patient.

We concluded that this case report presented a patient who had unusual tooth morphology, including the bilateral existence of 11 maxillary and mandibular first, second and third molars with a single root and canal. This paper also highlighted that CBCT had a significant role in confirming the anatomy of teeth.

Acknowledgements

The authors wish to thank Doctor ShengCai Qi for revising this paper and XiaoLin XU for helping with the CBCT imaging. FT, XZ, XT and GS performed the assessment of the patient and

A case report in dental diagnosed using CBCT

Table 1. Papers of the first molar with single root and single canal

Author (year)	Population	Material and Method	The Tooth	Variations reported	Diagnosed tool
Gopikrishna et al. (Gopikrishna, V., Bhargavi, N., et al. 2006) (2006)	Indian	Case report	The maxillary first molar	Single root and single canal	Spiral-CT
Cobankara et al. (Kottoor, J., Sudha, R., et al. 2010) (2008)	Turkey	Case report	The maxillary first molar	Single root and single canal	X-Radiograph/Micro-scope
De la Torre et al. (de la Torre, F., Cisneros-Cabello, R., et al. 2008) (2008)	Spain	Case report	The maxillary first molar	Single root and single canal	X-Radiograph/Micro-scope
Shigli et al. (Shigli, A. and Agrawal, A. 2010) (2010)	Indian	Case report	The maxillary first molar	Single root and single canal	Spiral-CT
Ioannidis et al. (Ioannidis, K., Lambrianidis, T., et al. 2011) (2010)	Greece	Case report	Seven maxillary and Mandibular Molars	Single root and single canal	CBCT
Neelakantan et al. (Neelakantan, P., Subbarao, C., et al. 2010) (2012)	Indian	In vitro	220 maxillary first molars	1/220 single root and single canal	CBCT
Kim et al. (Kim, Y., Lee, SJ., et al. 2012) (2012)	Korean	In vitro	814 maxillary first molars	2/814 single root and single canal	CBCT
Chhabra et al. (Chhabra, N., Singbal, K.P., et al. 2013) (2013)	India	Case report	The maxillary first molar	Single root and single canal	CBCT
Saxena et al. (Saxena, A., Singh, A., et al. 2014)(2014)	India	Case report	The maxillary first molar	Single root and single canal	Spiral-CT
Sooriaprakas et al. (Sooriaprakas, C., Ballal, S., et al. 2014) (2014)	India	Case report	The maxillary first molar	Single root and single canal	X-Radiograph

CT, computed tomography; CBCT, cone-beam computed tomography.

Table 2. Papers of the second molar with single root and single canal

Author (year)	Population	Material and Method	The Tooth	Variations reported	Diagnosed tool
Hartwell and Bellizzi (Hartwell, G. and Bellizzi, R. 1982) (1982)	-	In vivo	Endodontically treated maxillary second molars	0.6% single root and single canal	X-radiograph
Libfeld and Rotstein (Libfeld, H. and Rotstein, I. 1989) (1989)	-	In vitro	200 endodontically treated maxillary second molars	0.3% single root and single canal	X-radiograph
Calsen et al. (Carlsen, O., Alexandersen, V., et al. 1992) (1992)	-	In vitro	100 single rooted maxillary second molars	30.4% single root and single canal	X-radiograph
Pansiera and Milano (Pansiera, A.F. and Milano, N.F. 1995) (1995)	-	In vitro	102 extractedmaxillary second molars	5.88% single root and single canal	X-radiograph
Peikoff et al. (Peikoff, M., Christie, W., et al. 1996) (1996)	-	In vitro	520 endodontically treated maxillary second molars	3.1% single root and single canal	X-radiograph
Fava et al. (Fava, L., Weinfeld, I., et al. 2000) (2000)		Case report	2 maxillary second molars and 2 mandibular second molars	Single root and single canal	X-radiograph
loannidis et al. (Ioannidis, K., Lambrianidis, T., et al. 2011) (2011)	Greek	Case report	2 maxillary second molars and 2 mandibular second molars	Single root and single canal	CBCT
Sooriaprakas et al. (Sooriaprakas, C., Ballal, S., et al. 2014) (2014)	Indian	Case report	1 maxillary second molars and 2 mandibular second molars	Single root and single canal	X-radiograph
Wang et al. (Wang, Y., Hui, X., et al. 2011) (2011)	Chinese	Case report	1 maxillary second molars	single root and single curved canal	CBCT
Sert et al. (Sert, S., Şahinkesen, G., et al. 2011) (2011)	Turkish	In vitro			
			252 maxillary second molar	1.9% single root and single canal	X-radiograph
			332 mandibular second molar	1.2% single root and single canal	X-radiograph
Kim et al. (Kim, Y., Lee, SJ., et al. 2012) (2012)	Korean	In vitro	775 maxillary second molar	3.87% single root and single canal	CBCT
Roy et al. (Roy, A., Velmurugan, N., et al. 2013) (2013)	-	3 cases reports			
			4 second molars	Single root and single canal	SCT
			Left mandibular second molar	Single root and single canal	Microscope
			4 second molars	Single root and single canal	X-radiograph
Jahromi et al.(Jahromi, M.Z., Golestan, F.J., et al. 2013) (2013)	Iran	In vitro	100 mandibular second molar	Single root and single canal	Clearing method

CBCT, cone-beam computed tomography; SCT, scan computed tomography.

drafted the manuscript. RW, YX and DZ performed assessment of the patient and reviewed the available literature. All authors read and approved the final manuscript.

Disclosure of conflict of interest

None.

Address correspondence to: Guangwei Shang, Department of Stomatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Middle Yanchang Road, Shanghai 200072, China. Tel: +86-021-66301722; Fax: +86-021-66301725; E-mail: guangwei_shang@sina.com

References

- [1] Malagnino V, Gallottini L and Passariello P. Some unusual clinical cases on root anatomy of permanent maxillary molars. J Endod 1997; 23: 127-128.
- [2] Jung IY, Seo MA, Fouad AF, Spångberg LS, Lee SJ, Kim HJ and Kum KY. Apical anatomy in mesial and mesiobuccal roots of permanent first molars. J Endod 2005; 31: 364-368.
- [3] Júnior BP, Teixeira CS, Silva RG, Vansan LP and Neto MD. Treatment of a second maxillary molar with six canals. Aust Endod J 2007; 33: 42-45.
- [4] Kottoor J, Sudha R and Velmurugan N. Middle distal canal of the mandibular first molar: a case report and literature review. Int Endod J 2010; 43: 714-722.
- [5] Cleghorn BM, Christie WH and Dong CC. Root and root canal morphology of the human permanent maxillary first molar: a literature review. J Endod 2006; 32: 813-821.
- [6] Libfeld H and Rotstein I. Incidence of four-rooted maxillary second molars: literature review and radiographic survey of 1,200 teeth. J Endod 1989; 15: 129-131.
- [7] Kim Y, Lee SJ and Woo J. Morphology of maxillary first and second molars analyzed by conebeam computed tomography in a Korean population: variations in the number of roots and canals and the incidence of fusion. J Endod 2012; 38: 1063-1068.
- [8] Singh S and Pawar M. Root canal morphology of South Asian Indian maxillary molar teeth. Eur J Dent 2015; 9: 133-44.
- [9] de Pablo ÓV, Estevez R, Sánchez MP, Heilborn C and Cohenca N. Root anatomy and canal configuration of the permanent mandibular first molar: a systematic review. J Endod 2010; 36: 1919-1931.
- [10] Ballullaya SV, Vemuri S and Kumar PR. Variable permanent mandibular first molar: Review of literature. J Conserv Dent 2013; 16: 99-110.

- [11] Reuben J, Velmurugan N and Kandaswamy D. The evaluation of root canal morphology of the mandibular first molar in an Indian population using spiral computed tomography scan: an in vitro study. J Endod 2008; 34: 212-215.
- [12] Ioannidis K, Lambrianidis T, Beltes P, Besi E and Malliari M. Endodontic management and cone-beam computed tomography evaluation of seven maxillary and mandibular molars with single roots and single canals in a patient. J Endod 2011; 37: 103-109.
- [13] Sooriaprakas C, Ballal S and Velmurugan N. Mandibular first molar with a single root and single canal. Case Rep Dent 2014; 2014: 159846.
- [14] Fava L, Weinfeld I, Fabri F and Pais C. Four second molars with single roots and single canals in the same patient. Int Endod J 2000; 33: 138-142.
- [15] Park JB, Kim N, Park S and Ko Y. Evaluation of number of roots and root anatomy of permanent mandibular third molars in a Korean population, using cone-beam computed tomography. Eur J Dent 2013; 7: 296.
- [16] Furri M. Differences in the confluence of mesial canals in mandibular molar teeth with three or four root canals. Int Endod J 2008; 41: 777-780.
- [17] Gunst K, Mesotten K, Carbonez A and Willems G. Third molar root development in relation to chronological age: a large sample sized retrospective study. Forensic Sci Int 2003; 136: 52-57.
- [18] Alani AH. Endodontic treatment of bilaterally occurring 4-rooted maxillary second molars: case report. J Can Dent Assoc 2003; 69: 733-735.
- [19] Kottoor J, Velmurugan N, Sudha R and Hemamalathi S. Maxillary first molar with seven root canals diagnosed with cone-beam computed tomography scanning: a case report. J Endod 2010; 36: 915-921.
- [20] Kiarudi AH, Eghbal MJ, Safi Y, Aghdasi MM and Fazlyab M. The applications of cone-beam computed tomography in endodontics: a review of literature. Iran Endod J 2015; 10: 16-25.
- [21] Nur BG, Ok E, Altunsoy M, Ağlarci OS, Çolak M, Güngör E. Evaluation of technical quality and periapical health of root-filled teeth by using cone-beam CT. J Appl Oral Sci 2014; 22: 502-508
- [22] Patel S and Horner K. The use of cone beam computed tomography in endodontics. Int Endod J 2009; 42: 755-756.