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Abstract: Objectives: Gene plays an important role in alcoholic liver disease (ALD). The H63D polymorphism 
(rs1799945, C>G) of hemochromatosis (HFE) gene has been found to be related to alcoholic liver disease in vari-
ous studies. To classify the association between H63D polymorphism and alcoholic liver disease susceptibility, we 
performed a meta-analysis. Methods: We retrieved published studies on the association between H63D and ALD by 
electronic database (Embase, PubMed, Cochrane and Web of Science). Related data was extracted. Pooled odds 
ratios (ORs) and 95% confidence intervals (CIs) were performed with fixed effect model or random effect model. 
Sensitivity analysis and Publication bias have also been presented. Results: Nine eligible studies were included, 
with a total of 2720 controls and 1200 cases. The pooled results showed that a significantly increased risk of ALD 
susceptibility was observed in homozygote model (GG versus CC: OR=2.28, 95% CI 1.39-3.75, I2=0%, PH=0.999) 
and recessive model (GG versus GC+CC: OR=2.22, 95% CI 1.35-3.65, I2=0%, PH=0.999). Ethnic subgroup analy-
sis showed similar results in Caucasian: homozygote model (GG versus CC: OR=2.28, 95% CI 1.39-3.75, I2=0%, 
PH=0.999), recessive model (GG versus GC+CC: OR=2.22, 95% CI 1.35-3.65, I2=0%, PH=0.999). In the subgroup 
analysis by genotyping method and quality, the effects remained in high quality studies and PCR-RFLP (restriction 
fragment length polymorphism). Conclusions: This meta-analysis suggested that H63D polymorphism (rs1799945) 
is associated with ALD susceptibility, especially for GG genotype in Caucasian. H63D polymorphism of HFE gene 
may be a potential target in gene therapy for alcoholic liver disease patients.
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Introduction

Alcoholic liver disease (ALD) seriously jeopar-
dized the health of human beings, which invo- 
lves in various hepatic lesions. Although the 
exact mechanisms of alcoholic liver disease 
are not clear, several studies have showed that 
iron may be the core of ALD [1-4]. More than 
half of ALD patients with advanced cirrhosis [5] 
and approximately 33% of ALD patients pre-
sented with excessive liver iron stores [6]. 
Similarly, iron plays a central role in oxidative 
stress which may precede the development of 
ALD [7]. Due to the vital role of iron in ALD, ele-
vation of total body iron stores and iron over-
load might be one of the risks of ALD.

Hereditary hemochromatosis (HH) is an autoso-
mal recessive disease of iron metabolic disor-
der, leading to an increased iron absorption and 
excessive iron accumulation [8]. A study has 
reported that patients with hemochromatosis 
had a 9-fold risk to develop cirrhosis when they 
uptook more than 60 g alcohol daily [9] which 
approved the association between HH and ALD. 
H63D polymorphism in hemochromatosis (HFE) 
gene is prevalent in patients with hereditary 
hemochromatosis by TfR [10] which may affect 
iron level in the body. Furthermore, some stud-
ies have proved that there is a positive associa-
tion between HFE mutations and risk of ALD 
[11, 12]. It’s traditionally considered that exces-
sive alcohol ingestion is the main reason to 
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result in ALD, however, only about 20% of sub-
jects with heavy alcohol consumption will 
develop alcoholic liver disease [13]. It suggests 
that gene has a significant contact with alco-
holic liver disease. Thus, H63D polymorphism 
may have a positive relationship with ALD.

Notwithstanding, many studies have represent-
ed the connection between H63D and ALD risk 
[11, 12, 14-20], the sample size in every study 
is limited and results were inconsistent [11, 12, 
15-17]. Thus, we performed a meta-analysis to 
confirm the association between H63D and 
risk of ALD.

Materials and methods

Search strategy

Two investigators independently performed a 
systematic search using PubMed, Cochrane, 
Excerpta Medica Database (Embase) and Web 
of Science with the last search updated on 
August 25, 2016. The following search terms 
were combined: “(SNP or SNPs or single nucleo-
tide polymorphism or polymorphism or genetic 
polymorphism or mutation or variant or varia-

review; (iv) Evaluated other HFE SNPs, no 
rs1799945; (v) Case-only study; (vi) No human 
study. Two investigators separately selected 
the potential literatures according to these cri-
teria. When divergences appear, the third inves-
tigator makes the final decision.

Data extraction

Two investigators independently extracted in- 
formation from all eligible literatures. Discre- 
pancies were verdict by a third investigator until 
all investigators are unanimous. The following 
data was collected: name of first author, ethnic-
ity, Hardy-Winberg equilibrium, sample sizes, 
Genotyping method, Histological types of ALD, 
genotype frequency in cases and controls and 
the quality of studies. Ethnicity was classified 
as Asian and Caucasian. We will send a request 
to corresponding author for additional data 
when primary data cannot be obtained from  
relevant articles.

Quality score assessment

The qualities of the included literatures were 
accessed by two authors respectively accord-

Table 1. Quality evaluation tabulation
Criteria Score
Source of control 
    Population-based. 3
    Hospital-based. 2
    Blood donors or volunteers. 1
    No described. 0
Source of cases
    ALD diagnosed according to acknowledged criteria. 1
    Mentioned the diagnosed criteria but no specially described. 0
Hardy-Weinberg equilibrium in controls
    Hardy-Weinberg equilibrium. 1
    Hardy-Weinberg disequilibrium. 0
Case-control match
    Gender and age matching 1
    Gender and age no matching 0
Sample size
    >300 2
    200-300 1
    <200 0
Genotyping methods
    Detecting samples by different methods 2
    Detecting samples by the same method 1
    No describing the genotyping methods 0

tion)” and “(alcoholic liver disea- 
se or alcoholic liver cirrhosis or 
alcoholic hepatitis or alcoholic 
liver fibrosis)” and “(HFE or H63D 
or His63Asp or rs1799945)”. Lan- 
guage and publication years are 
not restrictive in our search. Fin- 
ally, 119 articles were retrieved 
using the aforementioned terms.

Inclusion and exclusion criteria

Studies in the meta-analysis mu- 
st be conformed to the following 
inclusion criteria: (i) ALD as the 
outcome of study; (ii) Assessed 
the association between ALD 
and HFE rs1799945; (iii) Prese- 
nting sufficient genotype data of 
cases and controls with risk of 
ALD to calculate odds rations 
(ORs) and 95% confidence inter-
val (CIs); (iv) Case-control design 
for human; (v) Only full-text man-
uscripts were included. Exclusion 
criteria included: (i) Deficient ge- 
notype frequency; (ii) Duplicate 
literatures; (iii) Letter, comment, 
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ing to the predetermined criteria (Table 1) 
which was adjusted and revised from previous 
articles [7, 21] and the Newcastle-Ottawa Sca- 
le (NOS). The adjusted criteria cover the items 
of source of control, source of cases, case-con-
trol match, sample size, genotyping methods 
and the Hardy-Weinberg equilibrium in controls. 
Two authors respectively grade the included 
studies and any divergence was determined by 
the third author. Scores ranged from zero to 
nine. A study quality score ≥6 was defined as a 
“High quality”, while a study quality score <6 
was defined as a “Low quality” [22].

Statistical methods 

The meta-analysis was performed according  
to the PRISMA checklist and followed the  
guideline [23]. The control in every included 
study was assessed the Hardy-Weinberg equi-
librium (HWE) by Chi-square test and it was 
considered a Hardy-Weinberg disequilibrium 
when the P<0.05. OR and 95% CIs were calcu-
lated to evaluate the strength of the associa-
tion between H63D and the susceptibility to 
ALD. The pooled ORs were used to assess allel-
ic comparison (G versus C), heterozygote model 
(CG versus CC), homozygote model (GG versus 
CC), dominant model (GG+GC versus CC), re- 
cessive model (GG versus GC+CC), respective-
ly. Heterogeneity was evaluated by Q statistic 
(significance level of P<0.1) and I2 statistic 
(greater than 50% as evidence of significant 
inconsistency) [24]. When the heterogeneity 
was not significant we carried out the fixed 

the tests with two-sided P-values in our meta- 
analysis.

Results

Characteristics of studies

A total of 119 studies were acquired from 
PubMed, Cochrane, Embase and and Web of 
Science databases. The flow chart in Figure 1 
showed the literature screening process. 108 
articles were excluded, of which 59 were dupli-
cate ones and 49 with no relation to this topic. 
The remained 11 articles were full-text. Then 2 
studies were excluded, among which, one was 
letter [25] and the other was not a case-control 
study [26]. Eventually, 9 eligible case-control 
studies [11, 12, 14-20], conforming to the in- 
clusion criteria, were included in our meta-an- 
alysis.

Nine independent studies were included in our 
meta-analysis (1200 cases and 2720 controls) 
[11, 12, 14-20]. The characteristics of each 
study were showed in the Table 2. Only one 
study was based on Asian population [20] while 
other studies were based on Caucasian popu- 
lation [11, 12, 14-19]. The consequences of 
Hardy-Weinberg equilibrium test for the distri-
bution of the genotype in control population are 
shown in Table 2. The controls in all studies 
meet the HWE. The quality scores for all studies 
were ranged from 4 to 8, among which 56% (5 
of 9) studies were fallen into high quality sub-
group (≥6).

Figure 1. Flow chart of study 
selection.

effect model (Mantel-Haen- 
szel method) to evaluate the 
summary OR and 95% CI, if 
not, the random effect model 
(the DerSimonian and Laird 
method) was performed to 
assess the summary OR and 
95% CI. Sensitivity analysis 
was performed by examining 
the effect of omitting individu-
al studies. Begg’s funnel plot 
and the Egger’ test were per-
formed to check the publica-
tion bias (P<0.05 was sug-
gested that the consequence 
was significant). STATA soft-
ware (version 12.0; StataCo- 
rp, College Station, Texas 
USA) was used to perform all 
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Meta-analysis results

The pooled result showed that a significantly 
increased risk of ALD susceptibility was obs- 
erved in homozygote model (GG versus CC: 

OR=2.28, 95% CI 1.39-3.75, I2=0%, PH=0.999) 
and recessive model (GG versus GC+CC: OR= 
2.22, 95% CI 1.35-3.65, I2=0%, PH=0.999) 
(Figure 2). No significant association between 
ALD susceptibility and H63D polymorphism 

Table 2. Characteristics of the studies included in the meta-analysis

First author Genotyping 
method Ethnicity HT of ALD

Case Control HWE
Quality

CC GC GG CC GC GG p-value
Ropero [11] PCR-RFLP Caucasian ALD 70 46 9 124 52 5 0.871 8
Dhillon [14] PCR-RFLP Caucasian ALD 19 3 0 88 11 1 0.342 5
Grove [15] PCR-RFLP Caucasian ALC 192 58 7 82 34 1 0.209 7
Raszeja [16] PCR-RFLP Caucasian ALD 86 27 6 1077 401 38 0.926 7
Gleeson [17] Non-RFLP Caucasian ALD 182 68 4 90 39 1 0.140 8
Costa [18] Non-RFLP Caucasian ALD 41 20 2 37 14 1 0.806 5
Machado [12] PCR-RFLP Caucasian ALD 42 33 3 54 20 2 0.928 5
Dostalikova [19] PCR-RFLP Caucasian ALD 154 56 8 334 139 8 0.130 8
Sohda [20] Non-RFLP Asian ALD 62 2 0 30 1 0 0.927 4
ALD: alcoholic liver disease; ALC: alcohol-related liver cirrhosis; HT: Histological types.

Figure 2. A: Forest plot about the homozygote model of H63D for overall comparison (GG vs CC), fixed effect model; 
B: Forest plot about the recessive model of H63D for overall comparison (GG vs GC+CC), fixed effect model. The size 
of the black squares represents the weight of the study in the meta-analysis. The rhombus represents the combined 
OR. 
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was observed in dominant model (GC+GG ver-
sus CC: OR=1.07, 95% CI 0.90-1.28, I2=27%, 
PH=0.204), allelic comparison (G versus C: OR= 
1.14, 95% CI 0.98-1.33, I2=8.2%, PH=0.367) 
and heterozygote model (GC versus CC: OR= 
1.00 95% CI 0.84-1.21, I2=29.3%, PH=0.184) 
(Figure 3).

Subgroup analysis

Subgroup analysis based on ethnicity showed 
the same effects in Caucasian. A significant 
risk of ALD susceptibility in homozygote model 
(GG versus CC: OR=2.28, 95% CI 1.39-3.75, 
I2=0%, PH=0.999) and recessive model (GG ver-

Figure 3. A: Forest plot about the allelic comparison of H63D for overall comparison (G versus C), fixed effect model; 
B: Forest plot about the heterozygote model for overall comparison (GC versus CC), fixed effect model; C: Forest plot 
about the dominant model of H63D for overall comparison (GC+GG versus CC), fixed effect model. The size of the 
black square represents the weight of the study in the meta-analysis. The rhombus represents the combined OR.
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sus GC+CC: OR=2.22, 95% CI 1.35-3.65, 
I2=0%, PH=0.999). Nevertheless, no prominent 
association was found in dominant model 
(GC+GG versus CC: OR=1.08, 95% CI 0.90-
1.28, I2=36.1%, PH=0.141), allelic comparison 
(G versus C: OR=1.14, 95% CI 0.98-1.33, 
I2=19.6%, PH=0.275) and heterozygote model 
(GC versus CC: OR=1.00, 95% CI 0.84-1.21, 
I2=19.6%, PH=0.125) (Table 3). Since only one 
study was based on Asian race, the subgroup 
analysis was not carried out in Asian popul- 
ation.

Then we performed another subgroup analysis 
to investigate the effect of quality of studies. In 

When stratifying by Genotyping method, the 
similar effects remained in PCR-RFLP subgroup 
(G versus C: OR=1.17, 95% CI 0.98-1.38, I2= 
34.8%, PH=0.175; GG versus CC: OR=2.28, 
95% CI 1.35-3.58, I2=0%, PH=0.988; GG versus 
GC+CC: OR=2.23, 95% CI 1.33-3.74, I2=0%, 
PH=0.991; GC+GG versus CC: OR=1.08, 95% CI 
0.90-1.28, I2=50%, PH=0.075; GC versus CC: 
OR=1.07, 95% CI 0.78-1.48, I2=52.5%, PH= 
0.061). However, no significant effect was fo- 
und in Non-RFLP subgroup (Table 3).

Sensitivity analysis 

We detected the influence of individual study 
on the pooled ORs for H63D by sensitivity anal-

Table 3. Summary of polled ORs in the meta-analysis

Subgroup No. of 
Studies OR (95% CI) I2 PH

Overall G vs C 9 1.14 (0.98-1.33) 8.2% 0.367
GC vs CC 9 1.00 (0.84-1.21) 29.3% 0.184
GG vs CC 8 2.28 (1.39-3.75) 0% 0.999
GC+GG vs CC 9 1.07 (0.90-1.28) 27% 0.204
GG vs GC+CC 8 2.22 (1.35-3.65) 0% 0.999

Caucasian G vs C 8 1.14 (0.98-1.33) 19.6% 0.275
GC vs CC 8 1.00 (0.84-1.21) 38.2% 0.125
GG vs CC 8 2.28 (1.39-3.75) 0% 0.999
GC+GG vs CC 8 1.08 (0.90-1.28) 36.1% 0.141
GG vs GC+CC 8 2.22 (1.35-3.65) 0% 0.999

High quality G vs C 5 1.09 (0.92-1.28) 32.1% 0.208
GC vs CC 5 0.92 (0.76-1.13) 28.9% 0.229
GG vs CC 5 2.37 (1.39-4.04) 0% 0.971
GC+GG vs CC 5 1.00 (0.83-1.21) 36% 0.181
GG vs GC+CC 5 2.37 (1.39-4.04) 0% 0.992

Low quality G vs C 4 1.49 (0.99-2.23) 0% 0.819
GC vs CC 4 1.63 (1.01-2.62) 0% 0.755
GG vs CC 3 1.82 (0.48-6.90) 0% 0.992
GC+GG vs CC 3 1.62 (1.02-2.58) 0% 0.742
GG vs GC+CC 3 1.54 (0.41-5.79) 0% 0.997

PCR-RFLP G vs C 6 1.17 (0.98-1.38) 34.8% 0.175
GC vs CC 6 1.07 (0.78-1.48) 52.5% 0.061
GG vs CC 6 2.28 (1.35-3.58) 0% 0.988
GC+GG vs CC 6 1.14 (0.85-1.55) 50% 0.075
GG vs GC+CC 6 2.23 (1.33-3.74) 0% 0.991

Non-RFLP G vs C 3 1.02 (0.72-1.45) 0% 0.739
GC vs CC 3 0.95 (0.64-1.42) 0% 0.703
GG vs CC 3 1.90 (0.37-9.75) 0% 0.956
GC+GG vs CC 3 0.99 (0.66-1.46) 0% 0.698
GG vs GC+CC 3 1.88 (0.37-9.59) 0% 0.900

PH is p-value of Q test for heterogeneity; OR: odds ratio; vs: versus.

the subgroup of high quality 
studies, increased ALD risk was 
observed in homozygote model 
(GG versus CC: OR=2.37, 95% 
CI 1.39-4.04, I2=0%, PH=0.971) 
and recessive model (GG versus 
GC+CC: OR=2.37, 95% CI 1.39-
4.04, I2=0%, PH=0.992). No sig-
nificant association was found 
in allelic comparison (G versus 
C: OR=1.09, 95% CI 0.92-1.28, 
I2=32.1%, PH=0.208), dominant 
model (GC+GG versus CC: OR= 
1.00, 95% CI 0.83-1.21, I2= 
36%, PH=0.181) and heterozy-
gote model (GC versus CC: 
OR=0.92, 95% CI 0.76-1.13, 
I2=28.9%, PH=0.229). As for the 
subgroup of low quality studies, 
different results are presented. 
No association between H63D 
polymorphism and the risk of 
ALD was observed in allelic 
comparison (G versus C: OR= 
1.49, 95% CI 0.99-2.23, I2=0%, 
PH=0.819), homozygote model 
(GG versus CC: OR=1.82, 95% 
CI 0.48-6.90, I2=0%, PH=0.992) 
and recessive model (GG versus 
GC+CC: OR=1.54, 95% CI 0.41-
5.79, I2=0%, PH=0.997). Incre- 
ased ALD risk was observed in 
dominant model (GC+GG vers- 
us CC: OR=1.62, 95% CI 1.02-
2.58, I2=0%, PH=0.742) and het-
erozygote model (GC versus CC: 
OR=1.63, 95% CI 1.01-2.62, 
I2=0%, PH=0.755) (Table 3).
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ysis in each genetic model. Consistently, the 
pooled estimate remained no significant cha- 
nge when any single study was omitted at a 
time from each meta-analysis. The sensitivity 
analysis in heterozygote model (GC versus CC) 
was showed in Figure 4.

The sensitivity analysis and publication bias all 
supported our results.

In subgroup analysis by quality of studies and 
genotyping method, the subgroups of high qual-
ity studies and PCR-RFLP remained the same 

Figure 4. Sensitivity analysis for H63D polymorphism (rs1799945) in hetero-
zygote model (GC versus CC).

Figure 5. Begg’s funnel plot for publication bias analysis for H63D 
(rs1799945) polymorphism (GG versus CC).

Publication bias

We evaluated the publication 
bias of the literatures by 
Funnel plot and Egger’s test. 
The result showed that no sig-
nificant publication bias in all 
genetic models. Figure 5 sh- 
owed the Begg’s funnel plot in 
homozygote model (GG ver-
sus CC, P=0.536). Information 
concerning the Egger’s funnel 
plot is listed in Table 4.

Discussion

In our meta-analysis, nine eli-
gible studies [11, 12, 14-20], 
including 1200 cases and 
2720 controls, were identified 
and analyzed. The pooled 
results showed that H63D 
polymorphism (rs1799945) is 
significantly associated with 
ALD susceptibility in homozy-
gote model (GG versus CC: 
OR=2.28, 95% CI 1.39-3.75, 
I2=0%, PH=0.999) and reces-
sive model (GG versus GC+CC: 
OR=2.22, 95% CI 1.35-3.65, 
I2=0%, PH=0.999). The similar 
consequences were observed 
in Caucasian (GG versus CC: 
OR=2.28, 95% CI 1.39-3.75, 
I2=0%, PH=0.999; GG versus 
GC+CC: OR=2.22, 95% CI 
1.35-3.65, I2=0%, PH=0.999) 
and the subgroups of high 
quality studies (GG versus CC: 
OR=2.37, 95% CI 1.39-4.04, 
I2=0%, PH=0.971; GG versus 
GC+CC: OR=2.22, 95% CI 
1.35-3.65, I2=0%, PH=0.999) 
and PCR-RFLP (GG versus CC: 
OR=2.28, 95% CI 1.35-3.58, 
I2=0%, PH=0.988; GG versus 
GC+CC: OR=2.23, 95% CI 
1.33-3.74, I2=0%, PH=0.991). 
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effects in homozygote model and recessive 
model. However, as for the low quality studies 
and Non-RFLP subgroups, different results 
were observed in all genetic models. The differ-
ences may be due to the relatively smaller sam-
ple size in these low quality studies and Non-
RFLP subgroup which may cover the potential 
association.

Excessive iron deposition in individual with 
chronic alcohol consumption has been obser- 
ved for a long time [27]. Iron and alcohol can 
both lead to liver injury through their combined 
effects on damaged hepatocytes, kupffer cell, 
hepatic stellate cells, and extracellular matrix. 
Several studies have demonstrated that ALD 
was usually related to hepatic iron overload [3, 
4]. Brittenham [28] also showed that iron chela-
tion may offer new approaches to the treat-
ment and prevention of alcoholic liver disease. 
Moreover, iron appears to be as a vital prognos-
tic factor for overall survival in patients with 
alcoholic liver disease [29]. The iron metabo-
lism is normally controlled by the HFE (haemo-
chromatosis) protein. H63D is a C-to-G trans-
version at nucleotide 187 of the HFE gene and 
is widely distributed in different populations, 
Especially in Caucasian. The H63D mutation on 
the HFE gene can weaken the ability of the HFE 
protein to bind to transferrin, hence contribut-
ing to iron overload. The above results reveal a 
potential association among ALD, iron and 
H63D. 

In our meta-analysis, the H63D heterozygote 
was not significantly associated with ALD, 
which was coincident with previous studies [17, 
20]. But though the GC genotype has been 
appreciated for a long time in various disease 
[30, 31] and illustrated the influence in iron 
metabolism [32], Maybe the mild iron overload 
in GC carrier should not promotes the develop-
ment and progression of ALD. However, Ropero 
[11] et al and Machado et al [12] demonstrated 

that the G allele of H63D (rs1799945) may 
increase the risk of developing advanced liver 
alcoholic disease and alcoholics with liver dis-
ease had increased frequency of H63D HFE 
mutation. Furthermore, Some studies have 
also found that H63D homozygosis could lead 
to greater iron overload [33, 34]. All above stud-
ies support our meta-analysis that H63D homo-
zygote significantly increases ALD risk. Thus, 
the individual with GG genotype might increase 
their susceptibility to ALD as the more severe 
iron overload. Our results are similar to previ-
ous liver disease researches, such as HCC 
(Hepatocellular Carcinoma) [35, 36], NAFLD 
(Non Alcoholic Fatty Liver Disease) [37] and 
liver fibrosis [38]. All these results strongly 
implicate that H63D polymorphism is a com-
mon risk factor for chronic liver disease, includ-
ing ALD and emphasize the essential effect of 
H63D in various types of liver disease.

Compared with traditional research, our meta-
analysis has several strengths. To begin with, 
this is the first meta-analysis focused on the 
association between H63D polymorphism and 
susceptibility to alcoholic liver disease; more-
over, we utilize a much larger total sample size 
to evaluate its effect in our meta-analysis. 
Thus, our results are more reliable. Additionally, 
we performed a sensitivity analysis to evaluate 
the effect of each study on the overall assess-
ment, which suggested that our result was sta-
ble. Thus, we confirm that our results are more 
reliable than the previous studies’ conseque- 
nces.

Our meta-analysis also has some limitations. 
Firstly, several factors were not clear in includ-
ed studies, such as living habit, occupational 
history and environment; thus, we cannot prop-
erly assess the association between H63D and 
ALD according to stratification of these factors. 
Secondly, although we have performed a sys-
tematic search to access to relevant literatures 
as much as possible, it is possible to miss 
some studies. Finally, only one study involved in 
Asian was included and its quality is low, thus, 
we cannot completely analysis the subgroup of 
ethnicity.

In conclusion, The H63D polymorphism (rs17- 
99945) may be association with the risk of 
ALD, especially for the GG genotype in Cau- 
casian. H63D polymorphism may be a potential 
therapeutic target for ALD patients.

Table 4. Egger’s funnel plot
H63D 95% CI PEgger’ test

G versus C -1.76-2.45 0.710
GC versus CC -1.38-3.36 0.358
GG versus CC -0.82-0.57 0.687
GC+GG versus CC -5.83-1.88 0.265
GG versus GC+CC -0.84-0.44 0.470
PEgger’ test is the p-value of Egger’s test.
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