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Abstract: Gliomas are the most common primary intracranial tumors and the most aggressive type of brain malig-
nancy of adults. This study aimed to employ an effective computational method to identify glioma-related biological 
mechanisms and predict new glioma genes through the fully utilization of the information of glioma genes. In terms 
of molecular features, the known glioma genes were fetched from database and literature mining, and encoded by 
the enrichment scores of gene ontology and pathways. With the Random Forest classification and incremental fea-
ture selection, the optimal features of the selection of the glioma’s related genes were found. Random Forest classi-
fication was also used to predict novel glioma genes. The shortest path analysis, based on the gene interaction net-
works, was performed to identify the genes that have links with known genes. For the depiction of the glioma genes, 
3318 gene ontology terms and 127 pathway terms were identified as the optimal features. 860 novel related genes 
were predicted based on those terms. 87 genes were identified, which reside in the hub of known genes interaction 
network. There were an intersection of 34 genes between predicted genes and shortest path genes. 25 out of 34 
genes showed significant different expression between glioma and normal tissues, and highly possibility of being 
the candidate of glioma’s related genes showed in most of them. Our proposed algorithm has a distinguished power 
to predict genes that are closely related to the glioma and provides the gene list to help achieve early detection.

Keywords: Glioma, biomarker prediction, genes interaction network, geneontology

Introduction

Gliomas are central nervous system neoplasms 
derived from glial cells which act as supportive 
cells in the central nervous system. Glioma 
makes up about 30% of all brain and central 
nervous system tumors and 80% of all malig-
nant brain tumors [1]. Glioma is the most com-
mon and aggressive brain malignancy threating 
adults [2]. At any one of its stages of develop-
ment, new abnormal neuroglial tissue grows 
through excessive cellular division and more 
rapidly proliferation, and then continues to 
grow after the stimuli initiated the new growth 
cease. The average lifespan of patients who 
suffer glioma is less than one year from the 
time of the diagnosis, even though the improve-
ment in therapeutic interventions is significant, 
minimal improvement of it over the past 25 
years [3]. Dismal has remined in the prognosis 
for most glioma patients regardless of the 

advance in clinical techniques [4]. Thus, it is 
crucial to elucidate the genetic factors of glio-
ma, and contributes to the diagnosis and prog-
nosis of glioma patients.

The incidence of glioma is not significantly 
affected by environmental factors such as UV 
light and carcinogen exposure because of the 
protective influence of the thick skull and the 
blood-brain barrier. In addition, there are un- 
known heritable factors that may cause glio- 
ma. Among the people, these tumors are se- 
emed to have idiopathic occurrence in a ran-
dom manner [5]. Therefore, the cellular mecha-
nisms giving rise to glioma are not very clear 
yet. LOH 10q (over 70%), EGFR amplification 
(about 40%), MDM2 amplification, LOH 10p, 
10q, and p16INK4a and PTEN mutation are the 
most common molecular alterations in the pri-
mary period of glioma [6]. Besides, the muta-
tion of IDH1, TP53, and LOH on 17p, 10q, and 
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19q [3] as the first common molecular event in 
multistep carcinogenesis in the secondary peri-
od of glioma. IDH1/2 (isocitrate dehydrogenase 
1/2) mutation and MGMT (O6-methylguanine-
DNA methyltransferase) promoter methylation 
included in current molecular prognostic mark-
ers, which provide the improved prognosis and 
relative sensitivity to temozolomide treatment 
respectively [7].

The Gene Ontology (GO) is a database aim to 
unify the representation of genes and gene 
product features in all species [8]. In terms of 
encoding genes and updating continuously 
under explorations, it is an effective and effi-
cient tool. GO annotations have been demon-
strated to be excellent predictors of cancer 
genes. The Kyoto Encyclopedia of Genes and 
Genomes (KEGG) database used widely and 
created from published materials manually [9]. 
KEGG pathways elucidate in vivo comprehen-
sive inferences of reactions. It provides path-
way maps for metabolism and other cellular 
processes, human diseases also included.

It is desirable of system biology approaches for 
analysis of diseases t mechanisms. For the 
identification of glioma-related biological mech-
anisms and predict new glioma genes, a sys-
tem biological measure was developed, that 
encode glioma genes through integrating gene 
ontology (GO) and KEGG annotations as fea-
tures. Genes involved in glioma were well char-
acterized and predicted with optimal features 
we analyzed. Predicted glioma’s related gene 
as the candidates would help to promote the 
research progress of potential prognostic bio-
markers, and new molecular drug targets aims 
to treat this devastating disease.

Material and methods

Datasets

Glioma’s related genes searched from OMIM 
(Online Mendelian Inheritance in Man), GAD 
(The Genetic Association Database) and 
DisGeNET. OMIM [10] is a comprehensive data-
base concerning human beings’ genes and 
hereditary diseases. With the searching key 
word of “glioma”, seven genes had been found 
in that database. COSMIC [11] fetches cancer’s 
related genes in the reported references and 
the high flux experimental data of Sanger labo-
ratory’s cancer genome project, and 19 genes 

had been found with the searching key word of 
“glioma”.

GAD is a comprehensive database collecting 
human beings’ complex diseases, complex dis-
eases’ pathogenic genes in reported referenc-
es and GWAS experimental data included in its 
collection. 12 genes were obtained with the 
searching key word of “glioma” in GAD. Dis- 
GeNET [12] annotates pathogenic genes by 
integrating public databases and gene-disease 
relation in reported references. Currently, there 
are 381056 gene-disease relations DisGeNET, 
including 16666 genes and 13172 diseases, 
and 39 genes had been found with the search-
ing key word of “glioma”. 62 different genes 
had been found in those databases, and the 
specific names and sources are shown in 
Supplementary Table 1. We had 143 non-repet-
itive genes related to glioma in databases and 
references in total.

Many databases are developed to collect 
pathogenic gene as mentioned above, however, 
the collection might not be very comprehensive 
owing to different kinds of data in different 
databases that covers various data of diseases 
phenotypes and genotypes, and lag of data-
base maintenance. Therefore, it is necessary of 
manual screen for further analyze the patho-
genic gene of specific disease phenotype. 
Pubmed’s searching tool was used to examine 
the pathogenic relation between gene and glio-
ma. “Gene symbol” or “gene” and “glioma” was 
used as searching key words, and if those two 
words both showed in the title and abstract of 
an article, the article would be recorded as the 
evidence to verify that gene is related to glio-
ma. 81 pathogenic genes found in references 
in total. The specific names of those genes are 
also shown in Supplementary Table 1.

Encoding glioma’s related genes

GO analysis, a well-known biological informa-
tion analysis tool based on definition of GO 
terms to label the features of all species’ gene 
products. KEGG is a comprehensive database 
based on known molecule interaction network, 
the analyses of biological pathway and system-
atic information was included [13]. So, we used 
GO terms and KEGG pathways to encode gene. 
The relation between gene and its feature 
terms can be reflected by the enrichment infor-
mation of GO and pathways analysis. 

http://www.ijcem.com/files/ijcem0044755suppltab1.doc
http://www.ijcem.com/files/ijcem0044755suppltab1.doc
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Considering one gene and its directly interact-
ing partners [14] in STRING network, gene’s 
gene ontology enrichment score is defined as 
its -log10 of P value for examining hyper geo-
metric test. Higher enrichment score indicates 
higher degree of enrichment. Thus, a gene 
encoded as a one-dimensional vector contain-
ing 6242 GO terms and 214 KEGG pathways.

Removing irrelevant features

The association between two variables mea-
sured by Cramer’s coefficient [15]. The coeffi-
cient value of Cramer’s is 0-1. Higher coeffi-
cient value of two variables’ Cramer’s means 
higher correlation of them, vice versa. 0.1 was 
taken as threshold value in this essay, the fea-
ture that Cramer’s coefficient is lower than 0.1 
was excluded.

Screening the optimal feature

This research used some feature selection 
approaches to identify key GO terms and KEGG 
pathways, including minimum redundancy max-
imum relevance (mRMR), incremental feature 
selection (IFS) [15], Random Forest (RF) algo-
rithm [16].

Specifically, the screened features, sorted 
through mRMR the key features in the fea- 
ture list fetched through IFS and RF with the 
help of mRMR. The mRMR, created by Peng, et 
al. [15], has two criteria: Max-Relevance and 
Min-Redundancy. 

The IFS based on the order made by mRMR fea-
ture list. The feature was added one by one in 
the process of analysis. Every time a new fea-
ture added, a new sample subset of positive 
samples and negative samples, which based 
on the feature we selected, it would be built 
and we would examine and evaluate every sub-
set of data. 

Weka 3.6.4 [17] with the default parameter 
was used to carry out the classification analysis 
of Random Forest algorithm. And Ten-fold cross 
validation is used to study the performance of 
classification model. The testing performance 
evaluation is based on the Matthews’s correla-
tion coefficient (MCC).

MCC
( ) ( ) ( ) (TP FP TP FN TN FP TN FN

TP TN FP FN
)

=
+ + + +

# #-

Where the TP indicates the rate of true positive, 
the FP indicates the false positive, the TN indi-
cates the true negative and the FN indicates 
the false negative.

Thus, we could get the optimal feature subset 
which is the subset with the maximum MCC 
value firstly appearing. Apart from that, the IFS 
curve of MCC value was drawn.

Gene network and shortest path trace

The weighing gene interaction network could 
get from STRING [18]. STRING has a grading 
mechanism to weigh the results of different 
methods and provides a comprehensive grade. 
The score of its dependency which is the pos-
sibility of interaction represented by every 
straight line in this network. 

Therefore, we can obtain the relevance network 
of a functional protein and the connection 
weight. We searched for the shortest path of 
every pair of known glioma genes in the graph 
with the calculate the shortest path of one 
node to all the other nodes accord to Dijkstra’s 
algorithm. Selection of all existed shortest path 
genes, and arranged these of them in accor-
dance with their Betweenness value. The 
Betweenness value indicates the amount of 
shortest path of these genes as inner nodes in 
the known gliomas related genes links.

Identifying significant shortest path genes 
based on betweenness and permutation

Those genes with high Betweennes value have 
higher dependency with glioma genes com-
pared with those genes of low Betweennes 
value. If the Betweennes value of protein is 0, it 
would be treated as a gene without dependen-
cy with glioma genes. 

We used Permutation test to further screen 
shortest path genes to get rid of effects of the 
network structure. To calculate the shortest 
path of these genes, the same amount of genes 
were selected randomly as the related genes 
for 500 times. When the real Betweennes value 
of shortest path gene is less than the 
Betweennes value after substitution, we calcu-
lated once. After 500 random tests, we got a 
frequency which was identified as the permuta-
tion FDR of shortest path gene. The shortest 
path gene who’s FDR less than 0.05 can be the 
glioma related gene.
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Tissue total RNA extraction and quantitative 
RT-PCR

Glioma tissue (12 cases) were obtained from 
surgical resection and confirmed by pathology, 
and normal brain tissue were harvest from 
patient with decompression in traumatic brain 
injury. Total RNA were extracted with TRIzol 
reagent (Life technology), and cDNA were 
obtained by a reverse transcription of RNA. For 
all the predicted genes quantitative RT-PCR 
(Q-PCR) was performed using cDNA using the 
ABI PRISM 7900 system (Applied Biosystems) 
with the SYBR Green Realtime PCR Master Mix 
plus (TOYOBO). The detailed primer sequences 
were available in Supplementary Table 2.

Ethics statement

All the patients who participated in this study 
provided the informed consent, and the 
research was approved by the ethics commit-
tee at The Affiliated Hospital of Southwest 
Medical University, Sichuan, China.

Statistical analysis

The packages and functions in R software were 
used to do the statistical analysis. The function 
“phyper” was used to obtain P value for examin-
ing hyper geometric test in calculating GO and 
KEGG enrichment scores. The function “short-
est path” in the igraph package was used to 
achieve the Dijkstra’s algorithm to calculate the 
shortest path. The significantly different expres-
sion genes were identified with t-test and the 
significance level was set at P < 0.05.

Results

Describing the key features of glioma related 
gene

As mentioned in the chapter of “Dataset”, these 
143 genes were regarded as positive samples 
(glioma-related genes, Supplementary Table 1) 
in this study, while 143 × 40 = 5720 back-
ground genes in the Ensemble database were 
randomly selected as the negative samples 
(non-glioma-related genes, data not shown). To 
release the imbalance, the negative samples 
were split into 10 groups each of which were 
mixed with the positive sample, constructing 
10 datasets (S1 to S10) with sample’s classi-
fied labels and separately calculating the 
Cramer’s value of them, Cramer’s value less 
than 0.1 were excluded and other features 
were retained to be further selected. The 
amount of every dataset’s rest features is pre-
sented in Table 1.

IFS, mRMR and Random Forest algorithm were 
used select the optimal feature of every datas-
et’s remaining features. The significance of 
every dataset’s feature was performed in 
mRMR analysis, and then every dataset would 
return MaxRel feature list and mRMR feature 
list in the light of the chapter “Screening the 
Optimal Feature”.

IFS and RF structure dataset and classify were 
based on the feature order of mRMR feature 
list, and we evaluated classification result by 
Ten-fold cross validation. SNs, SPs, ACCs and 
MCCs of 10 datasets are presented in Table 1. 
We draw the IFS curve of every dataset to bet-

Table 1. The sizes of 10 datasets and the corresponding number of optimal features for predicting 
glioma-related genes
Dataset Rest features number Optimal feature number Sn Sp Acc Mcc
1 4124 1041 0.930769 0.842105 0.903743 0.772875
2 5118 1379 0.976923 0.921569 0.961326 0.903962
3 4342 1193 0.984615 0.684211 0.893048 0.744139
4 4209 1451 0.953846 0.736842 0.887701 0.727886
5 4291 288 0.923077 0.842105 0.898396 0.761492
6 4616 820 0.969231 0.842105 0.930481 0.833569
7 4400 1787 0.976923 0.736842 0.903743 0.768624
8 4603 426 0.961539 0.877193 0.935829 0.847352
9 4665 385 0.961539 0.824561 0.919786 0.807641
10 4869 26 0.976923 0.894737 0.951872 0.885388
Note. Sn: sensitivity; Sp: specificity; Acc: accuracy; MCC: Matthews’s correlation coefficient.

http://www.ijcem.com/files/ijcem0044755suppltabs2-5.xlsx
http://www.ijcem.com/files/ijcem0044755suppltab1.doc
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ter observe (the entire IFS curves are showed 
in Supplementary Figures 1, 2, 3, 4, 5, 6, 7, 8, 
9, 10). Therefore, these 10 optimal feature sets 
(OS1, OS2 ...... OS10) could get from the first 
1041, 1379, 1193, 1451, 288, 820, 1787, 
426, 385 and 26 features in mRMR feature list 
of corresponding datasets. We calculated the 
union of these sets, and got a new dataset OS 
that is called the optimal feature list, including 
3318 GO terms and 127 KEGG pathway (the 
top 20 optimal features are presented in Table 
2 and the entire optimal features are present-
ed in Supplementary Table 3).

GO terms include three main types: biological 
process, cell component and molecule func-
tion. To generally illustrate these optimal fea-
tures in GO terms, we divided these features 
into biological process, cell constituent and 
molecule function to describe the optimal GO 
terms, thus demonstrating the feature of glio-
ma’s related gene (Figure 1).

Predicting glioma’s related gene

Glioma’s related gene prediction depended on 
the optimal feature that can be defined as the 
key features of glioma genes. Those genes that 

in common pathways. In gene interaction net-
work, we could forecast glioma gene on the 
basis of interaction relation in STRING data-
base, study those genes that interacted with 
known glioma gene, structure interactional 
sub-networks to look for the core gene, and 
these genes could also be glioma’s candidate 
and hub genes.

We searched genes that are connected with 
the 143 known glioma related genes in the 
shortest path and calculated this inner node’s 
Betweenness value in the path, and then we 
got 345 short path genes whose Betweenness 
values are bigger than 0, which are listed in 
Supplementary Table 5. To further screen these 
genes, we used Permutation test and calculat-
ed their permutation FDR, and the results are 
also listed in Supplementary Table 5. The 87 
genes whose permutations FDRs are less than 
0.05 have high dependency with glioma (Table 
3).

These 87 short path genes coincide with 34 
genes that found through optimal feature 
(Table 3). Therefore, we used two approaches 
to identify 34 genes that not only had similar 

Table 2. The top 20 optimal features of the union of 10 data-
sets
Order Features Name
1 GO: 0016035 Zeta DNA polymerase complex
2 GO: 0009314 Response to radiation
3 GO: 0008329 Signaling pattern recognition receptor activity
4 GO: 0016829 Lyase activity
5 GO: 0010243 Response to organonitrogen compound
6 GO: 1900029 Positive regulation of ruffle assembly
7 GO: 0009636 Response to toxic substance
8 GO: 0031424 Keratinization
9 GO: 0048147 Negative regulation of fibroblast proliferation
10 GO: 0090399 Replicative senescence
11 GO: 0042743 Hydrogen peroxide metabolic process
12 GO: 0071158 Positive regulation of cell cycle arrest
13 GO: 0006886 Intracellular protein transport
14 GO: 0030868 Smooth endoplasmic reticulum membrane
15 GO: 0009374 Biotin binding
16 GO: 0048702 Embryonic neurocranium morphogenesis
17 GO: 0050658 RNA transport
18 GO: 0055038 Recycling endosome membrane
19 GO: 0043120 Tumor necrosis factor binding
20 GO: 0008340 Determination of adult lifespan

are almost the same with the 
known genes in the terms of 
screened optimal features can be 
candidate gene of glioma, for these 
genes may have the same function 
with known glioma genes. We pre-
dicted 988 glioma related genes 
from the annotated genes in 
Ensemble database by Random 
Forest algorithm, including 860 
novel glioma related genes in addi-
tion to the achieved glioma genes 
(Supplementary Table 4). We held 
the view that these genes may also 
affect the growth of glioma or 
relate to its development.

Genes that interact with known 
glioma gene and short path gene

Relationship of gene interaction in 
the STRING database was investi-
gated to find out the hub genes 
related to glioma. As “guilt by asso-
ciation” rule, two interactional 
genes have the same or similar 
function in organism and take part 

http://www.ijcem.com/files/ijcem0044755suppltabs2-5.xlsx
http://www.ijcem.com/files/ijcem0044755suppltabs2-5.xlsx
http://www.ijcem.com/files/ijcem0044755suppltabs2-5.xlsx
http://www.ijcem.com/files/ijcem0044755suppltabs2-5.xlsx
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genetic annotation with known glioma genes 
but also resided in the core of gene interaction 
in the network of known glioma genes. These 
genes seemed to be the more reliable glioma 
related genes that are worthy of further 
research.

Comparing the expression of the identified 
genes in glioma and normal brain tissues

Derived from data matrix dataset in TCGA (The 
Cancer Genome Atlas) by selecting Expression-
Genes at data type, level 3 at data level and 
Agilent 244K Custom Gene Expression 
G4502A-07 at Center/Platform, the publicly 
available expression data were employed to 
find the significantly expressed genes in the 
glioblastoma multiform. There were 20 genes 

showing significantly different expression in the 
TCGA expression data among the 34 genes 
found by two approaches.

With quantitative RT-PCR, we compared the 
expression of these genes between glioma tis-
sues and normal brain tissues to further verify 
whether these overlapped genes are really glio-
ma related genes. 25 genes out of 34 genes, 5 
significantly down-regulating genes and 20 sig-
nificantly up-regulating genes identified through 
two approaches in glioma tissues (Figure 2), 
had expression changes and would indeed par-
ticipate in the occurrence and development of 
glioma, suggesting effective and reliable sys-
tem biological measure for identifying glioma-
related genes. 3 genes in the down-regulating 
genes are associated with tricarboxylic acid 

Figure 1. The profile of optimal GO terms for predicting glioma-related genes.
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Table 3. The 87 significant shortest path genes and the 34 overlaps with predicted genes through 
optimal features
Symbol Overlap Betweenness P value Symbol Overlap Betweenness P value
TP53 1945 0.014925373 NA 129 0.004975
PCNA YES 986 0.039800995 SDHA 129 0.00995
NCOA1 YES 629 0.004975124 SUFU 129 0.00995
BRCA1 512 0.019900498 SPI1 129 0.024876
RAD51 405 0.004975124 TIMP1 YES 129 0.024876
STAT6 379 0.004975124 IL10RA 129 0.00995
UQCRFS1 372 0.004975124 ATP1A1 129 0.00995
PRKDC YES 372 0.004975124 RET YES 129 0.034826
RIPK1 YES 270 0.034825871 RPA3 YES 129 0.004975
XPA YES 266 0.004975124 RAD51C YES 129 0.004975
RAD23B 265 0.004975124 CXCR4 YES 129 0.014925
GJA1 YES 255 0.009950249 UBQLN4 129 0.00995
IL4R 255 0.004975124 TNFRSF6B 128 0.034826
SOD1 254 0.009950249 MTHFR 128 0.024876
SDHB 254 0.019900498 SFTPD 128 0.024876
MAP3K5 YES 250 0.024875622 PLEK YES 128 0.039801
MSH2 248 0.004975124 ZBTB33 128 0.00995
PARP1 240 0.039800995 ADAM22 128 0.029851
CDKN1A YES 160 0.049751244 TOP2A 128 0.014925
CDK7 155 0.019900498 EDNRB YES 128 0.0199
ERCC1 144 0.004975124 GLI1 127 0.00995
MDH2 136 0.004975124 GLTSCR2 126 0.0199
CASP8 134 0.024875622 ERCC8 125 0.034826
ACO2 YES 133 0.004975124 TG 124 0.00995
CS YES 133 0.004975124 POLB YES 121 0.029851
CDK6 YES 131 0.019900498 ERCC3 YES 113 0.0199
PDGFRB YES 131 0.029850746 CFLAR 85 0.024876
GSTM2 YES 130 0.004975124 CCNE1 YES 82 0.014925
TERF2 129 0.029850746 NFE2L2 YES 75 0.034826
GPC1 129 0.004975124 TBXA2R 43 0.024876
PUF60 129 0.009950249 MRE11A YES 41 0.014925
ATXN1 129 0.014925373 NR3C1 YES 39 0.039801
CSF1R 129 0.014925373 FH 9 0.004975
CD44 YES 129 0.009950249 GOT2 YES 7 0.039801
ALAS1 129 0.004975124 ERCC5 5 0.004975
APOA2 129 0.004975124 TPO 5 0.014925
IL23A YES 129 0.004975124 MKI67 4 0.024876
RAD51D 129 0.004975124 GSTA2 YES 3 0.044776
MUS81 YES 129 0.004975124 LDHB 2 0.004975
PLA2G1B YES 129 0.024875622 ANAPC5 1 0.00995
CAT YES 129 0.024875622 NPSR1 1 0.014925
MLH1 YES 129 0.014925373 IDH3G 1 0.0199
SDC4 129 0.004975124 IDH3A 1 0.029851
TPT1 129 0.009950249
Note. The overlap column indicates whether the shortest genes have overlaps with the gene list derived from the prediction 
based on the optimal features.
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cycle while 13 genes among the predicted up-
regulating genes are related with immune, cell 
cycle and proliferation, and most of the others 
are receptor-dependent protein kinase coding 
genes which are also related with cell growth 
and proliferation. 

Discussion

In view of the GO structure, we first classified 
GO terms in the optimal list into three types: 
biological process (BP), cellular component 
(CC), and molecular function (MF) so as to illus-
trate the biological meanings of the selected 
optimal feature subset. The GO terms in the 
mRMR feature list were mapped to the children 
of the three root GO terms. 

Biological process GO terms

As for the percentage of BP terms, the top five 
GO biological processes are GO: 0048511: 
rhythmic process (31.8%), GO: 0023052: sig-
naling (22.9%), GO: 0065007: biological regula-
tion (22.4%), GO: 0050789: regulation of bio-
logical process (19.2%) and GO: 0071840: cel-
lular component organization or biogenesis 
(19.0%). Many cancer cells are rhythmic, i.e., 
key gene products serving in the circadian 
clock are important targets for manipulating 
cancer growth [19]. The relationship between 
the circadian timing system and cancer is very 
obvious from studies linking disruption of circa-
dian rhythms with higher cancer risk and great-
er malignancy. Specifically, circadian genes are 
proved to be very important in regulating glio-

Figure 2. Gene expression verification of the 34 identified genes with Q-PCR. Data are presented as mean ± SD, n 
= 12, *P ≤ 0.05, ***P ≤ 0.01.
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ma proliferation, migration and apoptosis [20, 
21]. The terms signaling, biological regulation 
and regulation of biological process are also 
consistent with the common knowledge that 
glioma-driving mutations affect pathways regu-
lating cellular parameters such as cell growth, 
apoptosis, migration, and angiogenesis [22]. 
For instance, master regulators of several core 
biological processes frequently mutate in glio-
ma are TP53, PTEN, NF1, or EGFR and Notch 
signaling, and are deregulated in malignant 
brain tumors as well [23].

Cellular component GO terms

Top eight GO cellular component terms of CC 
terms percentage are GO: 0043226: organelle 
(17.9%), GO: 0005576: extracellular region 
(17.6%), GO: 0044422: organelle part (16.7%), 
GO: 0005623: cell (16.1%), GO: 0016020: 
membrane (15.8%), GO: 0044420: extracellu-
lar matrix component (15.8%), GO: 0032991: 
macromolecular complex (15.7%) and GO: 
0031012: extracellular matrix (15.6%). Many 
behavioral patterns of cells could be linked to 
the extracellular matrix including cancerous 
processes [24]. Extracellular region, matrix and 
matrix component provide the structural envi-
ronment supporting cell adhesion and migra-
tion [25]. For example, extracellular matrix gly-
coprotein-derived synthetic peptides could dif-
ferentially modulate glioma cell migration [26]. 
Similarly, high levels of the extracellular matrix 
glycoprotein TN-C were found in cancerous tis-
sues and were directly linked to enhanced cell 
migration [27].

Molecular function G0 terms

The top five GO molecular function terms of per-
centage are GO: 0016247: channel regulator ac- 
tivity (36.4%), GO: 0060089: molecular trans-
ducer activity (36.2%), GO: 0016530: metallo-
chaperone activity (33.3%), GO: 0030545: 
receptor regulator activity (30.0%) and GO: 
0044093: positive regulation of molecular 
function (27.4%). The highlight of channel regu-
lator activity may be attributed to the surprising 
fact that ion channel mutations are frequent 
with 90% of human glioma samples presenting 
with ion channel and transporter mutations 
[28]. Hence ion channels are emerging as 
potential genes involved in the aetiology of glio-
mas, and also as potential future therapeutic 
targets. Molecular receptor activity, metallo-

chaperone activity and receptor regulator activ-
ity are all interrelated with these in BP percent-
age and CC percentage. For example, the 
exploratory cancer drug zinc metallochaper-
one-1 (ZMC1) was designed as p53 is a Zn2+-
dependent tumor suppressor inactivated in > 
50% of human cancers [29]. Thiosemicarba- 
zones like ZMC1 are known to interact with a 
number of metals involved in a variety of bio-
logic processes. Source of Zn2+ is extracellular 
and that ZMC1 transports the metal across the 
plasma membrane as a transition metal-specif-
ic ionophore.

The KEGG pathways in the optimal set

Several showed certain connections with glio-
ma among the KEGG pathway terms in the opti-
mal set of features. Base excision repair 
(hsa03410) is one of the main DNA repair path-
ways in human that is direct reversal. DNA dam-
age is considered to be an important mecha-
nism in the development of glioma and it has 
been indicated that polymorphisms of DNA 
repair-related genes play important roles in the 
occurrence of glioma as well [30]. SNARE inter-
actions in vesicular transport (hsa04130) are 
cellular mechanisms involved in glioma pathol-
ogy [31]. For instance, TI-VAMP/VAMP7, a mem-
ber of the vesicular SNARE proteins down-regu-
lation, has been reported to significantly reduce 
secretion of cathepsin B from glioma [32]. 
MAPK signaling pathway (hsa04010) is known 
to make greate contributions to the initiation 
and maintenance of glioma and other brain 
tumors as well as normal development [33, 
34]. So the up- and down-stream genes in such 
pathway should be very important in searching 
new potent antitumor target for glioma 
treatment.

Prediction of glioma-related genes based on 
optimal features

The prediction list was submitted to the func-
tional annotation clustering tool provided by 
the Database for Annotation, Visualization, and 
Integrated Discovery (DAVID) and the result 
demonstrated that many genes predicted were 
highly associated with glioma. For example, 
one significant function cluster was annotated 
to enrich in terms like regulation of apoptosis 
and program cell death. In the corresponding 
gene list of this cluster, ENSG00000087088 
(BAX) was reported to have association with 
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glioma previously that tubeimoside-1 induced 
glioma cell apoptosis in a concentration-depen-
dent manner by increasing the expression of 
BAX [35]. Another function cluster that intrigued 
us was related to DNA damage and repair. 
ENSG00000137337 (MDC1) the mediator of 
DNA damage checkpoint protein 1 in nuclear 
accumulation and its implication in further sig-
nal transduction, regulation of DNA damage 
checkpoints was reported in a research where 
Survivin regulated DNA-double-strand break 
repair machinery that led to a significant 
improvement of survival of glioma cells [36]. 
Another enriched function cluster was associ-
ated with human body response. In response to 
body’s defense system, tumor cells often 
change gene expression to facilitate their sur-
vival [37]. Additionally, documented evidences 
showed that ENSG00000115009 (CCL20) and 
ENSG00000112486 (CCR6) might play an 
important role in the regulation of aggressive-
ness in human gliomas [38].

Further selection of predicted glioma-related 
genes using gene interaction network

An intersection analysis between the prediction 
genes based on optimal features found that 
genes had link with known genes in interaction 
network, a list of 34 genes received were a high 
possibility of being glioma related candidate 
genes. Function annotation clustering of these 
genes was performed as well. A remarkable 
enrichment of terms was related to DNA repli-
cation, DNA damage and repair. Another signifi-
cant enrichment was concerning regulation of 
apoptosis and cell death. The result was con-
sistent with the preceding prediction list enrich-
ment and it suggested the robustness of our 
method. ENSG00000076242 (MLH1), as for 
specific gene example, was cleared of operat-
ing on temozolomide-induced autophagy via 
ataxia-telangiectasia mutated in glioma in a 
recent research [39]. ENSG00000213366 
(GSTM2) Glutathione transferase mu 2 could 
protect glioblastoma cells against amino-
chrome toxicity by preventing autophagy and 
lysosome dysfunction [40]. A study supported a 
major role for ENSG00000137275 (RIPK1) in 
the induction of necrotic cell death based on 
their finding that necroptosis is associated with 
low procaspase-8 and active RIPK1 and -3 in 
human glioma cells [41]. Senescence is a state 
of irreversible cell growth arrest and metabolic 
activity maintenance that acts as an endoge-

nous antitumor mechanism by avoiding the  
proliferation of transformed, pretumor cells. 
Senescence establishment is driven by pro-
teins that control the cell cycle and the  
stress response, such as ENSG00000124762 
(CDKN1A) [42]. Currently study identified 
ENSG00000102265 (TIMP1) as a key mole-
cule that was acting on human neural stem cell 
(hNSC) adhesion and migration [43]. TIMP1, as 
a new chemo attractant molecule, could be uti-
lized for the future clinical development of an 
hNSC-based cell-therapeutic strategy for tar-
geting human glioma.

Conclusion

The literature review above and expression 
analysis by RT-PCR show that our proposed 
algorithm has a distinguished power to predict 
genes with close impact on the glioma. Other 
advantages of our means are short time con-
suming and are of little cost. We identified 
3318 gene ontology terms and 127 pathway 
terms as the optimal features to depict the glio-
ma genes. B860 novel related genes were pre-
dicted under those terms and 87 genes were 
identified that reside in the hub of known genes 
interaction network. There were an intersection 
of 34 genes between predicted genes and 
shortest path genes. The ultimate goal of this 
research is to create glioma related gene list to 
help achieve early detection, correct diagnosis 
and proper treatment strategy, finally to save 
the lives of patients.
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Supplementary Figure 1. The IFS curve for the dataset. The red asterisk indicates where the maximal MCC value 
appears.

Supplementary Figure 2. The IFS curve for the dataset. The red asterisk indicates where the maximal MCC value 
appears.
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Supplementary Figure 3. The IFS curve for the dataset. The red asterisk indicates where the maximal MCC value 
appears.

Supplementary Figure 4. The IFS curve for the dataset. The red asterisk indicates where the maximal MCC value 
appears.
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Supplementary Figure 5. The IFS curve for the dataset. The red asterisk indicates where the maximal MCC value 
appears.

Supplementary Figure 6. The IFS curve for the dataset. The red asterisk indicates where the maximal MCC value 
appears.
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Supplementary Figure 7. The IFS curve for the dataset. The red asterisk indicates where the maximal MCC value 
appears.

Supplementary Figure 8. The IFS curve for the dataset. The red asterisk indicates where the maximal MCC value 
appears.
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Supplementary Figure 9. The IFS curve for the dataset. The red asterisk indicates where the maximal MCC value 
appears.

Supplementary Figure 10. The IFS curve for the dataset. The red asterisk indicates where the maximal MCC value 
appears.


