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Abstract: The association between inflammation and cancer has earned significant recognition and acceptance. 
The activation of genes controlling inflammation cell signaling pathways can lead to the controlling of all aspects of 
the disease process. Of these pathways, NF-κB, STAT-3, HIF-1, TNF-α, IL-1, Cox-2 and oncogenic Kinase (IKK, MARK/
ERK, Syk/Src, IRAK1/4, JAK, and P13k) play a fundamental role in connecting inflammation and cancer. For this 
reason, cancer-related inflammation serves as a target for innovative prophylactic and therapeutic intervention. 
Recently, novel therapeutic concepts aim at interrupting the activity or expression of inflammatory mediators impli-
cated in cancer initiation and promotion, either in single-agent or combinatorial treatment or as supplements of the 
current therapeutic approach. Phytochemicals and nutraceuticals have achieved noteworthy acknowledgment in 
the prospective management of various human clinical conditions. Research has demonstrated that plant extracts 
have proven to be less toxic and very effective chemoprophylactic and therapeutic agents since they possess the 
ability to suppress specific molecular and cellular pathway in cancer-related inflammation. Therefore, targeting 
the inflammatory signaling pathways offers the chances to boost the clinical outcome of cancer therapy. Here we 
provide a new insight into recent advances on the links between inflammation, as they relate to cancer. Also, we 
reviewed recent findings on plant extracts and phytochemicals that have been scientifically evidenced to exert 
chemopreventive and chemotherapeutic effect via the inhibition of the key inflammatory events involved in cancer 
initiation and progression. Our findings highlight the opportunities for future research and further investigation of 
the identified plants and phytochemical for anti-cancer drug discovery.
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Introduction

Cancer remains one of the world’s deadliest 
diseases, and according to the American 
Cancer Society, In the United States, there will 
be an estimate of 1,688,780 new cancer cases 
diagnosed and 600,920 cancer deaths in 2017 
[1]. The World Health Organization reported a 
global estimate of 14.1 million new cancer 
cases and 8.2 million cancer-related deaths in 
2012 [2]. Regardless of tremendous progress 
in treatment over the past decade, neither the 
prevalence of the illness nor the deaths due to 
cancer have positively changed within recent 
years. Researchers are considering different 
therapeutic approaches in the quest to eradi-
cate cancer, and this has led to the discovery of 
many theories. Amongst these theories in- 

cludes the association of inflammatory markers 
with cancer cells. Since the nineteenth century 
when Rudolf Virchow established the link be- 
tween inflammation and cancer, an avala- 
nche of epidemiological, experimental and clini-
cal studies has been conducted to confirm 
cancer-related inflammation [3-5]. Also, ap- 
proaches to testing a lot of synthetic anti-
inflammatory molecules in cancer research 
have yielded promising preclinical results. 
However, unexpected adverse effects or insuf-
ficient anticancer activity when tested in 
humans has hampered their translation to clini-
cal practice. A good number of anti-cancer 
drugs that modulate only single targets have 
emerged over the past decade; however, can-
cer is a disease caused by disturbance of sev-
eral signaling pathways. Therefore, targeting 
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only one of these multiple pathways in cancer 
management makes it almost impossible to 
achieve disease control. Additionally, these sin-
gle-target drugs cause a lot of adverse events 
and are often very costly. These limitations of 
available anti-cancer drugs underscore the sig-
nificance of identification of pharmacological 
agents that can modulate multiple targets, 
innocuous, inexpensive, and handy for the pre-
vention and treatment of cancers. The use of 
herbal-derived natural products as a therapeu-

rest the growth of neoplastic cells [6-15]. These 
naturally occurring anti-inflammatory agents’ 
acts as either preventing agents, which inhibit 
the tumor initiation step through stopping car-
cinogen activation. Also as suppressing agents, 
which inhibit tumor mobile proliferation for the 
duration of the promotion and metastasis stag-
es of tumorigenesis by inducing or suppressing 
specific cellular anti-inflammatory activities 
and the related molecular signaling pathways 
[16]. These findings have displayed that phyto-

Figure 1. Pathways that connect inflammation and cancer.

Figure 2. Molecular Targets Modulated by Plant Natural Products.

tic tool has been increasing 
considerably. Abundance st- 
udies have established a st- 
rong link between consump-
tion of certain fruits, vegeta-
bles, and certain spices to the 
reduction of cancer risk. A 
vast variety of phytochemicals 
found in foods and medicinal 
plants endowed with high anti-
inflammatory activities have 
demonstrated preventive or 
protective effects against the 
tumor in different organs of 
experimental animals and ar- 



Anti-inflammatory phytochemicals and cancer

15836	 Int J Clin Exp Med 2017;10(12):15834-15865

chemicals possess the potential to obstruct 
the molecular events in the cancer initiation, 
promotion, and progression stages. The evi-
dence that more than 39 completed or ongoing 
clinical trials in the USA focused on phytochem-
icals and nutraceuticals (clinicaltrials.gov: 
accessed on 14th March 2017) supports the 
vital role they play in the prevention and treat-
ment of cancer. Herein, we intended to summa-
rize recent developments and hypotheses on 
research published on the cancer chemopre-
ventive and chemotherapeutic effects of plant 
products, and focusing on mediators of the key 
factors of inflammation in cancer.

Inflammation and cancer: overview

The increased body of evidence from epidemio-
logical, preclinical and clinical studies demonst- 
rates that dysregulated inflammatory response 
plays a significant role in various chronic ail-
ments including cancer. Inflammation is an 
important protective response that can elimi-
nate primary triggers (foreign organisms, dead 
cells or physical irritants), and also contribute 
immensely to the initiation of tissue regenera-
tion of injured tissues by mediating an orga-
nized immune response. When this happens, 
there is coordinated blood-borne delivery to 
damaged tissues of cells, and soluble media-
tors involve in both innate and adaptive immu-
nity. After tissue disruption following inflamma-
tion, macrophages and mast cells secrete 
matrix remodeling proteins, cytokines, and che-
mokines, activate local stromal cells (e.g., fibro-
blasts, adipocytes, vascular cells) to recruit cir-
culating leukocytes into damaged tissue (acute 
inflammation), to eliminate pathogens [17-19]. 
Brief or acute inflammation is a self-limiting 
process and has a possible therapeutic out-
come, whereas the imperfect or incomplete 
resolution of inflammatory responses owing to 
dysregulation in immune response can lead to 
persistence of lymphocytes and leukocytes 
(granulomas) in the cellular microenvironment, 
leading to various phases of tumorigenesis [20, 
21]. Moreover, chronic inflammation of tumor 
microenvironment has been evidenced to trig-
ger cellular events, which promotes and aggra-
vates the malignant development of cancer 
cells [22]. The molecular mechanism(s) by 
which chronic inflammation promotes tumor 
cell proliferation, transformation, invasion, me- 
tastasis, angiogenesis, chemoresistance, and 
radioresistance is via upregulated expression 

of pro-inflammatory mediators such as reactive 
oxygen species (ROS), factor kappa-light-chain-
enhancer of activated B cells (NF-κB), signal 
transducer and activator of transcription-3 
(STAT3), etc (Figure 1). The release of (ROS) and 
reactive nitrogen species can damage DNA at 
the site of the tumor [23]. The free radicals and 
aldehydes produced results in a modification of 
cancer-associated genes and posttranslational 
alteration in the primary cell signaling proteins 
involved in cell cycle, DNA repair and apoptosis 
[24]. Furthermore, ROS is known to activate 
various transcription factors such as activator 
protein 1 (AP-1), Hypoxia-inducible factor 
1-alpha (HIF-1a), NF-κB, STAT3, resulting in the 
expression of proteins that regulates inflamma-
tion [25]. NF-κB and STAT3 transcription factor 
are the main links between inflammation and 
tumorigenesis and can be critical to promoting 
preneoplastic as well as malignant cells escape 
from apoptosis [26-28]. Many cancers activate 
NF-κB. Hence it is regarded as a significant 
inflammation mediator, and an oncogenic key 
transcription factor [29]. In fact, increased lev-
els of NF-κB can lead to the hostile nature of 
many tumor events [26, 27, 29, 30]. A great 
body of evidence have confirmed the negative 
contribution of the chronic inflammatory pro-
cess to various phases of tumorigenesis, such 
as cellular proliferation, transformation, apop-
tosis evasion, survival, invasion, angiogenesis 
and metastasis [31, 32]. Also, from epidemio-
logical studies, chronic inflammation has been 
implicated as a predisposing factor for the 
pathological progression of various types of 
cancers and there exist several parallel rela-
tionships between inflammation and host 
response to malignant disease [33, 34]. 
Studies have shown that underlying infections 
and inflammatory responses account for up to 
15-30% of all death from cancer worldwide 
[35]. Accumulating evidence suggests the 
strong link between prolonged inflammatory 
processes and cancer; such as inflammatory 
bowel disease (IBD) association with high risk 
of colorectal cancers [36, 37], chronic hepatitis 
B virus (HBV) infection caused liver cirrhosis 
and hepatocellular carcinoma (HCC) [38, 39], 
reflux esophagitis caused Barrett’s esophagus 
and esophageal adenocarcinoma [40], the link 
between ovarian cancer and ovarian epithelial 
inflammation [41-43], Chronic Infections asso-
ciated Chronic Inflammation and Squamous 
Cell Carcinoma [44]. Moreover, emerging stud-
ies have established the significant persistent 
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role; unresolved inflammation plays in the pro-
motion and progression of breast cancer [45, 
46]. Also, some studies have provided unequiv-
ocal evidence that there is a close link between 
the immune system constituents to cancer pro-
gression and chronic inflammation. For 
instance, chronic inflammation is linked with 
immunosuppression mediated primarily by 
immature myeloid-derived suppressor cells 
(MDSCs). Many factors influence MDSC differ-
entiation arrest leading to suppression of the 
host’s innate and adaptive immune systems 
which was supposed to contribute immensely 
to antitumor responses [47, 48]. Therefore, 
there is growing evidence that supports the link 
between chronic inflammation and cancer 
development.

Targeting the key factors of inflammation in 
cancer

Targeting the oncogenic kinases

Several studies have shown the functional acti-
vation of critical protein kinases, consisting of 
the IkB kinase (IKK) and mitogen-activated pro-
tein kinases (MAPKs) like p38 MAPK, c-Jun 
NH2-terminal kinase (JNK1/2), and extracellu-
lar signal-regulated kinase 1/2 (ERK1/2) in 
tumorigenesis. Also, there are proven evidence 
of the involvement of oncogenic kinase in acti-
vating inflammatory transcription factors (such 
as NF-kB and AP-1) and other pro-inflammatory 
mediators ( such as Inducible nitric oxide syn-
thase (iNOS), cyclooxygenase (COX-2), interleu-
kin-1 (IL-1), IL-6, and tumor necrosis factor 
alpha (TNF-α )) associated with carcinogenesis 
[49]. Another oncogenic kinase which is 
immensely involved in the inflammatory pro-
cess is the protein kinase B (Akt). In an experi-
mental model of Akt-knockout mice and cells of 
liver cancer, it was established that the inhibi-
tion of Akt was directly proportional to the inhi-
bition of NF-kB. Suggesting that Akt can acti-
vate the IKK. IKK, in turn, induces the 
phosphorylation of IkBα (inhibitor of kappa B) 
leading to the translocation and activation of 
NF-kB and the activation of NF-kB results to the 
activation of pro-inflammatory mediators [50]. 
The inhibition of these chains of actions via the 
modulation of any of this kinase may proffer a 
good solution in cancer treatment. The inhibi-
tion of Akt, phosphatidylinositol 3-kinases 
(PI3K), and Janus Kinase (JAK; which transduce 
cytokine-mediated signals via the Jak-STAT 

pathway) collectively exerted anti-inflammatory 
activity, as demonstrated in lipopolysaccharide 
(LPS)-stimulated BV-2 microglial cells [51]. The 
experiment also showed a decrease in the pro-
duction of proinflammatory cytokines and che-
mokines [51]. Similarly, in acute kidney injury, 
the suppression of ERK and PI3K/Akt path- 
ways attenuated inflammation process [52]. 
Suggesting that PI3K, Akt, and JAK may be 
involved in modulation of inflammatory respon- 
ses, cytokines, and chemokines. Besides, in 
LPS‑Activated BV‑2 Microglial Cells, the sup-
pression of Akt/NF-κB and MAPKs/AP-1 path-
ways remarkably decreased inflammatory ev- 
ents [53]. Indeed, these kinases are involved in 
the elicitation of pro-inflammatory cytokines, 
as demonstrated in experimental multiple scle-
rosis where the downregulation of PI3K/Akt, 
JNK and p38 MAPK and subsequent inhibition 
of pro-inflammatory cytokines were observed 
upon treatment with cannabidiol (Cannabinoids, 
the secondary metabolites found in the plant 
Cannabis sativa) [54]. The suppression of Sp- 
leen tyrosine kinase (Syk)/Src and Interleukin-1 
receptor-associated kinase 1 (IRAK)1/4 mark-
edly resulted in the suppression of (NF)-kB and 
activator protein (AP)-1. Which consequently 
attenuated inflammation [55]. Furthermore, a 
liberal estimate of the Inflammatory myofibro-
blastic tumor (IMT) have been established to 
have a rearrangement of anaplastic lymphoma 
kinase (ALK) gene [56], as it was again recently 
reported in a clinical case of intraosseous IMT 
of the mandible [57]. Although, however, to the 
best of our knowledge, there have not been any 
publication on plant products that inhibits ALK. 
Thus, a call for more investigations.

Targeting transcription factors

Accumulating evidence over the past decades 
presents NF-κB and STAT3 pathways as key 
molecular links between chronic inflammation 
and carcinogenesis. These transcription fac-
tors regulate inflammatory reaction and stimu-
late tumorigenesis through production/recruit-
ment of soluble mediators like cytokines (e.g. 
IL-6), chemokines (e.g. CCL2) and other cellular 
components (e.g. Tumor-associated macro-
phages (TAMs)) [58, 59]. Although some stud-
ies have reported the anti-inflammatory role of 
the activation of NF-κB [60-62], however, in this 
context, anti-inflammatory intervention by way 
of inhibiting the NF-κB signaling pathways has 
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proven to be potential for prevention and treat-
ment of inflammatory-associated cancers [63-
65]. NF-κB and STAT3 are often constitutively 
activated in various human cancer cells lead-
ing to the expression of transcription factor 
regulating genes and subsequent proliferation, 
invasion, angiogenesis, and ultimately the sur-
vival of cancer cells [66]. NF-κB is seen as an 
important orchestrator of innate immunity and 
inflammation and has exhibited the capability 
of regulating the activities of both, preneoplas-
tic and malignant cells. In both situations, NFκB 
is found downstream of the perceiving of a 
microorganism or tissue damage through the 
toll-like receptor (TLR)-MyD88 pathway, the 
inflammatory cytokines TNFα and IL-1β. Upon 
activation by the degradation of its inhibitor 
IkBa, NF-κB is translocated to the nucleus, 
where it induces the upregulation of several 
genes that can result in cell-autonomous 
genetic alterations, suppression of apoptosis, 
proliferation, invasion, metastasis, chemore-
sistance, radio-resistance and inflammation in 
cancer cells. Several of the activated target 
genes for inflammatory cytokines, adhesion 
molecules, and key inflammatory enzymes are 
essential for the progression to various stages 
of aggressive types of cancer. Substantial 
genetic data, involving precise targeting of 
gene components of the Ikk complex, like 
IkappaB-kinase beta (IKKβ), have unraveled 
enough clues on the role of NF-κB in tumor pro 
motion [67]. In vitro and in vivo studies have 
cited that constitutive activation of NF-κB 
results in inhibition of chemotherapy-induced 
apoptosis in some cancer cells. Furthermore, a 
link between innate immunity to the response 
to hypoxia can be due to interconnections and 
compensatory pathways between NF-κB and 
Hypoxia-inducible transcription factor-1 (HIF1α) 
[68]. Earlier reports show that NF-κB regulates 
the transcription of HIF-1α, whereby the activa 
tion of NF-κB led to increased HIF-1_ mRNA lev-
els in tissues exposed to hypoxia [69]. HIF-1α is 
known to mediate adaptive response to hy 
poxia, current clinical and in vitro studies have 
reported the involvement of hypoxia in tumor 
progression [70] and drug resistance in lung 
cancer cells [71]. Furthermore, NF-κB has again 
presented itself as a convenient molecular tar-
get for cancer therapy by also controlling the 
activities of MMPs. Ming et al. suggested that 
the nuclear export of NF-kappaB-p65 conse-
quently reduced the expression of metallopro-
teinases (MMP)2 and MMP9, which led to met-

astatic inhibition induced by a ginseng saponin, 
compound K (CK) [72]. Tumor-associated im- 
mune cells, as well as inflammatory cells, can 
activate STAT3 signaling, which makes STAT3 
an important intrinsic pathway for cancer 
inflammation. Also, malignant cells can acti-
vate an enormous number of genes (such as 
IL-6, IL-10, IL-11, IL-17, IL- 23, CXCL12, and COX-
2) that are essential for inflammation [73]. 
STAT3 has shown the ability to control several 
intracellular signal transduction pathways of 
various pro-inflammatory cytokines, chemo-
kines and other mediators like macrophage 
colony-stimulating factor, prostaglandins and 
cyclooxygenase-2 (COX-2) which have demon-
strated to stimulate and maintain a cancer-pro-
moting inflammatory environment [74-76]. 
Furthermore, the persistent activation of STAT3 
can not only stimulate cellular proliferation 
through controlling genes linked with cell cycle 
progression but also aid tumor angiogenesis, 
resistance to apoptosis [77, 78] and immuno-
suppression [79]. Therefore, both NF-κB and 
STAT3 can serve as attractive molecular tar-
gets for treating and preventing chronic inflam-
mation-induced cancers.

Targeting of inflammatory chemokines and 
their receptors

Chemokines are members of small (8-14 kDa) 
groups of proteins that interact with receptors 
on cell surfaces during physiological processes 
in the body, directing cells to particular sites in 
the body. Recently, they have been identified to 
modulate many intracellular signaling path-
ways, including NF-κB, STAT families, and MA- 
PKS. Various cell types, like endothelial cells, 
fibroblasts, epithelial cells, tumor cells, stromal 
cells and tumor-associated leukocytes have 
been identified to have the ability to produce 
chemokines [80-82]. They remain to be power-
ful attractants of leucocytes, like neutrophils, 
monocytes, natural killer cells and T cells. They 
are structurally classified into four subgroups of 
CXC, CC, CX3C and C; and are functionally cat-
egorized as inflammatory, homeostatic or both 
[83]. Chemokines promote carcinogenesis by 
either regulating tumor transformation, surviv-
al, growth, invasion or metastasis or by promot-
ing angiogenesis and tumor-leukocyte interac-
tions. Murakami, et al. demonstrated that a 
CXCR3- and CXCR3/CXCR4 double-knockdowns 
significantly decreased the dissemination of 
cancer cells to liver and lungs [84]. Detectable 
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levels of CXCR7 have been found on the sur-
face of murine breast tumor 4T1 and Lewis lung 
carcinoma (LLC) cell lines [85], which are known 
to form primary and metastatic tumors in mice 
[86]. The CXC chemokines having the ELR motif 
are the classical inflammatory and angiogenic 
chemokines [87]. ELR+ CXC chemokines like 
CXCL8 (1L-8) can promote tumor growth by 
enhancing angiogenesis and the chemoattrac-
tion of neutrophilic granulocytes. Neutrophils in 
turns promote angiogenesis, tumor growth, and 
metastasis via inducing matrix-degrading 
enzymes and angiogenic tumor-promoting fac-
tors like vascular endothelial growth factor 
(VEGF) [88, 89]. Contrarily, ELR- CXC chemo-
kines like CXCL10, have angiostatic abilities. It 
binds to CXCR3 attracting anti-tumoral lympho-
cytes. However, CXCL12 as an ELR- chemokine 
is the angiogenic exception, because it moder-
ates angiogenesis through its normal receptor 
CXCR4 [81]. The production of СXCL12 in bone 
marrow, CNS, lungs, liver and lymph nodes has 
been proven to cause the activation of CXCR4, 
which in turn controls tumor cell migration [90]. 
Melanoma cells may exhibit CCR10 that recog-
nizes CCL27 and CCL28 hugely expressed by 
skin epithelium [91]. Breast cancer tumor cells 
show distinct chemokine receptors, CXCR4 and 
CCR7, being some of them. In an orthotopic 
mouse model, obstruction of the CXCL12-
CXCR4 axis inhibited metastasis of the cell line 
MDA-MB-231 to the lung [92]. Many studies 
have discovered noticeable blockage of metas-
tasis using both CXCR4 antagonists and 
CXCL12-specific blocking antibodies in differ-
ent tumor cell lines [93]. The chemokine CXCL8 
(IL-8) and its receptors CXCR1/2 have demon-
strated to be potential therapeutic targets in 
various solid tumors like malignant melanoma, 
colon, breast, and bladder cancer [94]. 

Targeting inflammatory cytokines

Cytokines such as TNF-α and IL-1 and IL-6 act 
by modulating NFκB and STAT families of tran-
scription factors [95-97], which are known for 
their proto-oncogenic abilities and their pro-
longed abnormal activation are directly involved 
in the pathogenesis of different forms of 
tumors. The activation of such likely oncogenic 
transcription factors by cytokines and other 
components of the tumor may connect inflam-
matory environment, cancer, and immune cells 
and directly promote tumor initiation and pro-
gression by enhancing the survival factors and 

through modulating the tumor microenviron-
ment. Therefore, cytokines have been recog-
nized as key component and orchestrator of 
the inflammatory microenvironment of tumors. 
Hence, cytokines and cancer seem “insepara-
ble”. The release of cytokines by cancer cells 
have led to the recruitment of endothelial cells, 
fibroblasts, and infiltrating inflammatory cells to 
the site [98, 99]. Moreover, the recruitment of 
satellite cells to the tumor sites due to exces-
sive secretion of cytokines forms a complex 
regulatory network that controls the activities 
of the tumor microenvironment [99]. TNF-α as 
pro-inflammatory cytokine is one of the most 
studied cytokines and has shown to mediate 
the initiation, promotion, and metastasis of 
tumors [100-102]. In the tumor environment, 
TNF-α causes the activation of NF-κB, leading 
to expression of inflammatory genes includ- 
ing reactive oxygen intermediates, inflammato-
ry cytokines and chemokines, inducible cellul- 
ar adhesion molecules, cyclooxygenase, and 
MMPs [59]. A recent study showed that TNF-α 
induced the activation of tumor necrosis factor-
α-induced protein 8 (TNFAIP8), which contrib-
utes to tumor aggressiveness and poor progno-
sis in patients with invasive ductal breast 
carcinoma [103]. Specimens from archival tis-
sue from patients with advanced stages of 
colorectal cancer show Significantly higher lev-
els of TNF-α mRNA [104]. Furthermore, TNF-α 
can activate NF-κB in cell types possessing TNF 
receptors [105, 106], suggesting that the inhi-
bition of TNF-α usually, leads to suppression of 
NF-κB. Moreover, certain phytochemicals which 
suppress TNF-α and also exhibit inhibitory 
activity against NF-κB activation [107, 108].

IL-1β is a pleiotropic cytokine exhibiting many 
roles in both physiological as well as pathologi-
cal conditions. It is known to be up-regulated in 
different tumor types and can promote tumor 
progression through the upregulation of meta-
static and angiogenic genes and growth factors 
[109]. The virulent phenotype exhibited by 
some tumors has been ascribing to high IL-1β 
concentrations within the tumor microenviron-
ment [110]. Many tumors, like gastric, breast, 
neck, colon cancers and others were reported 
to overexpress IL-1β [111-113]. IL-1 can stimu-
late the upregulation of metastatic genes as 
well as proinflammatory genes like VEGF, IL-6, 
IL-8, TGFβ and MMPs [111]. Recent research 
on chemoresistance revealed that drug-resis-
tant human hepatocellular cancer (HCC) cells-de- 
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rived IL-6 activated MDSCs both in C57BL/6N 
mice and in HCC. The experiment showed that 
the blockade of IL-6 signaling was directly pro-
portional to the depletion of MDSCs, which in 
turn correlates with the chemotherapy response 
in patients [114]. Another clinical research also 
demonstrated that IL-6 promotes the nuclear 
translocation of Protein arginine methyltrans-
ferase-5 (PRMT5) expression that lead to poor 
clinical outcome in oropharyngeal squamous 
cell carcinoma (OPSCC) patients [115]. In- 
hibition of IL-6 using an anti-IL-6 receptor anti-
body obstructed the development of colitis-
associated colorectal cancer (CAC) and reduced 
expression of HIF-1α, suggesting that IL-6 pro-
motes CAC progression by regulating HIF-1α 
expression during the early stages of CAC 
development [116]. In contrast with other cyto-
kines, IL-10 is the primary inhibitory cytokine 
produced by T(TReg) cells that suppress the 
expression of many pro-inflammatory cytokines 
and chemokines, as well as proinflammatory 
enzymes [117]. Perhaps the induction of IL-10 
can be a useful anti-inflammatory mechanism 
as seen in experiments where the increased 
production of IL-10 stimulated by the adminis-
tration of maqui and calafate extract showed 
an inhibitory effect on inflammatory response 
[118]. Besides, in non-small-cell lung cancer 
patients treated with epidermal growth factor 
receptor (EGFR) tyrosine kinase inhibitors 
(TKIs), a decrease in IL-10 plasma levels corre-
sponded with the severity of rash [119].  
Although, there exist some other publications 
that suggest the inhibition of IL-10 for lung can-
cer therapy [120, 121]. Even So, based on our 
finds in the present review, we do not recom-
mend the inhibition of IL-10 for cancer therapy, 
indicating the need for more research to clarify 
the implications of IL-10 in lung cancer. Taken 
together, these cytokines have proven to be 
directly or indirectly (by modulating other mole-
cules) involved in various types of cancers, 
making them a promising target for cancer 
therapy. Finally, these cytokines have proven to 
be directly or indirectly (by modulating other 
molecules) involved in various types of cancers, 
making them a promising target for cancer 
therapy. 

Targeting inflammatory enzymes 

Several enzymes such as Cyclooxygenase-2 
(COX-2) and iNOS can modulate the progres-
sion from inflammation to cancer. COX (cyclo-

oxygenase) pathway which is one of the signal-
ing pathways involved in tumorigenesis, exist 
as two main COX isoforms, COX-1 and COX-2, 
that shows different expressional characteris-
tics between tissues. COX-2 which is known as 
the rate-limiting isoform takes care of pros-
tanoid production during inflammation and 
their overexpression can lead to many cancers. 
Several studies have demonstrated the upregu-
lation of COX-2 in multiple forms of cancers, 
such as carcinomas of the urinary bladder, 
colon, breast, prostate, and lung [122-125]. 
Furthermore, increased expressional levels of 
PGE2, an enzymatic product of COX-2, has 
been found in many tumors like colorectal, 
lung, breast, pancreatic, and hepatocellular 
carcinoma [126-129]. Transformation of ara-
chidonic acid to prostaglandins due to activities 
of COX-2 has shown to be mitogenic, resulting 
in cellular proliferation [130]. Moreover, COX-2 
is a promising molecular target for natural com-
pounds in cancer chemoprevention and thera-
py [131] and its capability to stimulate angio-
genesis and direct malignant phenotype, has 
been recognized as a potential initial diagnos-
tic marker of the virus linked human malignant 
neoplasms [132]. iNOS an inflammation-driven 
enzyme that catalyzes the production of nitric 
oxide (NO), overexpresses in various malignan-
cies as well as many inflammatory processes 
[133]. Several clinical studies from humans 
and laboratory animals have demonstrated the 
connection between iNOS and the develop-
ment of many tumors. Increased iNOS expres-
sion has been detected in breast cancer [134, 
135] and various other cancers like lung [136], 
Bladder [137], Human Melanoma [138], and 
Skin [139]. 

Targeting adhesion molecules 

Adhesion molecules are extensively expressed 
on the cell surface, basement membrane and 
extracellular matrix (ECM). They promote cell-
cell as well as cell-matrix interactions which are 
vital for different physiological and pathological 
mechanisms of blood coagulation, cell growth, 
differentiation and trafficking, embryogenesis, 
immune responses, inflammation, wound 
repair and tumor development. Recent studies 
have demonstrated that, besides their role in 
adhesion, these molecules can also work as 
signal transducers to modulate numerous cel-
lular activities via G-proteins, phospholipids 
and protein kinases [140]. A growing body of 
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Table 1. A list of plant extracts and the inflammatory events they inhibit
# Plant source Part used Model description Possible molecular targets References
1 Lavandula dentata Aerial parts NBS model of rat colitis and carrageenan-in- duced paw edema in mice MMP-9, iNOS, COX-2, IL-1β, IL-6 and TNFα [262] 

2 Lavandula stoechas Aerial parts NBS model of rat colitis and carrageenan-in- duced paw edema in mice MMP-9, iNOS, COX-2, IL-1β, IL-6 and TNFα [262]

3 Pistacia vera Hulls Lipopolysaccharide-stimulated RAW
264.7 macrophage cells

NO, ROS COX-2 and IL-6 [263] 

4 Schisandra chinensis Fruits Human SW1353 chondrosarcoma cells MMPs, IL-1β, COX-2, iNOS and NF-κb. [264] 

5 Amaranthus Lividus Leaves Ages-induced cells TNF-α, IL-1 and IL-6 [265]

6 Amaranthus tricolor Leaves Ages-induced cells TNF-α, IL-1 and IL-6 [265]

7 Uncaria sinensis Hooks and stems Murine BV2 Microglia stimulated with LPS and photothrombotic cortical 
ischemia-induced brain injury

NO, PGE2, TNF-α, IL-1β, IL-6, COX-2 and NF-kb [266]

8 Iberis amara Whole plant Adjuvant-induced arthritis model of inflammation. TNF-α, PGE2, and IL-1β [267]

9 Jasminum lanceolarium Stems and roots Carrageenan-induced rat paw edema model PGs, COX-2 and 5-LOX [268]

10 Lonicera caerulea L. Fruits Human leukemia  monocytic THP-1 Cell line derived macrophages stimu-
lated by LSP

PGE2, TNF-α, IL-6 and COX-2 [269]

11 Black Rice  Whole grain LSP-stimulated RAW 264.7 macrophage cell line NO, iNOS, MAPK, ERK, TNF-α, IL-6, COX-2, AP-1 and NF-kb. [49]

12 Lonicera japonica Flower buds Lipopolysaccharide (LPS)-stimulated BV-2 microglial cells NO, iNOS, PGE2, MMP-9, MAPKs, ERK 1/2, JNK, PI3K, Akt, 
TNF-a and IL-1b, STAT 1/3 and NF-kb.

[51]

13 Quercus sideroxyla Leaves HT-29 cells COX-2, IL-8 and NF-κb [270]  

14 Medicago sativa Stem LPS-stimulated RAW 264.7 mouse macrophage cells IL-1β, IL-6, and COX-2 [271]  

15 Trianthema portulacastrum Aerial parts Chemically Induced Rat Mammary Tumorigenesis COX-2 and NF-κb, IκB Nrf2 [272]  

16 Acanthopanax senticosus Roots  Mouse model of lipopolysaccharide-induced acute lung injury TNF-α, IL-6, and NF-kb [273]

17 Hippophae rhamnoides Leaves LPS induced endotoxemia in Balb/c mice iNOS, COX-2, IL-6 and TNF-α [274]

18 Psacalium decompositum Roots Obesity fructose-induced in Wistar rats IL-6, IL-1β, IFN-γ, MCP-1 and VEGF [275]

19 Thymus serpyllum Aerial parts Trinitrobenzene sulfonic acid (TNBS)-induced rat colitis and dextran sodium 
Sulfate (DSS)-induced mouse colitis

iNOS, ICAM-1, COX-2, TNF-a, and IL-6 IL-1β, MCP-1, and 
IFNγ

[276]

20 Polygala sabulosa Aerial parts LPS-induced peritonitis in mice TNF-α, IL-1β and IL-6 [277]

21 Retama monosperma Aerial parts Intra-colonic administration of Trinitrobenzene sulfonic acid (TNBS) in rats 
(a Crohn’s disease model)

iNOS, COX-2, NF-kB, IκB, and p38MAPK [278]

Table 2. A list of isolated compounds illustrating the inflammatory events they inhibit

# Compound Plant source Chemical class Model description Possible molecular Targets Refer-
ences

1 4-hydroxy-acetophenone Salsola tuberculati-
formis

Phenolic Streptozotocin model of type 1 diabetes IL-1β, TNF-α and IL-6 [279] 

2 Senecionine Senecio brasiliensis Alkaloid Mouse model of pleurisy induced by carrageenan. TNF-α, NF-κb and IL-1β. [108]

3 Integerrimine Senecio brasiliensis Alkaloid Mouse model of pleurisy induced by carrageenan. TNF-α, NF-κb and IL-1β. [108]

4 Senecionine N-oxide Senecio brasiliensis Alkaloid Mouse model of pleurisy induced by carrageenan. TNF-α, NF-κb and IL-1β. [108]

5 Isorhamnetin-glucosyl-rhamnoside Opuntia ficus-indica Flavonoid Croton oil-induced ear edema model. NO, COX-2, TNF-α, and IL-6 [280]

6 Pinosylvin Pinus sylvestris Stilbene Carrageenan-induced paw inflammation stilbenes in the 
mouse

NO, iNOS, IL-6, and MCP-1 [281] 
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7 Monomethylpinosylvin Pinus sylvestris Stilbene Carrageenan-induced paw inflammation in the mouse NO, iNOS, IL-6, and MCP-1 [281] 

8 Delphinidin 3-sambubioside Hibiscus sabdariffa Flavonoid RAW264.7 cell model and LPS-Induced Paw Edema in Mice iNOS, NO, MCP-1, IL-6, and TNF-a, NF-κb, 
and MEK1/2- ERK1/2

[282]

9 Hispidulin Clerodendrum inerme Flavone RAW 264.7 murine macrophage cell model NO, iNOS, PGE2, JNK, COX-2 and NF-κb [283]

10 Quercetin Eucommia ulmoides Flavonoid Hepatocellular carcinoma (HCC) cell model NF-κb [284]  

11 Catechin-(5,6-bc)-4α, β-(3,4-
dihydroxyphenyl)-dihydro-2(3h)-pyranone

Eucommia ulmoides Flavonoid Hepatocellular carcinoma (HCC) cell model  NF-κb [284]

12 Eucommioside-I Eucommia ulmoides Iridoid  Hepatocellular carcinoma (HCC) cell model NF-κb [284]

13 Icariside F2 Eucommia ulmoides Flavonoid Hepatocellular carcinoma (HCC) cell model NF-κb [284]

14 Gentiolactone Gentiana triflora Secoiridoid 
dilactone

Murine Macrophage model iNOS , TNF-α, and Cox-2 [285]

15 2,8-dihydroxy-7H-furo[2,3-f]chromen-
7-one

Tibouchina paratropica Phenolic Deriva-
tive

Human-derived monocyte THP-1 cells (ATCC 202). IL-6 [286]

16 Schisantherin A Schisandra sphenan-
thera

Dibenzocycloocta-
diene

LPS-induced mouse ARDS IκB-α, ERK JNK, MAPKs, TNF-α, IL-1β , 
IL-6 and NF-KB

[159] 

17 Dauca-8, 11-diene-7-one Boesenbergia longiflora Sesquiterpenes Murine macrophage RAW264.7 cells NO, iNOS and COX-2 [287] 

18 Kaempferol-3,7,40-trimethylether Boesenbergia longiflora Flavonoid Murine macrophage RAW264.7 cells NO and TNF-α [287]

19 Kaempferol-7,40-dimethyl ether Boesenbergia longiflora Flavonoid Murine macrophage RAW264.7 cells NO and TNF-α [287]

20 Rhamnazin Boesenbergia longiflora Flavonoid Murine macrophage RAW264.7 cells NO and TNF-α [287]

21 Pinostrobin Boesenbergia longiflora Flavonoid Murine macrophage RAW264.7 cells NO and TNF-α [287]

22 Dihydrobisdemethoxycur-cumin Boesenbergia longiflora Diarylheptanoids Murine macrophage RAW264.7 cells NO and TNF-α [287]

23 1-hydroxy-dihydrobisdemethoxycurcumin Boesenbergia longiflora Diarylheptanoids Murine macrophage RAW264.7 cells NO and TNF-α [287]

24 Dihydro-bisdemethoxycurcumin-40, 
4”-diacetate

Boesenbergia longiflora Diarylheptanoids Murine macrophage RAW264.7 cells NO and TNF-α [287]

25 Demethoxycurcumin Boesenbergia longiflora Diarylheptanoids Murine macrophage RAW264.7 cells NO and TNF-α [287]

26 Bisdemethoxycurcumin Boesenbergia longiflora Diarylheptanoids Murine macrophage RAW264.7 cells NO and TNF-α [287]

27 Mansoins B Mansoa hirsuta Flavonoid LPS-stimulated THP-1 cells TNF-α [288] 

28 8-epiloganin Castilleja rubra Iridoid LPS stimulated
RAW264.7 macrophages

NO, TNF-α, IL-1β, NF-κb and PGE2 [289] 

29 Mussaenoside Castilleja rubra Iridoid LPS stimulated
RAW264.7 macrophages

NO, TNF-α, IL-1β, NF-κb and PGE2 [289]

30 5-O-caffeoylshikimic acid Castilleja rubra LPS stimulated
RAW264.7 macrophages

NO, TNF-α, IL-1β, NF-κb and PGE2 [289]

31 Cycloeucalenone Solanum cernuum Carrageenan-induced paw edema Model COX-2 [290]

32 24-oxo-31-norcycloartanone Solanum cernuum Carrageenan-induced paw edema Model COX-2 [290]

33 Bergenin genus Bergenia Tannins Mouse Model Of LPS-Induced Mastitis NO, NF-κB, TNF-α, IL-1β, IL-6 and MAPK [291]
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evidence suggests that modifications in the 
adhesion abilities of neoplastic cells play a cru-
cial role in tumorigenesis and the biological 
nature of many malignancies [141]. Several cell 
adhesion molecules (CAMs) including large 
CAM superfamilies like the immunoglobulin 
(Ig)-like CAMs, cadherins, selectins, and integ-
rins are involved in the pathogenesis of differ-
ent types of tumors. The immunoglobulin (Ig)-
like CAMs includes molecules that participate 
in cellular immunity (MHC antigens, CD2, CD4, 
CD8 and the T cell receptor) and leukocyte traf-
ficking. Also, neural cell adhesion molecule, 
vascular addressin, epithelium-specific adhe-
sion molecules, carcinoembryonic antigen, 
MAdCAM-1, MUC18 and deleted in colorectal 
carcinoma (DCC) [142]. Ding, Yong-Bin, et al. 
have demonstrated that expression of VCAM-1 
is closely related to oncogenesis, tumor angio-
genesis and metastasis in gastric carcinoma 
[143]. Clinical investigations have indicated 
that enforced expression of ICAM-1 may be 
embroiled in the pathogenesis and prognosis 
of a vast number of tumors including breast 
and hepatocellular cancer [144, 145]. Indeed, 
the de novo release of ICAM-1 on gastric cancer 
cells corresponds with a heightened prospect 
of hematogenous metastasis by suppressing 
local anticancer immunity [146]. NF-kB p105 
(p50 precursor), knockout mice, show 
decreased ICAM-1 expression [147], suggest-
ing that NF-kB can induce ICAM-1 and VCAM-1. 
Also, STAT transcription factor is an important 
activator of ICAM-1 expression [148, 149]. 
Moreover, Pro inflammatory cytokines, such as 
IL-1β and tumor necrosis factor α (TNF-α), stim-
ulates cancer cell adhesion, resulting to cancer 
metastases by promoting the expression of 
adhesion molecules such as ICAM-1 and vascu-
lar cell adhesion molecule-1 (VCAM-1) [150, 
151]. 

Therapeutic intervention by plant

Numerous plant extracts have been used in tra-
ditional folk medicine as an effective remedy 
for different types of illnesses. Moreover, such 
traditional medicine is widely used in practiced 
to date. Since the practice of traditional medi-
cine is not strictly based on evidence gathered 
using the scientific method, modern medicine 
recognizes it as a form of alternative medicine. 
Nonetheless, modern medicine make use of 
many plant-derived compounds as the basis for 
evidence-tested pharmaceutical drugs, phyto-

therapy, and phytochemistry. Currently, modern 
standards are being employed to test the effi-
cacy of herbs and medicines that are derived 
from natural sources. However, the constitu-
ents of these natural product extracts repre-
sent a vast unexploited source of potentially 
novel biologically active molecules. In this 
review, we identified recently isolated com-
pounds from various plants (Figure 7 and Table 
2), that are proposed anti-inflammatory phyto-
chemicals for cancer therapy. Furthermore, 
Table 1 contains a list of plant extracts with 
potential inhibitory properties to the key factors 
of cancer-related inflammation and may pro-
vide a new source of chemicals for the effective 
treatment of cancer. Our findings showed that 
not much reports had been published about 
bioactive proteins from plant sources; particu-
larly on inflammation, indicating the need for 
more research because plant proteins like 
Lectins have been reported to have multiple 
biological activities, including immunostimula-
tion, repression, and antitumor activity [152]. 
Also, in A549 cells experiment, Agglutinin a lec-
tin isolated from Arisaema heterophyllum 
Blume suppressed PI3K/Akt signaling path-
ways and consequently induced apoptosis and 
autophagy in A549 cells [153]. 

Plant extract mixture is a known traditional 
medical practice that involves the combination 
of two or more plant extracts Herbal mixtures. 
Herbal mixtures have proven to be an excellent 
medical remedy for various diseases. It is 
believed that the synergy between different 
constituents of the plants enables them to be 
more efficiently active. Japanese pharmaceuti-
cal companies manufactured formulations 
known as Kampo formulations, which consti-
tute of mixtures of crude extracts from the 
bark, leaves, roots, or rhizomes of different 
herbs. These formulations and several other 
formulations are recognized by the Japanese 
national health insurance system and con-
trolled by government regulations [154, 155]. 
Recently, the Japanese herbal medicine known 
as Daiokanzoto (TJ-84), a Kampo formulation 
composing of crude extracts of Rhubarb rhi-
zomes and Glycyrrhiza roots have been report-
ed to reduce the production of IL-6 and CXCL8 
by lipopolysaccharide-stimulated oral epithelial 
cells and gingival fibroblasts [156]. Green tea 
polyphenol, epigallocatechin-3-gallate and cr- 
anberry proanthocyanidins act in synergy with 
cathelicidin (LL-37) to reduce the secretion of 
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IL-6 and IL-8 in LPS-induced inflammatory 
response in a three-dimensional co-culture 
model of gingival epithelial cells and fibroblasts 
[120]. Another potent herbal mixture is the 
Chinese propolis. Chinese propolis has been 
acknowledged for its wide range of biological 
properties and pharmacological activities [157, 
158]. In a study involving the combination of 
Chinese propolis and buds from poplar (Populus 
canadensis), it was observed that this combi-
nation suppressed the secretion of LPS-
stimulated inflammatory cytokines, such asin-
terleukin-6 (IL-6) and TNF-α production in 
endotoxemic mice [159]. Given the illustrated 
effectiveness of these herbal mixtures, it signi-
fies that a combination of different plant 
extracts that have been individually identified 
to modulate the inflammatory mediators could 
be a novel adjunctive therapy for the treatment 
of cancer.

Effects of selected phytochemicals

Phenolics

Resveratrol (3,5,4’-trihydroxy-trans-stilbene) is 
a phenolic (Figure 3) phytoalexin which exists in 
several plant species, generally seen as a con-
stituent in red wine, skins or bark of grapes, 
pistachios, blueberries, and peanuts. Phy- 
toalexins, are presumed to be synthesized by 
plants following injury or stress, for instance, if 
an infectious microorganism contaminates the 
plant. They produce valuable impact as an anti-

peutic pleiotropic properties of resveratrol have 
been extensively investigated in both in-vitro 
and in vivo studies in different forms of cancers 
including breast, prostate, lung, skin, and colon 
[167-169]. Experimental data have proven that 
resveratrol may conquer chemo-resistance in 
most cancer cells by way of inhibiting NF-Κb 
and STAT3 pathway [170, 171]. These observa-
tions had also been supported through an inhi-
bition of NF-κB and STAT-3 in patients with mul-
tiple myeloma [172]. Resveratrol has been 
found to inhibit the PI3K and Akt pathway in 
acute lymphoblastic leukemia cells [173]. 
Additionally, it has extensively brought about 
the degradation of HIF-1a protein by using the 
proteasome pathway. Recently a novel resvera-
trol analog, HS-1793, has been confirmed to 
inhibit vascular endothelial growth factor 
(VEGF) and HIF-1α in human prostate cancer 
cells [174]. Resveratrol has shown a whole lot 
promise in preclinical trials, and due to its desir-
able safety profile, it could be a significant che-
mopreventive and chemotherapeutic agent. 
However, the fast metabolism of resveratrol 
has been a continuing setback.

Curcumin is a polyphenol which is a component 
of the golden spice turmeric (Curcuma longa). 
Over the past decades, extensive studies have 
given more insights into the medicinal and 
health advantages of curcumin. Many publica-
tions have reported its anti-inflammatory [175], 
chemopreventive, and anti-carcinogenic [176-
178] properties. Curcumin can interfere with 

Figure 3. Chemical structure of phenolic compounds.

tumorigenic, anti-inflammato-
ry, and antioxidant agent 
[160]. Several studies have 
reported that resveratrol inter-
feres with many of the key 
players mediating inflamma-
tion, blocking DNA damage 
and inducing apoptosis in a 
p53-dependent manner [161, 
162]. The generation of two 
key metabolites namely pi- 
ceatannol and 3,4,5,4’-tetra-
hydroxy stilbene through hy- 
droxylation of resveratrol by 
CYP1B1 have been reported 
[163-166], and these metabo-
lites notably enhance its che-
mopreventive actions by inhib-
iting tyrosine kinase and ac- 
tivating apoptosis. The chemo-
preventive and chemothera-
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several extracellular and intracellular molecu- 
les which are actively involved in cancer prolif-
eration, differentiation, invasion, apoptosis, 
and cell cycle checkpoints, thereby inhibiting 
the progression of most cancers [12, 179-181]. 
Increasing evidence suggests that the inhibito-
ry outcomes of curcumin on tumor cells are due 
to their modulatory effect on the growth of 
tumor cells through regulation of multiple cell 
signaling pathways. These pathways comprise 
caspase activation (caspase-8, 3, 9), cell prolif-
eration (cyclin D1, c-Myc), cell survival (Bcl-2, 
Bcl-xL, cFLIP, XIAP, c-IAP1), tumor suppressor 
(p53, p21) death receptor (DR4, DR5), mito-
chondrial, and protein kinase (JNK, Akt, and 
AMPK) pathways [182]. Mishra, Alok, et al. 
reported that curcumin can selectively sup-
press transcription of the HPV16/E6 oncogene 
via inhibition of the activity of host nuclear tran-
scription factors AP-1 and NF-kB in oral cancer 
cells [183]. Also, curcumin suppressed LPS-
induced EMT through downregulation of NF-κB-
Snail signaling in breast cancer cell [184]. 
Curcumin can abolish NF-κB pathway in multi-
ple cancer cells [181], colorectal cancer [185, 
186], pancreatic cancer [187], head and neck 
squamous cell carcinoma [188], adenoid cystic 
carcinoma [189], oesophagal adenocarcinoma 
[190], human biliary cancer [191], medulloblas-
toma [192], gastric cancer [193], Myeloid-
derived suppressor cells [194], ovarian cancer 
[195] and prostate cancer [196]. Curcumin sig-
nificantly inhibited rat colorectal carcinogene-
sis via peroxisome proliferator activated 
receptor-γ (PPAR-γ) [197]. Yang, et al. demon-
strated that curcumin can suppress small cell 
lung cancer (SCLC) cell proliferation, cell cycle, 
migration, invasion, and angiogenesis via inhib-
iting STAT3 [198]. The constitutive phosphory-
lation of STAT3 seen in ovarian and endometrial 
cancer cells have been inhibited by curcumin 
[199]. Curcumin was shown to suppress the 
expression of TNF-α in Hepatocellular Ca- 
rcinoma [200]. Curcumin prevented colon car-
cinogenesis by suppressing lipopolysaccharide 
(LPS)-induced expression of iNOS and COX-2 
[201]. A study found that curcumin reduced 
metastasis to the lung and abrogated the 
expression of NF-κB, MMP-9, COX-2, VEGF, and 
ICAM-1 in a human breast cancer [202]. Hence, 
because of its efficacy as well as modulatory 
effects of multiple targets, couple up with its 
safety for human consumption, curcumin has 
received considerable attention as a possible 

therapeutic agent for the prevention and treat-
ment of different malignant diseases.

Epigallocatechin gallate (EGCG), a flavanol also 
known as epigallocatechin-3-gallate, is the 
ester of epigallocatechin and gallic acid and is 
a type of catechin. It is the most available cat-
echin in tea. Epigallocatechin gallate has been 
shown in some studies to inhibit tumor cell 
growth and may have beneficiary effect against 
metastasis. In SHRSP.Z-Leprfa/IzmDmcr (SHR- 
SP-ZF) obese and hypertensive rats, EGCG 
inhibited the development of hepatic premalig-
nant lesions by improving liver fibrosis, sup-
pressing RAS activation, and attenuating 
inflammation and oxidative stress. The quanti-
tative realtime RT-PCR analysis revealed that, 
in the livers of SHRSP-ZF rats, EGCG significant-
ly decreased the expression levels of MMP-2, 
MMP-9, and TGF-b1. Moreover, the hepatic 
expression levels of pro-inflammatory cyto-
kines such as TNF- α, IL-6 and IL-1b were signifi-
cantly decreased. Suggesting that EGCG might 
also be able to prevent non-alcoholic steato-
hepatitis (NASH)-related liver fibrosis tumori-
genesis [203]. This inhibitory effect of EGCG on 
the inflammatory mediators (IL-6, IL-1b, and 
TNF-α,) is in concordance with the suggestion 
that Chronic inflammation is one of the patho-
physiological mechanisms involved in the deve- 
lopment of hepatocellular carcinoma (HCC) in 
NASH [204]. Again, pre-administration of EGCG 
significantly blunted the expression of IL-β1, 
IL-6, and TNF-α, in lungs treated with fluoride 
[205]. EGCG can be potential chemopreventive 
agents against cholangiocarcinoma, as it de- 
creased the elevated phosphorylated-STAT1 
and STAT3 proteins, suppressed the cytokine-
induced expression of inducible nitric oxide 
synthase (iNOS) and intercellular adhesion mol-
ecule-1 (ICAM-1), which are the key molecules 
involved in inflammatory and tumorigenic pro-
cesses [206]. Furthermore, in a drug-induced 
tissue injury model, EGCG attenuated cisplatin-
induced TNFα and IL1β mRNA and decreased 
the amount of NF-κB (p65) [207]. 

Organosulfur compounds

Organosulfur compounds are a group of chemi-
cal compounds (Figure 4) which contains both 
carbon and sulfur, for example, Sulforaphane 
(SFN). SFN falls within the isothiocyanate group 
of organosulfur compounds which are present 
in cruciferous vegetables such as broccoli, 
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Brussels sprouts or cabbages. SFN is produced 
as a result of damage to the plant (such as from 
chewing) which permits a reaction involving the 
transformation of glucoraphanin, a glucosino-
late precursor, into sulforaphane by the plant 
enzyme myrosinase. The consumption of Cr- 
uciferous vegetables has been evidenced to 
reduce lung cancer risk [208]. SFN is consid-
ered a potential chemopreventive and chemo-
therapeutic agent due to its ability to target 
multiple inflammatory events involved in the 
pathogenesis of cancer. In prostate cancer 
orthotopic model, the consumption of SFN sup-
pressed NF-κB and other NF-κB associated tar-
get molecules such as IL-6 and IL-8, HIF-1α, 
and COX-2 were significantly reduced [209]. 
These activities of SFN eventually resulted in 
an improvement in the therapeutic potentials 
of tumor necrosis factor related apoptosis 
inducing ligand (TRAIL) [209]. SFN has consis-
tently inhibited the gene expressions of pro-
inflammatory and pro-carcinogenic signaling 
factors such as NF-κB, TNF-a, IL-1b, IL-6, IFN-b, 
IL-1b, COX-2, iNOS, CCR4, and CXCR4. As shown 
in many publications [210-213], making it a 
valuable chemopreventive candidate [214, 
215]. An experimental condition involving a  
prototypic tumor promoter 12-O-tetradecanoyl- 
phorbol-13-acetate (TPA) TPA-induced NF-κB 
activation and COX-2 expression in human 
mammary epithelial (MCF-10A) cells, showed 
an inhibition of NF-κB and COX-2 by modulating 
ERK1/2-IKKa and NAK-IKKb signaling path-
ways [216]. SFN inhibited TNF-α-induced 
mRNA, and protein expression of VCAM-1 
blocked TNF-α-induced degradation of IkBa 
and suppressed the expression of NF-kB p65 
[148]. In human embryonic kidney 293T 
(HEK293T) cells, the muramyl dipeptide (MDP)-
induced activation of NF-κB was inhibited by 

Garlic (Allium sativum L.) is an important rich 
source of organosulfur compounds such as alli-
cin, diallyl disulfide (DADS), diallyl trisulfide 
(DATS) and S-allylmercaptocysteine (SAMC)). 
Georgia et al. in a well elucidated publication, 
discussed in details the mechanisms involved 
in the Cancer Chemoprevention potentials of 
Garlic Organosulfur. They proposed a model 
explaining the association between garlic or- 
ganosulfur compounds and the immune sys-
tem in carcinogenesis. This model clearly impli-
cated the activities of inflammatory mediators 
in tumor growth and progression [219]. Re- 
cently, allicin exerted an inhibitory effect on the 
migration of lymphatic endothelial cells, bl- 
ocked the activation of vascular endothelial 
growth factor (VEGF) receptor [220], and was 
identified to be involved in the suppression of 
chronic myeloid leukemia K562 cell viability as 
an active component of Allium roseum L. [221]. 
Triple-negative human breast tumor (MDA-
MB-231) cells elicited monocyte chemotactic 
protein-1 (MCP-1/CCL2) which was evoked by 
TNF-α, was successfully inhibited by the treat-
ment with diallyl disulfide (DADS) [222]. 
Demonstrating that the administration of DADS 
can mitigate CCL2-enhanced tumor cell inva-
sion, migration, and proliferation. In the quest 
to understanding the mechanism of action of 
the anti-invasive mechanism of DATS in human 
bladder carcinoma, Dong et al. discovered that 
DATS operated by up-regulating the expression 
of tissue inhibitor of metalloproteinase (TIMP)-
1/2, which consequently blocked the protein 
and mRNA expressions of matrix metallopro-
teinase (MMP)-2 and MMP-9 thereby resulting 
in the suppression of inversion and migration in 
human bladder carcinoma (5637) cell line 
[223]. S-allylmercaptocysteine, a water-soluble 
derivative of garlic recently showed an impres-

Figure 4. Chemical structure of organosulfur compounds.

SFN via the nucleotide-bind-
ing oligomerization domain 
containing protein 2 (NOD2) 
pathway [217]. Furthermore, 
Arif et al. investigated the 
effect of SFN on human breast 
cancer cells. They found that 
the administration of SFN was 
able to inhibit the expression 
level of COX-2, suppressed the 
growth of breast cancer cells 
and also boosted the thera-
peutic index of the chemother-
apeutic drug, Gemcitabine 
[218]. 



Anti-inflammatory phytochemicals and cancer

15847	 Int J Clin Exp Med 2017;10(12):15834-15865



Anti-inflammatory phytochemicals and cancer

15848	 Int J Clin Exp Med 2017;10(12):15834-15865

sive anti-cancer effect by suppressing benzo(a) 
pyrene-induced precancerous carcinogenesis 
in human lung cells. The experimental data pro-
vided evidence of the blocking of nuclear fac-
tor-kappa B (NF-κB) activity and reduction of 
ROS formation by S-allylmercaptocysteine 
treatment [224].

Saponins

Saponins are amphipathic glycosides. Struc- 
turally they have one or more hydrophilic glyco-

side moieties combined with a lipophilic triter-
pene derivative and are known for their ch- 
aracteristics soap-like foaming activity pro-
duced when shaken in aqueous solutions. Over 
the years, saponins (Figure 5) have been re- 
ported to have various biological activities 
including anti-inflammatory and anti-cancer 
activities. Different saponins, such as Astra- 
galoside IV (AS-IV), Avicin D, β-escin, Ds-ech- 
inoside A, Saikosaponin-D, and Soyasaponin 
Bb, have been reported to impede the growth 

Figure 5. Chemical structure of saponins. For other chemical structures of saponins in American ginseng and Panax 
notoginseng see [235, 242]. 
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and progression of cancer via the inhibition of 
inflammatory events [225-230]. Astragaloside 
IV (AS-IV), from Astragali Radix, was reported to 
have decreased the levels of MMP-2, MMP-9, 
integrin β, AS-IV, TGF-β1, TNF-α and IL-6 l, 
resulting in the suppression of A549 cells 
migration and invasion. The experiment sug-
gests that AS-IV inhibition of migration and 
invasion in human lung cancer A549 cells might 
be connected to the PKC-α-ERK1/2-NF-κB 
pathway. Presenting AS-IV as a strong candi-
date for the inhibition of metastasis of human 
lung cancer [225]. β-escin inhibited NF-κB 
activation evoked by TNF-α in KBM-5 leukemia 
cells, and also suppressed the activation of 
iNOS, STAT1 and STAT3 elicited by interleukin-6 
in HepG2, HUH-7, PLC/PRF5 liver cancer cells 
and A549 lung cancer cells. Moreover, β-Escin 
reduced the activation of p38 MAPK in A549 
cells, which eventually led to the suppression of 
the induction and proliferation of apoptosis 
[227, 228, 231]. A study designed to investi-

ed the phosphorylation of p38 (MAPK), su- 
ppressed the degradation IκBα and the activa-
tion of nuclear factor NF-κB [234]. American 
ginseng extract which constitutes ginsenosides 
(Saponins) showed an inhibitory effect on 
inflammatory cytokine expressions, such as 
IL-1a, IL-1b, IL-6, IFN-g, G-CSF, and GM-CSF in 
azoxymethane/dextran sodium sulfate-induc- 
ed colon carcinogenesis in mice [235]. No- 
toginsenoside-R1( NG-R1), the main active 
ingredient of Panax notoginseng, suppressed 
the degradation of inhibitor of nuclear factor-κB 
(NF-κB) α, the activation of NF-κB, inhibited 
IL-6, IL-1β and TNF-α in H9c2 cardiomyocytes 
[236]. Ginsenoside Rg3 exhibited remarkable 
therapeutic effects in human prostate cancer 
cells (LNCaP, PC3, and DU145) and colon can-
cer cells (SW620 and HCT116)by inhibiting 
NF-κB pathway [237-239]. An in vitro study 
using a microglial cell line N9, Pseudogin- 
senoside-F11 (a triterpenoid saponin found in 
American ginseng but not in Asian ginseng) sig-

Figure 6. Chemical structure of Alkaloids.

gate the mechanism-based 
chemopreventive nature of 
Rhizoma Paridis saponins 
(RPS) against DEN-induced 
lung carcinogenesis in Ku- 
nming mice, showed the 
down-regulation of the levels 
of inflammatory factors, like 
TNF-α, IL6, COX-2 and the inhi-
bition of NF-κB pathways. 
Suggesting that RPS would be 
a promising lung tumor sup-
pressor agent [107]. A triter-
penoid saponin from the 
Anemone flaccida was shown 
to exhibit anti-tumor activities 
of inducing apoptosis through 
the inhibition of COX-2/PGE2 
pathway [232]. Another triter-
penoid saponins isolated fr- 
om Gynostemma pentaphyll- 
um(GpS) was reported to 
effectively decreased the pro-
tein expression of p-STAT3 
and the mRNA expression of 
IL-1β, in ApcMin/+ mice [233]. 
The production of tumor 
necrosis factor-α (TNF-α) elic-
ited by Lipopolysaccharide-
induced Inflammation in mo- 
use macrophages, was down-
regulated by Astragalus sapo-
nins (AST). AST also obstruct-
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nificantly suppressed inflam-
matory mediators such as NO, 
PGE2, IL-1b, IL-6 and TNF-α 
[240]. Ds-Echinoside A, a non-
sulfated triterpene glycoside, 
displayed antimetastatic and 
antiproliferative activity throu- 
gh the inactivation of NF-κB-
dependent MMP-9 expression 
and showed a significant cyto-
toxic activity with an IC50 of 
2.65 μM in HepG2 human he- 
patocellular carcinoma cells 
[239]. Platycodon grandiflo-
rum root-derived saponins 
(Changkil saponins, CKS) mR- 
NA expression of TARC, TNF-α, 
IFN-γ, IL-4, IL-5, and IL-13 in 
mice sensitized and chal-
lenged with 2,4-dinitrochloro-
benzene (DNCB). Moreover, 
CKS and platycodin D inhibit-
ed TNF-α/IFN-γ-induced TARC 
expression through the sup-
pression of NF-κB and STAT1 
and the induction of Nrf2/
ARE-mediated hemeoxygen-
ase-1 (HO-1) expression in 
cells [241]. Panax notogin-
seng decreased the expres-
sion of iNOS and COX-2 in the 
azoxymethane (AOM)/dextran 
sulfate sodium (DSS) mouse 
model, suggesting the useful-
ness of P. notoginseng in the 
prevention and treatment of 
colitis and inflammation-asso-
ciated colon carcinogenesis 
[242]. Additionally, P. polyphyl-
la Smith var. chinensis (Fran- 
ch.) exerted anti-lung cancer 
activities by decreasing the 
expressions of inflammatory 
cytokines such as TNF-α, IL-8, 
MCP-1, IL-6, and TGF-β1, as 
well as cell adhesion molecule 
ICAM-1. Thereby inhibiting tu- 
mor growth in C57BL/6 mice 
and A549 Cell Line [121].

Alkaloids

Alkaloids are organic compo- 
unds that contain nitrogen 
(Figure 6). Many alkaloids ha- 
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ve heterocyclic rings as a part 
of their structure and are 
basic (“alkaline”, due to an 
unshared pair on N). Most 
alkaloids are spectacularly 
physiologically active and are 
widely used for medicinal pur-
poses. A mixture of natural 
compounds extracted from 
two medicinal herbs: Kushen 
(Radix Sophorae flavescentis) 
and Baituling (Rhizoma Sm- 
ilacis glabrae) known as 
Compound Kushen Injection 
(CKI), has long been used for 
the inflammation and solid 
tumors [243]. It consists of 
mainly alkaloids such as ma- 
trine, oxymatrine and sophori-
dine [243, 244] An investiga-
tion of the effect of fufang 
Kushen Injection Liquid (FF- 
KSIL) on gastric immunity  
and oxidant-antioxidant duri- 
ng N-methyl-N’-nitro-N-nitro- 
soguanidine (MNNG)-induced 
gastric carcinogenesis reve- 
aled a decrease in the serum 
levels of IL-6 and TNF-α [245]. 
Matrine, a quinolizidine alka-
loid found in plants from 
Sophora genus, ameliorates 
LPS-induced intestinal inflam-
mation in mice by mediating 
the release of the inflammato-
ry mediator NO [246]. Mo- 
reover, matrine significantly 
reduced the protein expres-
sions of TNF-α and IL-6 in a 
mouse model of vincristine-
Induced neuropathic pain and 
impeded TNF-a-induced ex- 
pression of IL-6 and adhesion 
molecules in airway epithelial 
cells [247, 248]. Matrine also 
demonstrated anti-inflamma-
tory effect on airway inflam-
mation by inhibiting the ex- 
pression of suppressor of 
cytokine signaling 3 (SOCS-3) 
through the inhibition of NF-kB 
signaling in airway epithelial 
cells and asthmatic mice 
[248]. In LPS-treated mice 

Figure 7. Chemical struc-
tures of isolated compounds 
in Table 2 respectively.
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and Caco-2 cells, matrine significantly down-
regulated the expression of pro-inflammatory 
cytokines such as IL-1β and thereby resolv- 
ed LPS-induced inflammation and oxidative 
stress [249]. Besides, matrine demonstrated 
an inhibitory effect on the invasion and migra-
tion of castration-resistant prostate cancer 
cells, by decreasing the expression levels of 
matrix metalloproteinase (MMP)-9 and MMP-2 
through the inhibition of NF-κB signaling path-
way [250]. Mitraphylline (MTP) an active alka-
loid in the leaves Mitragyna speciosa and the 
major pentacyclic oxindolic alkaloid present in 
Uncaria tomentosa, markedly suppressed the 
activation of pro-inflammatory cytokines such 
as IL-6 and IL-8 and TNF-α in LPS-challenged 
neutrophils [251]. Bisbenzylisoquinoline alka-
loid-tetrandrine has been known for its remark-
able inhibition of ILs, TNF-a, prostaglandin, COX- 
2 in and other pro-inflammatory mediators 
[252-254]. Making it an attractive mediator of 
cancer-related inflammation. Berberine a ben-
zylisoquinoline alkaloids found in plants such 
as the genus Berberis, Eschscholzia californica 
(Californian poppy), coptis chinensis (chinese 
goldthread) and Phellodendron amurense 
(Amur cork tree) was reported to have alleviat-
ed in vitro and in vivo inflammation and modu-
lated the metastasis of human melanoma can-
cer cells via the inhibition of NF-κB, cox-2, 
prostaglandin E2 and prostaglandin E2 recep-
tors [255]. In addition, berberine-treated hepa-
tocellular carcinoma (HCC) cells showed a 
decreased expression of COX-2, MMP-9, NF-κB 
and urokinase-type plasminogen activator 
(uPA), which consequently led to the suppres-
sion of invasion and migration of HCC [256]. 
This possibly denotes that berberine exerted its 
anti-cancer effect through the modulation of 
inflammation-associated pathways. Another is- 
oquinoline, Cepharanthine(CEP) a bisbenzyliso-
quinoline alkaloid found in the plant Step- 
hania cepharantha was shown to inhibit nitric 
oxide (NO) production, the expression of iNOS, 
MAPK, COX-2 and NF-κB in RAW264.7 cells 
[257]. CEP inhibiton of MMP-9 expression was 
said to have prevented the degradation of 
extracellular matrix (ECM) component [257]. 
Implying that CEP could be useful for anti-can-
cer therapy, owing to its ability to mediate 
inflammation and inhibit proliferation and 
migration in vascular smooth muscle cells 
(VSMC) [257].

Conclusion

Despite the emergence of synthetic com-
pounds, the role of natural product in drug dis-
covery cannot be underestimated; as they can 
be useful as bioactive phytochemicals or serve 
as a guideline to synthetic and medicinal chem-
ists who modifies the structures to induce vari-
ous Pharmacologi-cal activities. A series of 
natural products, such as paclitaxel, vinblas-
tine, camptothecin, and etoposide, have been 
successfully included in the standard reper-
toire of cancer chemotherapy. Interestingly, 
paclitaxel, vinblastine, and etoposide were also 
included in the 19th WHO Model List of Es- 
sential Medicines (April 2015) [258]. Among 
the numerous syntheses of Camptothecin 
(CPT) developed by synthetic and medicinal 
chemists, Two CPT analogs irinotecan and 
topotecan are used in cancer chemotherapy 
today [259-261]. Therefore, there is a possibili-
ty that the above discussed plant extracts and 
phytochemicals can provide potential anti-can-
cer drug candidates; since they were able to 
modulate the inflammatory mediators in cancer 
(Figure 2). Moreover, due to the pleiotropic 
activities demonstrated by most of these plant 
products; by inhibiting more than one of the key 
inflammatory factors and in turns inhibiting the 
formation and progression of cancer. They may 
provide a more efficient chemopreventive and 
chemotherapeutic agents with less toxicity. 
However, further studies are required to trans-
late the above discussed natural products into 
clinical use, and at this point in Cancer research 
all stones need to be unturned, who knows? 
The least expected approach might end up 
becoming a way.
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