
Int J Clin Exp Med 2017;10(12):15960-15966
www.ijcem.com /ISSN:1940-5901/IJCEM0059419

Review Article
The potential role of MTF-1 in hepatocellular  
carcinogenesis and neoplastic progression

Tingting Zhang1,2*, Tan Yang1,3*, Zhen Yang1,2,3

1Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Weiqi Road, Jinan 250021, Shan-
dong, P.R. China; 2Shandong University, 27 Shanda Nanlu, Jinan 250100, Shandong, P.R. China; 3University of 
Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, Shandong, P.R. China. *Equal contributors.

Received June 14, 2017; Accepted November 2, 2017; Epub December 15, 2017; Published December 30, 2017

Abstract: Humans are constantly exposed to a wide variety of metals, yet high levels of metals are harmful and 
can even cause cancer. It is well documented that elevated copper might be a hallmark of various malignancies. 
The liver is the primary organ involved in copper metabolism, and copper has been found to be associated with 
HCC; however, the underlying mechanism remains elusive. Metal-regulatory transcription factor-1 (MTF-1) plays an 
important role in maintaining metal homeostasis, including copper homeostasis. Our initial study suggested that 
copper induces hepatocyte proliferation and activates signaling involved in HCC tumorigenesis and progression. Up-
regulation of MTF-1 in HCC cells was consistent with the strong MTF-1 expression observed in HCC tissue microar-
rays. Following treatment with copper, HCC cells had much higher levels of MTF-1 compared to normal hepatocytes. 
Hence, it is conceivable that MTF-1 is related to HCC tumorigenesis and progression through its role as a copper-
regulating factor. Further investigation into the molecular mechanisms that link increased MTF-1 to transformation 
would be helpful for targeted HCC treatment.
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Introduction

Hepatocellular carcinoma (HCC) is one of the 
most common types of cancer worldwide [1-3]. 
In recent years, HCC mortality has not de- 
creased because it is often detected in the 
later stages, when most treatments are inef-
fective [4, 5]. Hepatitis B virus (HBV) and hepa-
titis C virus (HCV) infections are important in 
the etiology of HCC. Metastasis from other can-
cers, such as colorectal, pancreatic, and breast 
cancer, also contributes to HCC [6]. HCC is 
highly progressive; although many new chemo-
therapeutic agents and treatment modalities 
are now being used clinically, the survival rate 
has not improved. Thus, there is an urgent need 
to elucidate the mechanisms controlling HCC 
tumorigenesis and progression, which will be 
helpful for the early diagnosis and treatment of 
HCC patients.

Humans are constantly exposed to a wide vari-
ety of metals, such as copper and zinc, from 

various sources that are important for normal 
biological functions under homeostatic condi-
tions. However, excess metal levels are harmful 
and result in toxicity, chronic diseases, and 
even cancer in humans [7]. The liver is the pri-
mary organ involved in the metabolism of cop-
per, a metal that has carcinogenic potential [8]. 
Excess copper is reportedly a potent oxidizer 
that produces reactive oxygen species (ROS), 
which in turn elicit oxidative stress-related cel-
lular disorders, e.g., cancer [9, 10]. Copper ac- 
cumulation in LEC rat livers led to spontane- 
ous HCC [11]. Conversely, copper-depleted  
animals developed small, relatively avascular 
tumors with decreased invasive capacity [12]. 
Individuals with elevated copper levels are 
more susceptible to cancer-related mortality, 
which is consistent with the finding that both 
serum and tumor copper levels are increased in 
patients with a variety of malignancies, includ-
ing HCC [13-16]. In addition, clinical trials with 
copper chelators have shown promising results 
[12, 17, 18]. All these findings suggest that cop-



MTF-1 and HCC

15961 Int J Clin Exp Med 2017;10(12):15960-15966

per plays an important role in HCC. In particu-
lar, metal homeostasis and detoxification pro-
cesses are generally controlled transcriptionally 
by metal-sensing signaling through proteins 
such as metallothioneins (MTs; MT1 and MT2), 
which are modulated by metal-regulatory tran-
scription factor-1 (MTF-1) [19, 20]. Thus, by act-
ing as a copper-regulating factor, it is conceiv-
able that MTF-1 is related to HCC tumorigenesis 
and progression. However, the detailed mecha-
nism requires further investigation. 

MTF-1

MTF-1 is a transcription factor that functions by 
maintaining metal homeostasis and protecting 
against injury due to excess metal. The protein 
is structurally and functionally conserved in 
Drosophila, the puffer fish Fugu rubripes, mice, 
and humans; this conservation indicates that 
MTF-1 plays an important role in maintaining 
metal homeostasis across species [21-28]. 
MTF-1 has an N-terminal region that appears to 
be essential for optimal Mt1 gene activation; a 
C-terminal region with a modular transcription 
activation domain; and six zinc fingers that form 
the DNA-binding domain. Heavy metals, redox 
stress, growth factors, and cytokines all induce 
MTF-1. Activated MTF-1 binds to MRE (metal 
response element) sequences within target 
promoters, thereby either inducing or repress-
ing target gene expression [29-34]. The report-
ed MTF-1 targets are critical for metal homeo-
stasis, embryogenesis and hematopoiesis [21, 
29, 35].

Different mechanisms have been proposed for 
how MTF-1 detects metals. MTF-1 is activated 
by serine and tyrosine phosphorylation, the lev-
els of which are regulated by metals [36]. 
However, MTF-1 phosphorylation levels and 
overall modification patterns do not change 
rapidly in response to metals. Recombinant 
MTF-1 was shown to be an in vitro substrate for 
casein kinase II (CKII), c-Jun N-terminal kinase 
(JNK) and protein kinase C (PKC), all of which 
are in the signaling pathway downstream of the 
metal-dependent recruitment of MTF-1 to the 
MT-I promoter. When CKII, JNK and PKC were 
inhibited, MTF-1 expression did not change sig-
nificantly, suggesting that these kinases may 
act through MTF-1 cofactors to regulate metal-
activated gene expression. MTF-1 has RNA-
binding properties that help control stress-

related cell survival pathways at the post- 
transcriptional level [37]. Previous studies have 
reported that MTF-1 directly senses and binds 
free intracellular Zn2+ and subsequently binds 
to DNA [29, 38]. Interactions with other tran-
scription factors (NF-κB, HIF-1, and SP1) and 
post-translational modifications of MTF-1 likely 
influence its targets and transactivational ac- 
tivity [29, 30, 36, 39-42]. Translocation of MTF- 
1 after zinc exposure is also important. MTF- 
1 predominantly diffuses in the cytoplasm of 
resting cells, but it translocates to the nucleus 
following exposure to zinc [43, 44]. A similar 
two-dimensional translocation pattern of MTF-1 
was observed in both untreated and zinc-treat-
ed cells, indicating that cytoplasmic and nucle-
ar MTF-1 share similar modifications. In addi-
tion, MTF-1 phosphorylation may contribute to 
the nuclear translocation of activated MTF-1 
[36, 40, 45].

Additionally, MTF-1 was reported to play critical 
roles in both extracellular matrix remodeling 
and experimental tumorigenesis [36, 39, 46- 
48]. As MTF-1 activity is modulated by metal 
ions, the presence of oxidants, hypoxia, and 
cytokines facilitates tumorigenic phenotypes, 
such as improved cell survival, tumor angiogen-
esis, and the establishment of pro-tumorige- 
nic microenvironments, including inflammatory 
tumor cell signaling and growth factor inde- 
pendence [47-53]. Accordingly, there is much 
focus on the role of MTF-1 in tumorigenesis  
and development.

MTF-1 signaling in HCC carcinogenesis and 
progression

MTF-1 directly induces the expression of sever-
al genes, such as MTs (MT1, MT2A) and Zn 
transporter-1 (ZNT1/SLC30A1) [20, 21]. MTs 
protect cells against oxidative stress and con-
tribute to pathways involved in proliferation, 
survival and energy generation in normal cell 
types [54-59]; these proteins likely function in 
a similar manner in tumor cells. Tissue hypoxia 
and oxidative stress are common features of 
most solid tumors, including HCC [60]. MTF-1 
levels were reported to be significantly incre- 
ased in breast, lung and cervical carcinomas 
[61], highlighting the role of MTF-1 in tumor  
progression. Over-expression of MTF-1 was ob- 
served in human intrahepatic cholangiocarci-
noma and contributed to tumor differentiation, 
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vascular invasion, and poor prognosis [62]. 
Loss of MTF-1 expression inhibited develop-
ment tumor due to increased matrix collagen 
deposition and decreased vascular density 
[46]. In addition, MTF-1 target genes are invo- 
lved in apoptosis resistance, invasion, metas-
tasis, and angiogenesis and are correlated with 
tumor progression and aggressiveness. These 
target genes, including PGF, HIF-1 and TGFβ1, 
are either up-regulated or induced in multiple 
human tumors and correlate with tumor pro-
gression and disease recurrence [30, 32, 33, 
46-48, 63-72]. PGF is a member of the VEGF 
family and has been associated with cancer 
stage, survival, invasion, metastasis and recur-
rence [66, 67]. HIF-1 plays an important role in 
regulating the cellular response to hypoxia and 
various signaling pathways involved in tumori-
genesis [73, 74]. In several human tumor types, 
elevated HIF-1α levels have been associated 
with a high risk of mortality [71, 74]. Moreover, 
TGFβ1 and TGM contribute to tumor survival 
and metastasis [67, 69].

Interestingly, Drosophila MTF-1 (dMTF-1) plays 
dual roles to maintain copper homeostasis: it 
activates copper importer genes to increase 
copper intake at low copper concentrations 
and induces MTs to chelate excess copper at 
high copper concentrations. In these process-
es, dMTF-1 binds to MREs in the enhancers of 
target genes [75, 76]. However, in mammals, 
MTF-1 may have more complicated biological 
functions. Conditional knockout of MTF-1 did 
not influence mouse growth or maturation to 
adulthood, although the mice were extremely 
sensitive to metal-based toxicity [35]. Knockout 
of the MTF-1 gene in mice resulted in impaired 
liver development at gestational day 14 and led 
to liver decay, generalized edema, and embry-
onic death, suggesting a critical role of MTF-1 in 
liver-specific developmental gene expression 
[77]. In particular, our study confirmed that 
MTF-1 was up-regulated in HCC cells, consis-
tent with the strong MTF-1 expression observed 
in HCC tissue microarrays. Following copper 
treatment, HCC cells exhibited much higher  
levels of MTF-1 compared to those in normal 
hepatocytes. Therefore, MTF-1 overexpression 
in HCC may be an important event in HCC pro-
gression and a good candidate for targeted 
molecular therapy.

Studies to date have emphasized the role of 
MTF-1 in the basal and induced expression of 
MT. However, cultured cells from MTF-1 knock-
out mice lack MT gene expression under both 
basal and metal-induced conditions [19, 20]. 
Moreover, the function of MTF-1 may not involve 
Mt1 or Mt2 because embryonic lethality does 
not occur in mice null for both these proteins 
[78, 79]. As a consequence, it is necessary to 
assess other factors that mediate or interact 
with MTF-1 in HCC. Apurinic/apyrimidinic endo-
nuclease/redox effector factor 1 (APE/Ref-1) is 
a potential candidate because it is an impor-
tant mediator and potentiator of HCC progres-
sion [80]. APE/Ref-1, a master regulator of cel-
lular responses to oxidative stress conditions, 
has been shown to affect tumor progression by 
transactivating numerous transcription factors 
involved in cell proliferation, apoptosis, and 
metastasis, such as AP-1 and nuclear factor-κB 
(NF-κB). Furthermore, emerging evidence indi-
cates that APE/Ref-1 is elevated in various 
types of cancer and that its sub-cellular distri-
bution is closely correlated with tumor aggres-
siveness, resistance to radiotherapy, and poor 
outcome. We showed that APE/Ref-1 stimu-
lates cellular proliferation, enhances survival, 
and facilitates metastasis. Compared to cul-
tured normal hepatocytes, HCC cells exhibited 
higher levels of APE/Ref-1 and ROS stress. 
Treatment of hepatocytes with copper resulted 
in transcriptional activation of APE/Ref-1 and 
induction of downstream targets, whereas co-
treatment of HCC cells with copper and the  
copper chelator disulfiram (DSF) reduced the 
expression levels of APE/Ref-1, AP-1/c-Fos, ma- 
trix metalloproteinase-1 (MMP-1), and Bcl-2. 
Data from a human HCC tissue microarray indi-
cated that greater cytoplasmic accumulation of 
APE/Ref-1 was correlated with poorly differenti-
ated and more aggressive tumors, though both 
nuclear and cytoplasmic APE/Ref-1 signals 
were significantly higher in HCC than in normal 
liver tissue. Therefore, the data define a novel 
role for APE/Ref-1 in HCC progression as an 
important mediator and potentiator. Interes- 
tingly, our immunoprecipitation data estab-
lished that MTF-1 and APE/Ref-1 interact with 
each other. As a result, in the liver, MTF-1 and 
APE/Ref-1 may act in concert in tumorigenesis 
and progression. Further studies are needed to 
address these hypotheses.
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In conclusion, the role of MTF-1 in hepatocar-
cinogenesis remains unclear and requires fur-
ther investigation. However, MTF-1 could be a 
novel therapeutic target for manipulating metal 
and/or redox homeostasis in HCC.
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